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Abstract

Scattering amplitudes in maximally supersymmetric gauge theory receive a dual description in terms 
of the expectation value of the super Wilson loop stretched on a null polygonal contour. This makes the 
analysis amenable to nonperturbative techniques. Presently, we elaborate on a refined form of the operator 
product expansion in terms of pentagon transitions to compute twist-two contributions to NMHV ampli-
tudes. To start with, we provide a novel derivation of scattering matrices starting from Baxter equations 
for flux-tube excitations propagating on magnon background. We propose bootstrap equations obeyed by 
pentagon form factors with nonsinglet quantum numbers with respect to the R-symmetry group and provide 
solutions to them to all orders in ’t Hooft coupling. These are then successfully confronted against available 
perturbative calculations for NMHV amplitudes to four-loop order.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Scattering amplitudes encode interaction of asymptotic states in a theory and are thus of pa-
ramount importance for unraveling underlying particle dynamics as a function of kinematical 
variables sn and their coupling constant g2, A = A(sn; g2). Typically, one restricts oneself to a 
fixed (rather low) order in g2 and computes them exactly in sn using conventional perturbative 
or unitarity based techniques [1]. In this case however, the goal of uncovering nonperturbative 
dependence on the coupling is completely out of reach. One can attempt to consider instead a 
particular kinematical setup and attempt an all-order resummation that corresponds to selection 
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of particular types of Feynman diagrams that dominate in a given region. The problem with these 
is that the calculation of subleading kinematical corrections is highly problematic due to the fact 
that one has to enlarge the class of graphs involved in the analysis.

These complications were recently overcome in maximally sypersymmetric gauge theory 
where an equivalent description of superamplitudes A was uncovered in the form of the vac-
uum expectation value of the super Wilson loop 〈W〉 stretched on a closed polygonal contour 
formed by particles’ light-like momenta [2–4] generalizing a deep insight for their bosonic coun-
terparts [5–7]. A near-collinear limit for the latter can be reformulated as an operator product 
expansion [8–10] for the superloop in terms of nonlocal operators representing excitations of the 
so-called color flux tube [11–14]. These enter the series exponentially suppressed with the power 
proportional to their twist,

〈W〉 = e−τ f1 + e−2τ f2 + . . . . (1)

Each contribution is determined by a correlation function of the aforementioned operators that 
are built up by a �-shaped Wilson link operator with elementary field insertions in the middle 
segment [15,16]. The renormalization group evolution of fi = fi(τ ) in the time variable τ is 
governed by anomalous dimensions of the flux-tube excitations [17–20], also known as Gubser–
Klebanov–Polyakov excitations in the dual string picture [21]. At one-loop order, the problem of 
calculating these energies can be mapped into an integrable noncompact open spin chain [15,22]. 
The corresponding eigenfunctions play an indispensable role as well, since their overlap in dif-
ferent conformal frames defines multiparticle transitions and coupling of flux-tube excitations to 
the Wilson loop contour [13,22]. These were dubbed pentagon transitions [12], since they receive 
a clear geometrical interpretation in a tessellation scheme of the Wilson loop in question. It turns 
out that these multiparticle pentagons factorize into single-particle transitions as a natural con-
sequence of underlying integrable dynamics. The advantage of this refined form of the operator 
product expansion is that it can be promoted to all orders in ’t Hooft coupling g2 = g2

YMN/(4π)2

becoming a truly nonperturbative framework for computing the near-collinear limit of scattering 
amplitudes [12–14]. One of the ingredients in the construction, the spectrum of flux-tube ex-
citations was solved to all orders in coupling in Ref. [20] making use of the integrability of 
the dilatation operator in N = 4 super Yang–Mills theory [23]. The second building block, the 
pentagons, were conjectured to obey a system of axiomatic equations [12] which have their 
roots in the integrable scattering dynamics of flux-tube excitations [18,24–27]. The solution 
to these lead to remarkable predictions for single f1 [13] and two-particle f2 [14] contribu-
tions to the bosonic Wilson loop (1), which is known to provide an equivalent description for 
maximal helicity-violating (MHV) amplitudes. One-particle contributions were also conjectured 
for some components of the superloop [13]. When expanded at weak coupling, the operator 
product expansion results were shown to be in striking agreement with available multiloop cal-
culations [28,29].

In the present paper, we will focus on the operator product expansion for NMHV amplitudes, 
specifically on twist-two effects. We will choose the hexagon as a case of study. According to 
the approach of Ref. [13], an appropriately subtracted hexagon super Wilson loop admits the 
decomposition

W6 =
∑

ψ1,ψ2

〈0|P̂|ψr 〉〈ψr |e−τĤ+iσ P̂+iφĴ |ψr ′ 〉〈ψr ′ |P̂|0〉, (2)

where P̂ is a pentagon operator that creates a (multi)particle state ψr in the representation r
with respect to the R-symmetry group SU(4) from the vacuum. The state then propagates with 
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Fig. 1. Hexagon Wilson loop decomposition into pentagon transitions.

the ‘evolution’ operator e−τĤ+iσ P̂+iφĴ and then gets absorbed back into the vacuum. The above 
representation is driven by a particular tessellation of the hexagon into three null squares as 
demonstrated in Fig. 1. The operators Ĥ , P̂ and Ĵ are the remaining conformal symmetries of 
the middle square and thus the variables τ , σ and φ parametrize all conformally inequivalent 
hexagons. The eigenvalues of the conformal symmetry generators on the intermediate states

Ĥ |ψr 〉 = E(g)|ψr 〉, P̂ |ψr 〉 = p(g)|ψr 〉, Ĵ |ψr 〉 = m|ψr 〉,
correspond to energy, momentum and angular momentum of contributing flux-tube excitation 
and they are known to all order in ’t Hooft coupling g as we already emphasized earlier. It is the 
form factors

F(0|ψr ) ≡ 〈0|P̂|ψr 〉
which require a dedicated study. The single-particle contributions were addressed in full detail in 
Ref. [13], while two-particle states in the singlet channel of SU(4) were considered in [14]. In this 
paper, we will be interested in two-particle form factors with nonsinglet quantum numbers with 
respect to the R-symmetry group, with the emphasis on two-fermion and scalar–gluon interme-
diate state |ψα〉 = |fermion, fermion〉, |hole,gauge〉. Along this way, we will be able to unravel 
the structure of certain Grassmann components of the super Wilson loops and, as a consequence 
of duality, corresponding NMHV amplitudes.

To prepare the playground for this analysis, we will construct from scratch scattering matrices 
for the main flux-tube excitations. This problem was addressed in the literature independently 
in Ref. [27] and [26,13,14] to all orders in ’t Hooft coupling. However, the results of the former 
approach are not well-suited for our needs, while the second one lacks some of the S-matrices 
necessary for our considerations. Our approach while different in the starting point and interme-
diate manipulations will yield results which admit the same final form as in the second framework 
allude to above. Namely, we will use Baxter equations for spin-chain excitations propagating on 
magnon background as a main tool to find flux-tube equations. This will be accomplished in 
Section 2. Next, in Section 3, we will use the same formalism to deduce the S-matrices for any 
two-particle scattering. Since the solution to the bootstrap equations for pentagon transitions re-
quires scattering matrices in the mirror kinematics, we address this issue in detail in Section 4. 
Appendices A–D review details of the mirror transformation for flux-tube excitations that was 
rather concise in previous papers on the subject. Finally, we turn to the construction of pen-
tagon form factors for two-particle states in Section 5 by proposing a set of equations that they 
have to obey. These functional equations are then solved exactly and compared with available 
perturbative data for hexagon NMHV amplitude yielding a complete agreement.
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2. From magnon Baxter to flux tube equations

A complimentary, and actually the original, view [18,11,19,20] on flux-tube excitations 
emerges from the study of single-trace local operators with large conformal spin. In this frame-
work, a flux-tube excitation arises as an insertion of an elementary field X into the string of 
covariant derivatives D+ projected on the light cone,

OX = tr
[
Z(0)D+ . . .D+X(0)D+ . . .D+Z(0)

]
. (3)

Here the scalar Z-fields merely serve as a source/sink for the gauge flux. We will rely below 
on this picture since we can then immediately adopt the all-order Bethe Ansatz equations [23]
available for this problem. We will derive the spectrum generating flux-tube equations in the 
next few sections. However, compared to the analysis of Ref. [20] that heavily relied on the in-
troduction of the so-called counting function, we will use the formalism of the Baxter equation 
as a central point of the consideration. The latter appears to be more readily suited for the anal-
ysis of the large-spin asymptotics naturally incorporating particle–hole transformations as was 
demonstrated earlier at one-loop in Ref. [18] and to all-orders for the hole in Ref. [30]. Below, 
we generalize this to the entire spectrum of fundamental flux-tube excitations and their bound 
states.

2.1. Hole/scalar excitation

To start with, let us recall that the Baxter equation encoding the spectrum of anomalous di-
mensions of the local operator of the type (3) with S covariant derivatives and X = ZL−2 scalar 
field insertions distributed along the string of derivatives takes the form [30]

	+(u+)Q(u + i) + 	−(u−)Q(u − i) = t (u)Q(u). (4)

Here Q is a Baxter polynomial in the rapidity variable u with its zeroes determined by the Bethe 
roots uj = uj (g)

Q(u) =
S∏

j=1

(u − uj ). (5)

The dressing factors

	±(u) = xL
S∏

j=1

(
1 − g2

xx∓
j

)−2

e−i
(x,xj ), (6)

depend on the Zhukowski variable

x = x[u] = 1
2

(
u +

√
u2 − (2g)2

)
(7)

with conventional notation introduced for x± ≡ x[u±] and u± = u ± i
2 . The magnon phase 


(x, xj ) reads [31,19]


(x,y) = 4
∞∑ ∞∑

(−1)n+mZ2m,2n+1(g)

[
q2n+1(y)

x2m
− q2m(y)

x2n+1

]
, (8)
m=1 n=0



A.V. Belitsky / Nuclear Physics B 896 (2015) 493–554 497
with expansion coefficients admitting a representation in terms of integrals of Bessel func-
tions Jn,

Zm,n(g) = gm+n

∞∫
0

dt

t

Jm(2gt)Jn(2gt)

et − 1
, (9)

and the qn being the kernels of the conserved spin chain charges

qn(x) = (x+)−n − (x−)−n. (10)

The last ingredient in the right-hand side of Eq. (4) is the transfer matrix t (u). In the large-spin 
limit, it was demonstrated by a thorough analysis in Ref. [18] that it scales as t ∼ O(S2) for 
S → ∞ and thus only half of the Baxter equation survive at leading order in the inverse spin 
expansion.

2.1.1. Flux-tube equations
To proceed further, let us take the logarithm of both sides of Eq. (4) and perform a Fourier 

transformation of the dressing factors, e.g.,

ln	+(u) = L lnx +
∞∫

0

dt

t
eiut�(2gt), (11)

assuming that 
m[u] > 0 for convergence. Introducing even and odd combinations of the 
�-function

�±(t) = 1
2 [�(t) ± �(−t)] , (12)

we can expand each of them in a Neumann series over the Bessel functions [32–34],

�+(t) = 2
∑
n≥1

(2n)J2n(t)�2n, �−(t) = 2
∑
n≥1

(2n − 1)J2n−1(t)�2n−1. (13)

These form orthogonal bases of functions for even/odd indices

∞∫
0

dt

t
J2n(t)J2m(t) = δnm

2(2n)
,

∞∫
0

dt

t
J2n+1(t)J2m+1(t) = δnm

2(2n + 1)
. (14)

This way, Eq. (11) can be rewritten as

2
∑
n≥1

�n

(
ig

x

)n

= −2
S∑

j=1

ln

(
1 − g2

xx∓
j

)
− i

S∑
j=1


(x,xj ), (15)

where we used the value of the integral

∞∫
0

dt

t
eiutJn(2gt) =

(
ig

x

)n

, (16)

valid for 
m[u] > 0. We can easily extract equations for individual expansions coefficients �n by 
integrating Eq. (15) over a closed contour in x, which translates into a contour in u = x + g2/x

which encircles the cut [−2g, 2g] in the complex plane, namely
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�n = − 1

2πi

∮
dx

x

(
x

ig

)n

lnQ(u+) + dn, (17)

where we employed the equality between the integrals∮
dx

x

(
x

ig

)n

ln

(
1 − g2

xx−
j

)
=

∮
dx

x

(
x

ig

)n

ln
(
u+ − uj

)
, (18)

in the first term and dn’s are the coefficient induced by the magnon dressing phase

dn ≡ − 1

4π

S∑
j=1

∮
dx

x

(
x

ig

)n


(x, xj ). (19)

Making use of the explicit form of the latter given by the right-hand side of Eq. (8), we can find 
dn’s for even and odd value of n as follows

d2n =
∞∫

0

dt

t

J2n(2gt)

et − 1

[
�−(2gt) + �̄−(2gt)

]
, (20)

d2n+1 =
∞∫

0

dt

t

J2n+1(2gt)

et − 1

[
�+(2gt) − �̄+(2gt)

]
, (21)

where we relied on the relation between the conserved charges and Fourier coefficients �n as can 
be easily established from the ratio of the dressing factors 	+(u)/	−(u),

S∑
j=1

q2n(xj ) = (−1)n+1(2n)g−2n
(
�2n − �̄2n

)
, (22)

S∑
j=1

q2n+1(xj ) = i(−1)n(2n + 1)g−1−2n
(
�2n+1 + �̄2n+1

)
. (23)

It might appear that Eqs. (20) and (21) are vacuous since they seem to define d’s in terms of d’s. 
However, a naked eye inspection of the last term in Eq. (17) immediately demonstrates that for 
even n, dn’s are real, d̄2n = d2n, while for odd n, they are imaginary, i.e., d̄2n+1 = −d2n+1. This 
implies that in the right-hand side of (20) and (21), only the first term in Eq. (17) induces a 
nontrivial contribution. This observation was first made in Ref. [25]. Thus, the equations for 
even and odd �n take the form

�2n −
∞∫

0

dt

t

J2n(2gt)

et − 1

[
�−(2gt) + �̄−(2gt)

] = − 1

2πi

∮
dx

x

(
x

ig

)2n

lnQ(u+), (24)

�2n−1 −
∞∫

0

dt

t

J2n−1(2gt)

et − 1

[
�+(2gt) − �̄+(2gt)

] = − 1

2πi

∮
dx

x

(
x

ig

)2n−1

lnQ(u+),

(25)

respectively. Analogous equations for �̄ are simply obtained from the above by complex conju-
gation.
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As a next step, we have to solve the Baxter equation (4) for arbitrary �’s and substitute its solu-
tion into the right-hand sides of above equations, which once solved will determine the unknown 
functions �. As we will demonstrate below, see Eqs. (46)–(49), the solution to the half-Baxter 
equation admits a factorized form

Q(u) = Q�(u)δQ(u), (26)

where

lnQ�(u) =
∞∫

0

dt

t

eiut�(2gt) − 2gt�1

et − 1
, (27)

is valid in the upper half-plane, and we used the definition

Jn(2gt) = 1

2πi

∮
dx

x
eiut

(
x

ig

)n

= 1

2πi

∮
dx

x
eiut

( g

ix

)n

. (28)

Then decomposing �, as before, in even and odd components according to Eq. (12), we can 
rewrite Eqs. (24) and (25) as follows

�2n +
∞∫

0

dt

t

J2n(2gt)

et − 1

[
�+(2gt) − �̄−(2gt)

] = χ2n, (29)

�2n−1 +
∞∫

0

dt

t

J2n−1(2gt)

et − 1

[
�−(2gt) − �̄+(2gt)

] = χ2n−1, (30)

where the inhomogeneities are

χ2n ≡ − 1

2πi

∮
dx

x

(
x

ig

)2n

ln δQ(u+), (31)

χ2n−1 ≡ − 1

2πi

∮
dx

x

(
x

ig

)2n−1

ln δQ(u+). (32)

To make contact with the analysis in Ref. [20], we introduce the following linear combinations 
of the function � and its complex conjugate

γ (t) = 1
2

[
�(t) + �̄(t)

]
, γ̃ (t) = i

2

[
�(t) − �̄(t)

]
. (33)

Forming appropriate linear combination of equations derived above, we find the final form of the 
flux-tube equations

γn +
∞∫

0

dt

t

Jn(2gt)

et − 1

[
γ+(2gt) − (−1)nγ−(2gt)

] = κn, (34)

γ̃n +
∞∫

0

dt

t

Jn(2gt)

et − 1

[
γ̃−(2gt) + (−1)nγ̃+(2gt)

] = κ̃n, (35)

where we also formed appropriate linear combinations of the sources as well

κn ≡ 1 [χn + χ̄n], κ̃n ≡ i [χn − χ̄n]. (36)
2 2
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For future reference, we can immediately cast the flux-tube equations into the form

∞∫
0

dt

t
J2n(2gt)

[
γ �+,v(2gt)

1 − e−t
− γ �−,v(2gt)

et − 1

]
= κ�

2n(v), (37)

∞∫
0

dt

t
J2n−1(2gt)

[
γ �−,v(2gt)

1 − e−t
+ γ �+,v(2gt)

et − 1

]
= κ�

2n−1(v), (38)

and
∞∫

0

dt

t
J2n(2gt)

[
γ̃ �+,v(2gt)

1 − e−t
+ γ̃ �−,v(2gt)

et − 1

]
= κ̃�

2n(v), (39)

∞∫
0

dt

t
J2n−1(2gt)

[
γ̃ �−,v(2gt)

1 − e−t
− γ̃ �+,v(2gt)

et − 1

]
= κ̃�

2n−1(v), (40)

for even and odd indices, respectively, by using the inverse transformation in the Neumann se-
ries (13) for the first term in the left-hand side of (34) and (35).

2.1.2. Formal solution of flux-tube equations
Let us construct an infinite series representation for the solution to Eqs. (34) and (35). Let us 

start from the first one. Since γ (t) and γ̃ (t) have the same parity as �+(t) and �−(t) in Eq. (13), 
respectively, they can be expanded into the same Neumann series. This allows us to write (34) as 
a matrix equation [32–34]

(δnm + Knm)γm = κn, (41)

where the summation over the repeated index is implied over the range of all positive integers 
m ∈ Z

+. We introduced here a notation for the infinite matrix [32–34]

Knm ≡ 2m(−1)m(n+1)

∞∫
0

dt

t

Jn(2gt)Jm(2gt)

et − 1
, (42)

and we used an identity to combine contributions of different parity 1 + (−1)m − (−1)n +
(−1)n+m = 2(−1)m(n+1). We can formally invert the equations for γ and analogous one for 
γ̃ to find

γn = [1 + K]−1
nmκm, γ̃n = (−1)n[1 + K]−1

nm(−1)mκ̃m. (43)

This representation is particularly useful for perturbative calculations of the functions in question.

2.1.3. Fixing hole inhomogeneity
Let us now solve the Baxter equation in the large-spin limit. As was demonstrated in 

Refs. [17,18], in this case one can ignore half of the Baxter equation. At weak coupling, the ac-
curacy of the resulting approximation is O(1/S2), while at strong coupling, it is only O(1/ lnS),

Q(u) = Q+(u) + Q−(u) = Q+(u)
(

1 + O(1/S2)
)

(44)
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for 
m[u] > 0. This will suffice for our purposes since we will be after leading and first sublead-
ing effects in the large-spin expansion. We are interested in the dynamics of the small hole in 
the distribution of the Bethe roots. Thus, to this end it is enough to consider a length L = 3 spin 
chain since the small hole is accompanied by two large holes whose rapidities scale as ±S/

√
2. 

The transfer matrix admits the form for u ∼ O(S0),

t (u) = −η2(u − v), (45)

where v is the hole rapidity and η2 = S2 + O(S). The resulting equation that one has to solve 
reads

lnQ+(u + i) − lnQ+(u) = −
∞∫

0

dt

t
eiu+t�(2gt) + ln(−η2) − 3 lnx+ + ln(u − v), (46)

with x+ = x[u+]. Decomposing Q+ as in Eq. (26) with δQ+ factorized further in the vacuum 
QØ+ and hole Qh+,v functions, δQ+ = QØ+Qh+,v , each of them obeys respective equations

ln
Q�+(u + i)

Q�+(u)
= −

∞∫
0

dt

t
eiu+t�(2gt), (47)

ln
QØ+(u + i)

QØ+(u)
= ln(−η2) − 2 lnx+, (48)

ln
Qh+,v(u + i)

Qh+,v(u)
= ln

u − v

x+ . (49)

These can be easily solved one-by-one with the solution to the first one that has already been 
used in Eq. (27). We are now in a position to decompose the functions � in terms of the vacuum 
solution �Ø, when there are no small holes and the remainder describing a single scalar excitation 
propagating along the chain,

�(t) = �Ø(t) + �h
v(t). (50)

Let us now turn to finding these.

2.1.4. Vacuum solution
Notice that �Ø can be found by solving length-two spin chain. Since it corresponds to twist-

two operators, it is real and therefore

γ Ø(t) = �Ø(t), γ̃ Ø(t) = 0. (51)

The vacuum solution was found in Ref. [25] and reads

lnQØ+(u+) = −2iu ln η̄ − 2

∞∫
0

dt

t

eiutJ0(2gt) − iut − 1

et − 1
, (52)

where here and below η̄ = ηeγE with γE being the Euler constant. Then, we immediately find that 
γ Ø obeys Eq. (34), i.e.,
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γ Ø
n +

∞∫
0

dt

t

Jn(2gt)

et − 1

[
γ Ø+ (2gt) − (−1)nγ Ø− (2gt)

]
= κø

n, (53)

with the source

κØ
n = 2gδn,1 ln η̄ + 2

∞∫
0

dt

t

Jn(2gt)J0(2gt) − gtδn,1

et − 1
. (54)

Notice that compared to Ref. [25] we did not decompose the vacuum functions/sources in terms 
of O(lnS) and O(S0) contributions but rather kept them as one function. Since the vacuum 
solution is independent of the type of excitation that propagates on it, it will be unique for all 
sectors studied below as well.

2.1.5. Hole solution
The solution to the half-Baxter equation for the hole excitation (49) reads

lnQh+,v(u
+) = ln ch+ +

∞∫
0

dt

t

eiut

et − 1

(
e−iv+t − J0(2gt)

)
. (55)

Here we introduced an arbitrary constant c+ that accounts for the ambiguity in solving the finite-
difference equation. It will be fixed later on from the condition of zero quasimomentum carried 
by excitations around the chain since these are the only physical degrees of freedom in the prob-
lem.

Finally, decomposing the γ and γ̃ functions in terms of the vacuum and hole parts, the latter 
obey Eqs. (34) and (35) with the sources that can be easily derived from (31) and (32) by forming 
the linear combinations (36). They read explicitly

κh
n(v) = −

∞∫
0

dt

t

Jn(2gt)

et − 1

(
et/2 cos(vt) − J0(2gt)

)
, (56)

κ̃h
n(v) = −

∞∫
0

dt

t

Jn(2gt)

et − 1
et/2 sin(vt). (57)

They are in agreement with Ref. [20].

2.1.6. Integral form of flux-tube equations: holes
We can rewrite the flux tube equations in a form that will be indispensable for analytic con-

tinuation in hole rapidity that will be used later in the paper. Namely, from the Jacobi–Anger 
relation we can find the expansion of trigonometric functions in terms of the Neumann series

cos(t ū) − J0(t) = 2
∑
n≥1

J2n(t) cos (2nϕ) , (58)

sin(t ū) = 2
∑
n≥1

J2n−1(t) sin ((2n − 1)ϕ) , (59)

where ū = sinϕ with |ū| ≤ 1. Then multiplying both sides of the above Eqs. (37) and (38) by 
cos(2nϕ) and sin((2n − 1)ϕ), respectively, and summing over n, we get for � = h
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∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ h+,v(2gt)

= −
∞∫

0

dt

t

cos(ut) − J0(2gt)

et − 1

[
γ h
v (−2gt) + et/2 cos(vt) − J0(2gt)

]
, (60)

∞∫
0

dt

t
sin(ut)γ h−,v(2gt) = −

∞∫
0

dt

t

sin(ut)

et − 1

[
γ h
v (2gt) + et/2 cos(vt) − J0(2gt)

]
. (61)

Similarly, from the flux tube equations in the form (39) and (40), we find making use of Eqs. (58)
and (59),

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ̃ h+,v(2gt)

= −
∞∫

0

dt

t

cos(ut) − J0(2gt)

et − 1

[
γ̃ h
v (2gt) + et/2 sin(vt)

]
, (62)

∞∫
0

dt

t
sin(ut)γ̃ h−,v(2gt) = −

∞∫
0

dt

t

sin(ut)

et − 1

[
−γ̃ h

v (−2gt) + et/2 sin(vt)
]
. (63)

Both results appeared previously in Ref. [26]. Similar equations can be derived for all other 
excitations and are summarized in Appendix A.

2.2. Large fermion

The Baxter equation for the single fermion excitation reads

	−(u−)QF(u − i)(x+ − xF) + 	+(u+)QF(u + i)(x− − xF) = t (u)Q(u), (64)

as can be derived by solving the nesting in the sl(2|1) sector of the complete su(2, 2|4) super 
spin chain Bethe Ansatz equations [23], see Ref. [25]. Here 	±’s are given in Eq. (6). As was 
demonstrated in the leading order analysis of Ref. [9], see Appendix B.2 there, compared to 
the one for the bosonic sector alluded to above, the transfer matrix possesses (with exponential 
precision) two extra zeroes located at u±

F of the fermionic root uF . Generalizing this analysis to 
all orders in ’t Hooft coupling as suggested by the left-hand side of the above Baxter equation, 
we can bring t (u) to the form

t (u) = (x− − xF)(x+ − xF)τ (u), (65)

where x ≡ x[u] and the dependence on the fermion rapidity v enters through xF ≡ x[v]. In the 
large-spin limit τ(u) is dominated by the two large holes, so it simply scales as τ(u) � −η2 up 
to subleading terms. Neglecting one half of the Baxter equation, we find

	F (u+)QF (u + i) = −η2(u − v−)QF (u), (66)
+ + +
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where

	F+(u) = 	+(u)

(
1 − g2

xFx

)
. (67)

We introduce the function �F(t) as follows

ln	F+(u) = L lnx +
∞∫

0

dt

t
eiut�F(2gt), (68)

with L = 3 and valid in the upper half-plane of u. Substituting the Neumann expansion for �F(t), 
we immediately obtain

�F
n = 1

4πi

∮
dx

x

(
x

ig

)n

ln

(
1 − g2

xxF

)
− 1

2πi

∮
dx

x

(
x

ig

)n

lnQF+(u+) + dn. (69)

The first term can be easily calculated to be

1

4πi

∮
dx

x

(
x

ig

)n

ln

(
1 − g2

xxF

)
= − 1

2n

(
g

ixF

)n

. (70)

Now using the following integral representations for even and odd n,(
g

xF

)2n

= 2n(−1)n

∞∫
0

dt

t
J2n(2gt) cos(vt),

(
g

xF

)2n−1

= (2n − 1)(−1)n−1

∞∫
0

dt

t
J2n−1(2gt) sin(vt),

we find, respectively,

�F
2n −

∞∫
0

dt

t
J2n(2gt)

�F−(2gt) + �̄F−(2gt)

et − 1

= −1

2

∞∫
0

dt

t
J2n(2gt) cos(vt) − 1

2πi

∮
dx

x

(
x

ig

)2n

lnQF+(u+), (71)

�f
2n−1 −

∞∫
0

dt

t
J2n−1(2gt)

�F+(2gt) − �̄F+(2gt)

et − 1

= i

2

∞∫
0

dt

t
J2n−1(2gt) sin(vt) − 1

2πi

∮
dx

x

(
x

ig

)2n−1

lnQF+(u+). (72)

Breaking up the Baxter function into Q� given by (27) in terms of the vacuum solution and the 
fermion excitation, we deduce for the latter

lnQF+,v(u
+) =

∞∫
dt

t

eiut

et − 1

(
e−ivt − J0(2gt)

)
. (73)
0
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Combining the latter solution with the first term in the right-hand side in the above Eqs. (71)
and (72), we get the inhomogeneities for fermions for �F

v in the decomposition �f = �Ø + �F
v ,

κF
2n(v) = −

∞∫
0

dt

t

J2n(2gt)

et − 1
(cos(vt) − J0(2gt)) − 1

2

∞∫
0

dt

t
J2n(2gt) cos(vt), (74)

κF
2n−1(v) = −

∞∫
0

dt

t

J2n−1(2gt)

et − 1
(cos(vt) − J0(2gt)) , (75)

κ̃F
2n(v) = −

∞∫
0

dt

t

J2n(2gt)

et − 1
sin(vt), (76)

κ̃F
2n−1(v) = −

∞∫
0

dt

t

J2n−1(2gt)

et − 1
sin(vt) − 1

2

∞∫
0

dt

t
J2n−1(2gt) sin(vt). (77)

These sources coincide with the ones for the so-called large fermion, in terminology of Ref. [20].

2.3. Small fermion

We can write analogously the Baxter equation for the small fermion. However, we are going 
to choose a different route. Since the large and small fermions are related to each other via an 
analytic continuation through the cut on the real axis [20], we will merely use it in order to 
find the sources in the corresponding flux-tube equation. Namely, following the steps outlined in 
Appendix B, we can easily conclude,

κ f
2n(v) = 1

2

∞∫
0

dt

t
J2n(2gt) cos(vt), (78)

κ̃ f
2n−1(v) = 1

2

∞∫
0

dt

t
J2n−1(2gt) sin(vt), (79)

while κ f
2n−1(v) = 0 and ̃κ f

2n(v) = 0, in agreement with Ref. [20].

2.4. Gauge field and bound states

Finally, we turn to the gauge field and its bound states. In complete analogy with consideration 
for other excitations, the resolved nested Bethe Ansatz equations, see Eq. (B.16) of Ref. [25], can 
be cast in the form of a Baxter equation, namely

	−(u−)Qg(u − i)
(
x[−�]

g − x+)(
1 − g2

x
[−�]
g x−

)

+ 	+(u+)Qg(u + i)
(
x[+�]

g − x−)(
1 − g2

x
[+�]
g x+

)
= t (u)Qg(u), (80)



506 A.V. Belitsky / Nuclear Physics B 896 (2015) 493–554
with x = x[u] and x[±�]
g = x[v ± i

2�]. The dressing factor is the same as in the Baxter equation 
for the hole (6). As in the fermionic case addressed above, the transfer matrix t (u) has two zeroes 
which should be factorized

t (u) =
(
x[−�]

g − x+)(
x[+�]

g − x−)
τ(u). (81)

Now, in the large-spin limit we can safely ignore one of the terms in the Baxter equation. For 

m[u] > 0, we find

	
g
+(u+)Q

g
+(u + i) = −η2

(
u − v[−�−1])Q

g
+(u), (82)

where we used the fact that we have two large holes in the game so that τ(u) � −η2 and we 
defined

	
g
+(u) ≡

(
1 − g2

x
[−�]
g x

)(
1 − g2

x
[−�]
g x

)
	+(u), (83)

with 	+ given by Eq. (6). Introducing a new function �g, we write 	g
+ in the form

	
g
+(u) = L lnx +

∞∫
0

dt

t
eiut�g(2gt), (84)

where 
m[u] > 0. Expanding the �g(t) in the Neumann series (13), we find

�
g
n = − 1

2n

(
g

ix
[−�]
g

)n

− 1

2n

(
g

ix
[+�]
g

)n

− 1

2πi

∮
dx

x

(
x

ig

)n

lnQ
g
+(u+) + dn, (85)

where we relied on Eq. (18) to compute the integrals of the logarithms of prefactors in the right-
hand side of Eq. (83). Since the functional form of Eq. (82) does not differ from the one of the 
hole, the dressing terms dn take the form (20) and (21) where one obviously has to replace �
by �g. Finally, using(

g

ix
[±�]
g

)n

= n

∞∫
0

dt

t
Jn(∓2gt)e±ivt−�t/2, (86)

we can bring �g
n to the form

�
g
n = −1

2

∞∫
0

dt

t
Jn(2gt)e−�t/2

(
e−ivt + (−1)neivt

)

− 1

2πi

∮
dx

x

(
x

ig

)n

lnQ
g
+(u+) + dn, (87)

where the first term will be an additional contribution to the sources of the flux-tube equations. 
Decomposing Qg

+ as before Qg
+ = Q�+QØ+Q

g
+,v , we find that Q�+ and Qø

+ have the same form 
as (27) and (52), respectively. While for the gluon bound state, we have

lnQ
g
+,v(u

+) =
∞∫

dt

t

eiut

et − 1

(
e−ivt−�t/2 − J0(2gt)

)
. (88)
0
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So the right-hand side of this equation together with the first term in Eq. (87) cumulatively 
generate the inhomogeneous terms in the flux-tube equations

κ
g
2n(v) = −

∞∫
0

dt

t

J2n(2gt)

1 − e−t

(
e−�t/2 cos(vt) − J0(2gt)

)
, (89)

κ
g
2n−1(v) = −

∞∫
0

dt

t

J2n−1(2gt)

et − 1

(
e−�t/2 cos(vt) − J0(2gt)

)
, (90)

κ̃
g
2n(v) = −

∞∫
0

dt

t

J2n(2gt)

et − 1
e−�t/2 sin(vt), (91)

κ̃
g
2n−1(v) = −

∞∫
0

dt

t

J2n−1(2gt)

1 − e−t
e−�t/2 sin(vt). (92)

For a single gauge field, i.e., � = 1, the sources can be found from the above general relations 
and cast into the concise form

κ
g
n(v) = −

∞∫
0

dt

t

Jn(2gt)

et − 1

(
e(−1)nt/2 cos(vt) − J0(2gt)

)
, (93)

κ̃
g
n(v) = −

∞∫
0

dt

t

Jn(2gt)

et − 1
e−(−1)nt/2 sin(vt), (94)

where we added and subtracted e∓tJ0(2gt) making use of the orthogonality conditions (14). 
Again these agree with Ref. [20].

3. S-matrices

Let us now turn to the derivation of scattering matrices between different flux-tube excitations. 
We will focus on their dynamical part which enters as overall scalar prefactors accompanied by a 
matrix encoding SU(4) tensor structure for particles charged with the respect to the R-symmetry 
group, like holes and (anti)fermions. To accomplish this goal we will rely on the Bethe–Yang 
equations derived in Ref. [25]. Since the solutions constructed above have an unfixed integration 
constants, we have to provide an additional condition to fix the ambiguity. The latter is provided 
by the vanishing of the quasimomentum of excitations propagating along the closed spin chain 
since this is ensured by the cyclicity of the single trace operators. The resulting condition

1

2πi

∮
dx

x
ln

Q�+(u+)

Q�−(u−)
= 0, (95)

is written in terms of the solutions Q�±(u) to the half-Baxter equations valid in the upper/lower 
half-plane of u for the �-excitation.
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We start our analysis by reproducing expressions already available in the literature [26,13,14], 
namely, for hole–hole, fermion–fermion and gauge–gauge fields in Sections 3.1, 3.2 and 3.3, 
respectively. At the same time, we report new results1 for scattering phases involving excitations 
of different kinds, i.e., hole–large (small) fermion, hole–gauge and large/small fermion–gauge 
fields in Sections 3.2.1 (3.2.4), 3.3.2 and 3.3.3, respectively.

3.1. Hole–hole S-matrices

Combining all ingredients together, the solutions to half-Baxter equation for holes (with 

m[u] ≷ 0) are

lnQ+(u+) = ln c+ − 2iu lnη − 2

∞∫
0

dt

t

eiutJ0(2gt) − iut − 1

et − 1

+
∞∫

0

dt

t

eiut�(2gt) − 2gt�1

et − 1
+

∞∫
0

dt

t (et − 1)
eiut

(
e−iv+t − J0(2gt)

)
, (96)

lnQ−(u−) = ln c− + 2iu lnη − 2

∞∫
0

dt

t

e−iutJ0(2gt) + iut − 1

et − 1
(97)

+
∞∫

0

dt

t

e−iut �̄(2gt) − 2gt�̄1

et − 1
+

∞∫
0

dt

t (et − 1)
e−iut

(
eiv−t − J0(2gt)

)
.

(98)

The zero-momentum condition fixes the ratio of the constants to be

0 = 1

2πi

∮
dx

x
ln

Q+(u+)

Q−(u−)
= ln

c+
c−

+ 2i

∞∫
0

dt

t (et − 1)

(
J0(2gt)γ̃ h

v (2gt) − 2gtγ̃ f
v,1

)

+ 2i

∞∫
0

dt

t (et − 1)
et/2 sin(vt)J0(2gt). (99)

Next, we introduce the Bethe–Yang function that is written in the form [25]

Y h(u, v) = Q−(u)

Q+(u)
= eiPh(u)Shh(u, v), (100)

with

1 In a different framework these were derived in Ref. [27].
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Ph(u) = 4u lnη + 4

∞∫
0

dt

t (et − 1)

(
et/2J0(2gt) sin(vt) − ut

)

− 2i

∞∫
0

dt

t (et − 1)
et/2γ Ø(2gt) sin(ut), (101)

being the hole propagation phase. More precisely, it gets decomposed into Ph(u) = ph(u) ln η̄ +
δph(u) where ph is the momentum of the scalar flux-tube excitation [20]. The S-matrix can be 
easily read off from the rest and can be brought to the form

Shh(u, v) = exp
(

2iσhh(u, v) − 2if
(1)
hh (u, v) + 2if

(2)
hh (u, v)

)
, (102)

where

σhh(u, v) =
∞∫

0

dt

t (et − 1)

[
et/2J0(2gt) sin(ut) − et/2J0(2gt) sin(vt) − et sin((u − v)t)

]
(103)

and

f
(1)
hh (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ h

v (2gt), (104)

f
(2)
hh (u, v) =

∞∫
0

dt

t (et − 1)

(
et/2 cos(ut) − J0(2gt)

)
γ̃ h
v (2gt). (105)

This coincides with the result of Ref. [26].

3.2. Fermion S-matrices

Next we turn to fermions and start with the ones that carry large momentum. The solutions to 
the large fermionic half-Baxter equation (64) valid in the upper/lower half-plane read

lnQF+(u+) = ln cF+ − 2iu lnη − 2

∞∫
0

dt

t

eiutJ0(2gt) − iut − 1

et − 1

+
∞∫

0

dt

t

eiut�F(2gt) − 2gt�F
1

et − 1
+

∞∫
0

eiut

et − 1

(
e−ivt − J0(2gt)

)
, (106)

lnQF−(u−) = ln cF− + 2iu lnη − 2

∞∫
0

dt

t

e−iutJ0(2gt) + iut − 1

et − 1

+
∞∫

dt

t

e−iut �̄F(2gt) − 2gt�̄F
1

et − 1
+

∞∫
e−iut

et − 1

(
eivt − J0(2gt)

)
. (107)
0 0
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Again, the vanishing of the quasimomentum fixes the ratio of the integration constants

0 = 1

2πi

∮
dx

x
ln

QF+(u+)

QF−(u−)
= ln

cF+
cF−

+ 2i

∞∫
0

dt

t (et − 1)

(
γ̃ F
v (2gt)J0(2gt) − 2gtγ̃ F

v,1

) + 2i

∞∫
0

dt

t (et − 1)
J0(2gt) sin(vt).

(108)

Here we used the linear combinations introduced in Eq. (33) and the fact that

γ F(t) = γ Ø(t) + γ F
v (t), γ̃ F(t) = γ̃ F

v (t), (109)

since the vacuum solution is insensitive to the sign of the rapidity v. So that while γ F(t) receives 
contributions from both the vacuum and large fermion excitation, γ̃ F(t) only describes the latter.

3.2.1. Hole–large-fermion S-matrix
The Bethe–Yang function defined in terms of the solutions (106) and (107) to the fermionic

Baxter equation (64)

Y h(u) = QF−(u)

QF+(u)
, (110)

can be brought to the form similar to the one for the hole studied above,

Y h(u) = eiPh(u)ShF(u, v). (111)

Here the propagating phase of the hole Ph was determined earlier in Eq. (101), while the scatter-
ing matrix between the hole and large fermion excitations with rapidities u and v, respectively, 
reads

ShF(u, v) = exp
(

2iσhF(u, v) − 2if
(1)
hF (u, v) + 2if

(2)
hF (u, v)

)
, (112)

with

σhF(u, v) =
∞∫

0

dt

t (et − 1)

[
et/2J0(2gt) sin(ut) − J0(2gt) sin(vt) − et/2 sin((u − v)t)

]
,

(113)

and

f
(1)
hF (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ F

v (2gt), (114)

f
(2)
hF (u, v) =

∞∫
0

dt

t (et − 1)

(
et/2 cos(ut) − J0(2gt)

)
γ̃ F
v (2gt). (115)

Using the formal solutions to the flux-tube equations (43), the scattering phases can be cast in 
the form that was quoted in Ref. [14].
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3.2.2. Large-fermion–large-fermion S-matrix
The Bethe–Yang function for propagation of a large fermion with rapidity u reads [25],

Y F(u) = QF−(u−)

QF+(u+)

[
	F−(u)

	F+(u)

]1/2

. (116)

From the representation

Y F(u) = eiPF(u)SFF(u, v), (117)

we can immediately identify the dynamical phase

PF(u) = 4u lnη + 4

∞∫
0

dt

t (et − 1)
(J0(2gt) sin(ut) − ut)

− 2

∞∫
0

dt

t (et − 1)
sin(ut)γ Ø(2gt) −

∞∫
0

dt

t
sin(ut)γ Ø− (2gt), (118)

and the large-fermion–large-fermion S-matrix as well [14]

SFF(u, v) = exp
(

2iσFF(u, v) − 2if
(1)
FF (u, v) + 2if

(2)
FF (u, v)

)
, (119)

where

σFF(u, v) =
∞∫

0

dt

t (et − 1)

[
J0(2gt) sin(ut) − J0(2gt) sin(vt) − sin((u − v)t)

]
, (120)

and

f
(1)
FF (u, v) =

∞∫
0

dt

t
sin(ut)

[
γ F
v (2gt)

et − 1
+ 1

2
γ F−,v(2gt)

]
,

f
(2)
FF (u, v) =

∞∫
0

dt

t
(cos(ut) − J0(2gt))

[
γ̃ F
v (2gt)

et − 1
+ 1

2
γ̃ F+,v(2gt)

]
.

Making use of the exchange relations that we come to discuss next, one can demonstrate that 
f

(1)
FF (u, v) = f

(2)
FF (v, u).

3.2.3. Exchange relations
To find scattering matrices for small fermion, instead of using corresponding Baxter equation 

and Bethe–Yang functions, we will rely on the analytic continuation from the large to small 
fermion sheet in the complex rapidity plane, as reviewed at length in Appendix B.

The starting point is Eq. (112). However, to perform the analytic continuation in fermion 
rapidity v, it is instructive to cast f ’s into a form where dependence on v becomes explicit. This 
is achieved via the so-called exchange relations [35]. First, expanding γ in the Neumann series, 
we find for (114)

f
(1)
hF (u, v) = −2

∑
(2n)γ F

2n(v)̃κh
2n(u) − 2

∑
(2n − 1)γ F

2n−1(v)̃κh
2n−1(u), (121)
n≥1 n≥1
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where we used the definition of the hole sources (57). Replacing the sources via the flux-tube 
equations (39) and (40), we find the representation

f
(1)
hF (u, v) = −

∞∫
0

dt

t
γ̃ h−,u(2gt)

[
γ F−,v(2gt)

1 − e−t
+ γ F+,v(2gt)

et − 1

]

−
∞∫

0

dt

t
γ̃ h+,u(2gt)

[
γ F+,v(2gt)

1 − e−t
− γ F−,v(2gt)

et − 1

]
. (122)

Finally expanding γ h in Neumann series and replacing the coefficients accompanying γ h
2n and 

γ h
2n−1 by the large fermion sources making use of the flux-tube equation, we ultimately deduce

f
(1)
hF (u, v) = −2

∑
n≥1

(2n)γ̃ h
2n(u)κF

2n(v) − 2
∑
n≥1

(2n − 1)γ̃ h
2n−1(u)κF

2n−1(v), (123)

so that

f
(1)
hF (u, v) =

∞∫
0

dt

t

γ̃ h
u (2gt)

et − 1
(cos(vt) − J0(2gt)) + 1

2

∞∫
0

dt

t
γ̃ h+,u(2gt) cos(vt). (124)

Analogous considerations yield two equivalent series representation for f (2)
hg

f
(2)
hF (u, v) = −2

∑
n≥1

(2n)γ̃ F
2n(u)κh

2n(v) − 2
∑
n≥1

(2n − 1)γ̃ F
2n−1(u)κh

2n−1(v) (125)

= −2
∑
n≥1

(2n)γ h
2n(u)̃κF

2n(v) − 2
∑
n≥1

(2n − 1)γ h
2n−1(u)̃κF

2n−1(v), (126)

with the last relation easily brought to the desired form

f
(2)
hF (u, v) =

∞∫
0

dt

t

γ h
u (2gt)

et − 1
sin(vt) + 1

2

∞∫
0

dt

t
γ h−,u(2gt) sin(vt). (127)

3.2.4. Hole–small-fermion S-matrix
As we advertised above, we will find the hole–small-fermion S-matrix by analytically contin-

uing in fermion rapidity v from the large to the small sheet, see Fig. 3. Obviously, only the last 
terms in Eqs. (124) and (127) require special attention for their proper analytic continuation. Let 
us demonstrate it for f (1)

hF (u, v). For |v| > 2g on the real axis, we have

∞∫
0

dt

t
γ̃ h+,u(2gt) cos(vt) =

∞∫
0

dt

t
γ̃ h+,u(2gt)e−ivt , (128)

where the right-hand side is real, so that the corresponding integral can be continued into the 
lower half-plane. We move inside the strip |
m[v]| < 2g, as shown in Fig. 3, and then have to 
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cross the cut and pass to the lower sheet of the Riemann surface. In order to achieve this, we use 
the following, easy-to-prove generic relation for a test function γ (t)

∞∫
0

dt

t
e−ivt γ (t) = −

∞∫
0

dt

t
eivt γ (−t) + 2

∞∫
0

dt

t
cos(vt)γ+(t) − 2i

∞∫
0

dt

t
sin(vt)γ−(t).

(129)

Applying this to (128) and adding

∞∫
0

dt

t
J0(2gt)γ̃ h+,v(2gt) = 0 (130)

to the right-hand side for convergence, we can use the flux-tube equation (62) to write

∞∫
0

dt

t
γ̃ h+,u(2gt)e−ivt = −

∞∫
0

dt

t
γ̃ h+,u(2gt)eivt

− 2

∞∫
0

dt

t

cos(vt) − J0(2gt)

et − 1

(
γ̃ h
u (2gt) − J0(2gt)

)
. (131)

Returning to the real axis, we replace the exponent eivt in the first term in the right-hand side by 
cos(vt). Thus, we find

f
(1)
hF (u, v�) = f

(1)
hf (u, v) −

∞∫
0

dt

t

et/2 sin(ut)

et − 1
(cos(vt) − J0(2gt)) , (132)

where v� stands for v on the small fermion sheet of the Riemann surface. The small-fermion 
phase f (1)

hf is

f
(1)
hf (u, v) = −1

2

∞∫
0

dt

t
cos(vt)γ̃ h+,u(2gt). (133)

As we can see from its explicit representation, this function possesses only one cut on the real 
axis, as anticipated, see Fig. 3. It becomes implicit however, if we use exchange relations and 
trade the u dependence for the v dependence

f
(1)
hf (u, v) =

∞∫
0

dt

t

sin(ut)et/2

et − 1
γ f
v(2gt). (134)

But can be seen to be identical to the previous form by means of the flux-tube equations from 
Appendix A.2. Finally, the analytic continuation of f (2)

hF (u, v) is accomplished analogously and 
reads

f
(2)
hF (u, v�) = f

(2)
hf (u, v) −

∞∫
dt

t

sin(vt)

et − 1

(
et/2 cos(ut) − J0(2gt)

)
, (135)
0
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where the phase admits the two equivalent representations

f
(2)
hf (u, v) = −1

2

∞∫
0

dt

t
sin(vt)γ h−,u(2gt) =

∞∫
0

dt

t

et/2 cos(ut) − J0(2gt)

et − 1
γ̃ f
v(2gt). (136)

Adding these results together, we conclude that the extra terms in Eqs. (132) and (135) cancel 
σhF(u, v), and thus the S-matrix for the small fermion scattering on the hole is

Shf(u, v) = ShF(u, v�) = exp
(
−2if

(1)
hf (u, v) + 2if

(2)
hf (u, v)

)
, (137)

where σhf(u, v) = 0.

3.2.5. Small-fermion–large-fermion S-matrix
To obtain the small-fermion–large-fermion S-matrix, we now analytically continue in the ra-

pidity u. All we need to this end is the analogue of the flux-tube equations (60)–(63) but for the 
large fermions. They are collected in Appendix A.1, such that

f
(1)
FF (u�, v) = f

(1)
fF (u, v) −

∞∫
0

dt

t

sin(ut)

et − 1
(cos(vt) − J0(2gt)) , (138)

f
(2)
FF (u�, v) = f

(2)
fF (u, v) −

∞∫
0

dt

t

cos(ut) − J0(2gt)

et − 1
sin(vt) (139)

where

f
(1)
fF (u, v) = −1

2

∞∫
0

dt

t
sin(ut)γ F−,v(2gt)

=
∞∫

0

dt

t

γ̃ f
u(2gt)

et − 1
(cos(vt) − J0(2gt)) + 1

2

∞∫
0

γ̃ f+,u(2gt) cos(vt), (140)

f
(2)
fF (u, v) = −1

2

∞∫
0

dt

t
(cos(ut) − J0(2gt))γ̃ F+,v(2gt)

=
∞∫

0

dt

t

γ f
u(2gt)

et − 1
sin(vt) + 1

2

∞∫
0

dt

t
γ f−,u(2gt) sin(vt). (141)

Here we used exchange relations after the second equality signs. These are derived making use of 
the results in Section 3.2.3 by replacing the superscript h → f. The latter representation in above 
equations will be indispensable for analysis in the following section. From here we conclude that 
the SfF-matrix is

SfF(u, v) = SFF(u�, v) = exp
(
−2if

(1)
fF (u, v) + 2if

(2)
fF (u, v)

)
, (142)

again in agreement with [14].
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3.2.6. Small-fermion–small-fermion S-matrix
To deduce the small-fermion–small-fermion S-matrix, we perform the analytic continuation 

of (142) in the large fermion rapidity v making use of the representations (140) and (141). We find 
immediately,

Sff(u, v) = SFF(u�, v�) = exp
(
−2if

(1)
ff (u, v) + 2if

(2)
ff (u, v)

)
, (143)

with the phases

f
(1)
ff (u, v) = −1

2

∞∫
0

dt

t
cos(vt)γ̃ f+,u(2gt), (144)

f
(2)
ff (u, v) = −1

2

∞∫
0

dt

t
sin(vt)γ f−,u(2gt). (145)

To derive these results we have used the flux-tube equations for the small fermions given in Ap-
pendix A.2. Again, the exchange relations imply the symmetry property f (1)

ff (u, v) = f
(2)
ff (v, u).

3.3. Gauge fields

Finally we turn to the gauge field and its bound states and how they scatter on each other and 
remaining excitations. As we found in Section 2.4, the solution to the gauge Baxter equation (82)
in the upper half plane is

lnQ
g
+(u+) = ln c

g
+ − 2iu lnη − 2

∞∫
0

dt

t

eiutJ0(2gt) − iut − 1

et − 1

+
∞∫

0

dt

t

eiut�g(2gt) − 2gt�
g
1

et − 1

+
∞∫

0

dt

t (et − 1)
eiut

(
e−ivte−�t/2 − J0(2gt)

)
, (146)

and analogously for the 
m[u] < 0,

lnQ
g
−(u−) = ln c

g
− + 2iu lnη − 2

∞∫
0

dt

t

e−iutJ0(2gt) + iut − 1

et − 1

+
∞∫

0

dt

t

e−iut �̄g(2gt) − 2gt�̄
g
1

et − 1

+
∞∫

dt

t (et − 1)
e−iut

(
eivte−�t/2 − J0(2gt)

)
. (147)
0
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The condition of zero quasimomentum fixes the ratio of the unknown constants to be

0 = 1

2πi

∮
dx

x
ln

Q
g
−(u−)

Q
g
+(u+)

= ln
c

g
−

c
g
+

+ 2i

∞∫
0

dt

t (et − 1)

(
J0(2gt)γ̃

g
v (2gt) − 2gtγ̃

g
v,1

)

+ 2i

∞∫
0

dt

t (et − 1)
J0(2gt)e−�t/2 sin(vt). (148)

Here we used the linear combinations introduced in Eq. (33) and the fact that

γ g(t) = γ Ø(t) + γ
g
v (t), γ̃ g(t) = γ̃

g
v (t), (149)

as for all other propagating states.

3.3.1. Bound-state–bound-state S-matrix
Let us find the scattering matrix of a gauge stack on a conjugate, i.e., opposite helicity, gauge 

stack. The starting point is the gauge Bethe–Yang function, see Eq. (3.38) in Ref. [25],

Y g(u) = Q
g
−(u − i

2 (� + 1))

Q
g
+(u + i

2 (� + 1))

[
	

g
−(u + i

2�)	
g
−(u − i

2�)

	
g
+(u + i

2�)	
g
+(u − i

2�)

]1/2

. (150)

Substituting (84) and the above solutions (146) and (147), we find after some manipulations

Y g(u) = eiPg(u)Sgg′(u, v), (151)

where the �-stack is associated with rapidity u, while the �′-stack is centered around the rapid-
ity v. The propagating dynamical phase is expressed in terms of the vacuum solution as follows

Pg(u) = 4u lnη + 4

∞∫
0

dt

t (et − 1)

(
e−�t/2 sin(ut)J0(2gt) − ut

)

− 2

∞∫
0

dt

t
e−�/2 sin(ut)

[
γ Ø+ (2gt)

et − 1
+ γ Ø− (2gt)

1 − e−t

]
, (152)

while the S-matrix is

Sgg′(u, v) = exp
(

2iσgg′(u, v) − 2if
(1)

gg′ (u, v) + 2if
(2)

gg′ (u, v)
)

, (153)

with

σgg′(u, v) =
∞∫

0

dt

t (et − 1)

[
e−�t/2 sin(ut)J0(2gt) − e−�′t/2 sin(vt)J0(2gt)

− e−(�+�′)t/2 sin((u − v)t)
]
, (154)

and
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f
(1)

gg′ (u, v) =
∞∫

0

dt

t
e−�t/2 sin(ut)

[
γ

g
+,v(2gt)

et − 1
+ γ

g
−,v(2gt)

1 − e−t

]
, (155)

f
(2)

gg′ (u, v) =
∞∫

0

dt

t

(
e−�t/2 cos(ut) − J0(2gt)

)[
γ̃

g
−,v(2gt)

et − 1
+ γ̃

g
+,v(2gt)

1 − e−t

]
. (156)

3.3.2. Hole-bound-state S-matrix
Let us introduce the Bethe–Yang function

Y h(u) = Q
g
−(u)

Q
g
+(u)

, (157)

determined by the functions Qg
± that are the solution to the gauge Baxter equation (80) in the 

upper/lower half plane. The Y h admits the representation

Y h(u) = eiPh(u)Shg(u, v), (158)

where Ph is defined in Eq. (101), while the scattering matrix does not depend on the gauge–field 
helicity and reads

Shg(u, v) = exp
(

2iσhg(u, v) − 2if
(1)
hg (u, v) + 2if

(2)
hg (u, v)

)
(159)

with

σhg(u, v) =
∞∫

0

dt

t (et − 1)

[
et/2J0(2gt) sin(ut) − e−�t/2J0(2gt) sin(vt)

− e−(�−1)t/2 sin((u − v)t)
]
, (160)

and

f
(1)
hg (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ

g
v (2gt), (161)

f
(2)
hg (u, v) =

∞∫
0

dt

t (et − 1)

(
et/2 cos(ut) − J0(2gt)

)
γ̃

g
v (2gt). (162)

For � = 1 we obtain the hole–gauge field scattering matrix, i.e., the one that will appear in 
the analysis of nonsinglet pentagon transitions, so we deal with them below separately. Namely, 
the phases of the S-matrix are determined by Eqs. (161) and (162). Since this will be the main 
object of our consideration that follows, we can cast these functions in a series form that will be 
useful in studies of exchange relations and perturbative expansions. Namely, expanding the γ in 
the Neumann series

γ
g
v (t) = 2

∑
n≥1

nJn(t)γ
g
n,v, (163)

and solving for γ g
n,v from Eq. (43), we immediately find a generic representation
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f
(1)

pp′ (u, v) = −2̃κ
p
n(u)Qnl[1 + K]−1

lm κ
p′
m(v), (164)

f
(2)

pp′ (u, v) = −2κ
p
n(u)(−1)nQnl[1 + K]−1

lm (−1)mκ̃
p′
m(v), (165)

with p = h and p′ = g for the case at hand, and where

Qnl = nδnl, (166)

and summation over the repeated indices is implied to run from one to infinity.

3.3.3. Gauge bound-state–fermion S-matrix
Without further ado, we quote the S-matrices for scattering of a helicity-one gauge bound 

state on a helicity-one-half fermion. These take the same generic form as any other scattering 
phases

S�g(u, v) = exp
(

2iσ�g(u, v) − 2if (1)
�g (u, v) + 2if (2)

�g (u, v)
)

, (167)

with � = F, f corresponding to the large and small fermion, respectively. Here the f -functions 
admit an infinite-series representation (164) and (165). For the large fermion (� = F), these can 
be cast in the integral form

f
(1)
Fg (u, v) =

∞∫
0

dt

t

γ
g
v (2gt)

et − 1
sin(ut) + 1

2

∞∫
0

dt

t
γ

g
−,v(2gt) sin(ut), (168)

f
(2)
Fg (u, v) =

∞∫
0

dt

t

γ̃
g
v (2gt)

et − 1
(cos(ut) − J0(2gt)) + 1

2

∞∫
0

dt

t
γ̃

g
+,v(2gt) cos(ut), (169)

while the explicit σ -phase reads

σFg(u, v) =
∞∫

0

dt

t (et − 1)

[
J0(2gt) sin(ut) − e−�t/2J0(2gt) sin(vt) − e−�t/2 sin((u − v)t)

]
.

(170)

The analytic continuation to the small fermion sheet produces the answer

f
(1)
fg (u, v) = −1

2

∞∫
0

dt

t
γ

g
−,v(2gt) sin(ut), (171)

f
(2)
fg (u, v) = −1

2

∞∫
0

dt

t
γ̃

g
+,v(2gt) cos(ut), (172)

with σfg(u, v) = 0. This concludes our discussion of scattering matrices for main flux-tube exci-
tations.
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4. Mirror kinematics

As will be clear from the following section, the flux-tube form factors arise as solutions to a set 
of bootstrap equations that involve transformation to the mirror kinematics. The latter was studied 
in detail in Ref. [25] for holes and gauge bound states, while the more intricate fermionic case 
was addressed just recently in Ref. [14]. In this section we will study the mirror transformation 
and crossing for scattering matrices. For pedagogical purposes, we will make the analysis rather 
detailed. However, before going to the next section the reader is invited to take a lightning-quick 
course on mirror transformations reviewed in Appendices C and D.

Following the outline of the previous section, we again start by reproducing known phases 
in the mirror kinematics [26,13,14] for hole–hole, gauge–gauge and fermion–fermion scattering 
in Sections 4.1, 4.2 and 4.6, respectively. At the same time, we provide a new study of the mir-
ror kinematics for hole–gauge and hole–fermion S-matrices in, accordingly, Sections 4.3 (4.4) 
and 4.5. These form the basic building blocks for the calculation of particular NMHV compo-
nents of the superamplitude addressed later in Section 6.

4.1. Hole–hole S-matrix

Here we will revisit the analytical continuation of the hole–hole scattering matrix to the mirror 
kinematics, though it was discussed at length in Ref. [26], since we will use intermediate results 
for the hole–gauge field analysis, that are of primary interest to this work later in this section. Let 
us take the hole–hole S-matrix (102) and analytically continue it to the mirror point uγ = u + i.

Let us start with f (1)
hh (u, v)

f
(1)
hh (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ h

v (2gt). (173)

Its analytic continuation will be done stepwise as explained in Appendix C. First, we continue 
f

(1)
hh just below u+ = u + i

2 , such that it reads

f
(1)
hh (u+ − i0+, v) =

∞∫
0

dt

t (et − 1)
sin(ut)γ h

v (2gt) + i

2

∞∫
0

dt

t
e−iut γ h

v (2gt). (174)

We cannot simply use the right-hand side to analytically continue above 
m[u] > 0 since the last 
term does not converge there. However using (129), we can rewrite the last term in f (1)

hh (u+ −
i0+, v) first as

∞∫
0

dt

t
e−iut γ h

v (2gt) = −
∞∫

0

dt

t
eiut γ h

v (−2gt)

+ 2

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ h+,v(2gt)

− 2i

∞∫
dt

t
sin(ut)γ h−,v(2gt), (175)
0
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such that the first term in Eq. (175) can be continued above 
m[u] = 0. However, for the last two 
terms this cannot be done in the current form. The continuation to uγ can, however, be easily 
accomplished using the flux-tube equations in the form (60) and (61). Substituting the latter into 
Eq. (175), we find

f
(1)
hh (u+ + i0+, v) = − i

2

∞∫
0

dt

t
eiut γ h

v (−2gt)

− i

∞∫
0

dt

t (et − 1)
(cos(ut) − J0(2gt)) γ h

v (−2gt)

− i

∞∫
0

dt

t (et − 1)

(
e−iut − J0(2gt)

)(
et/2 cos(vt) − J0(2gt)

)
.

(176)

In this form, we have sufficient suppression in the integrand to continue the integral to uγ = u + i. 
After a little algebra, we find

f
(1)
hh (uγ , v) = −if

(4)
hh (u, v)

− i

∞∫
0

dt

t (et − 1)

(
e−iut+t/2 − J0(2gt)

)(
et/2 cos(vt) − J0(2gt)

)
,

where we introduced

f
(4)
hh (u, v) =

∞∫
0

dt

t (et − 1)

(
et/2 cos(ut) − J0(2gt)

)
γ h
v (−2gt). (177)

The consideration of f (2)
hh is analogous and is done again in two successive steps. First, we ob-

tain

f
(2)
hh (u+ − i0+, v) =

∞∫
0

dt

t (et − 1)
(cos(ut) − J0(2gt)) γ̃ h

v (2gt)

+ 1

2

∞∫
0

dt

t
e−iut γ̃ h

v (2gt) (178)

=
∞∫

0

dt

t (et − 1)
(cos(ut) − J0(2gt)) γ̃ h

v (2gt) − 1

2

∞∫
0

dt

t
eiut γ̃ h

v (−2gt)

+
∞∫

0

dt

t
(cos(ut) − J0(2gt)) γ̃ h+,v(2gt) − i

∞∫
0

dt

t
sin(ut)γ̃ h−,v(2gt).

(179)
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Here to be able to analytically continue the last two term, we used (62) and (63). The last step is 
now trivial and we obtain at uγ ,

f
(2)
hh (uγ , v) = −if

(3)
hh (u, v) − i

∞∫
0

dt

t (et − 1)

(
e−iut+t/2 − J0(2gt)

)
et/2 sin(vt),

with

f
(3)
hh (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ̃ h

v (−2gt). (180)

Finally, we turn to σhh given in Eq. (103). As we can see from its integral representation, the 
first and last term require special care before we can safely analytically continue the integrand 
to uγ . To this end, we break up the integral in two pieces,

σhh(u, v) =
∞∫

0

dt

t (et − 1)

[
sin(u−t)J0(2gt) − et/2 sin(vt)J0(2gt) − et/2 sin((u− − v)t)

]

+ i

2

∞∫
0

dt

t

(
e−iut−t/2J0(2gt) − e−i(u−v)t

)
. (181)

Making use of (129), we find the analytic continuation for the first integral in the second line for 
u → u+

I1(u
+) ≡

∞∫
0

dt

t
e−iutJ0(2gt) = −

∞∫
0

dt

t
eiutJ0(2gt) + 2

∞∫
0

dt

t
J0(2gt)

= −
∞∫

0

dt

t
eiutJ0(2gt) + 2

∞∫
0

dt

t
J 2

0 (2gt), (182)

where we used the fact that

∞∫
0

dt

t
J0(2gt)(cos(ut) − 1) =

∞∫
0

dt

t
J0(2gt)(cos(ut) − J0(2gt)) = 0, (183)

for |u| < 2g, such that

I1(u
γ ) = −

∞∫
0

dt

t
eiut−t/2J0(2gt) + 2

∞∫
0

dt

t
J 2

0 (2gt). (184)

While for the second contribution, we easily get

I2(u − v) =
∞∫

dt

t
e−i(u−v)t =

∞∫
dt

t
e−i(u−v−i)t − ln

u − v

u − v − i
. (185)
0 0
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Substituting Eq. (182) into (185), we immediately find for u → uγ = u + i

σhh(u
γ , v) = σhh(u, v) − i

2
ln

u − v

u − v + i
− i

∞∫
0

dt

t

[
cos((u − v)t) − J 2

0 (2gt)
]
. (186)

Putting everything together, we deduce the mirror hole–hole S-matrix

Shh(u
γ , v) = u − v

u − v + i
exp

(
2σ̂hh(u, v) + 2f

(3)
hh (u, v) − 2f

(4)
hh (u, v)

)
, (187)

where f (3)
hh and f (4)

hh were introduced above, while ̂σhh is determined by

σ̂hh(u, v) =
∞∫

0

dt

t (et − 1)

[
et/2 (cos(ut) + cos(vt)) J0(2gt) − cos((u − v)t) − et J 2

0 (2gt)
]
.

(188)

This is the result advertised in Ref. [26].

4.2. Gauge–gauge S-matrix

Let us construct the mirror S-matrix for gauge field bound states. It was discussed previ-
ously in Refs. [12] and [13]. The path to the mirror kinematics was worked out in Ref. [25]
and recollected in Appendix D. The continuation is split into several steps following the con-
tour in the complex rapidity plane as shown in Fig. 5. First, we have to cross through the cut 
[i/2 − 2g, i/2 + 2g]. We will perform this individually for each contribution building up the 
S-matrix. Then we will combine them and go below the lower cut [−i/2 − 2g, −i/2 + 2g] be-
fore crossing through it to go to the mirror sheet.

Let us start with

f
(1)

gg′ (u, v) =
∞∫

0

dt

t
e−�t/2 sin(ut)

[
γ

g
+,v(2gt)

et − 1
+ γ

g
−,v(2gt)

1 − e−t

]
. (189)

First, we shift u upwards just below the cut [i/2 − 2g, i/2 + 2g]

f
(1)

gg′ (u+ − i0+, v) = i

2

∞∫
0

dt

t

(
e−iut − eiut−t

)[
γ

g
−,v(2gt) + γ

g
v (2gt)

et − 1

]
. (190)

To cross the cut u → u + i0+ for |u| < 2g, the problem arises for the product of the first terms 
in the two brackets. To overcome the complication, we use Eq. (129) and the flux-tube equa-
tion (A.10), so that just above the cut, we find

f
(1)

gg′ (u+ + i0+, v) = i

2

∞∫
0

dt

t
eiut (1 − e−t )

[
γ

g
−,v(2gt)

1 − e−t
+ γ

g
+,v(2gt)

et − 1

]
(191)

−
∞∫

dt

t

sin(ut)

et − 1

(
e−t/2 cos(vt) − J0(2gt)

)
. (192)
0
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Similarly for f (2)

gg′ that reads

f
(2)

gg′ (u, v) =
∞∫

0

dt

t

(
e−�t/2 cos(ut) − J0(2gt)

)[
γ̃

g
−,v(2gt)

et − 1
+ γ̃

g
+,v(2gt)

1 − e−t

]
, (193)

we first shift u → u + i
2 − i0+ just below the cut and then cross it using the equation

∞∫
0

dt

t
e−iut γ̃

g
+,v(2gt) = −

∞∫
0

dt

t
eiut γ̃

g
+,v(2gt)

− 2

∞∫
0

dt

t (et − 1)
(cos(ut) − J0(2gt))

[
γ̃

g
v (2gt) + e−t/2 sin(vt)

]
.

(194)

So that just above the cut, we analogously obtain

f
(2)

gg′ (u+ + i0+, v) = −1

2

∞∫
0

dt

t
eiut

(
1 − e−t

)[
γ̃

g
−,v(2gt)

et − 1
+ γ̃

g
+,v(2gt)

1 − e−t

]
(195)

−
∞∫

0

dt

t (et − 1)
(cos(ut) − J0(2gt)) e−t/2 sin(vt). (196)

For σgg′(u, v) crossing the upper cut is not problematic and thus we simply shift u → u+ in 
the integrand. The subsequent algebra simplifies if one considers the linear combination of all 
ingredients that form the scattering matrix. Namely, adding them up together yields

lnSgg′(u+ + i0+, v) = −
∞∫

0

dt

t
eiut (1 − e−t )

[
γ

g
+,v(2gt)

et − 1
+ γ

g
−,v(2gt)

1 − e−t

]

− i

∞∫
0

dt

t
eiut (1 − e−t )

[
γ̃

g
−,v(2gt)

et − 1
+ γ̃

g
+,v(2gt)

1 − e−t

]

−
∞∫

0

dt

t

1 − e−t

et − 1

[
eiutJ0(2gt) − ei(u−v)t−t/2

]
, (197)

which clearly demonstrates that the exponent of the S-matrix on the Goldstone sheet possesses 
only a finite number of cuts (i.e., two for gauge fields), same as the energy and momentum 
discussed in Appendix D. As a next step, we have to analytically continue this expression for 
|u| > 2g into the lower half-plane and shift u → u − i. For the first two lines in the above 
equation, this was explained in Appendix D. The last term is purely rational, so its continuation 
is trivial. One gets then
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lnSgg′(u+ − i, v) = −
∞∫

0

dt

t
e−iut (1 − e−t )

[
γ

g
+,v(2gt)

1 − e−t
− γ

g
−,v(2gt)

et − 1

]

− i

∞∫
0

dt

t
e−iut (1 − e−t )

[
− γ̃

g
−,v(2gt)

1 − e−t
+ γ̃

g
+,v(2gt)

et − 1

]

−
∞∫

0

dt

t

[
e−iutJ0(2gt) − e−i(u−v)t−t/2

]
− i ln

u − v − i
2

u − v + i
2

. (198)

Next, we have to cross the lower cut [−i/2 −2g, −i/2 +2g], i.e., u → u + i0+. Using the gauge 
flux-tube equations that yield the relations

∞∫
0

dt

t
e−iut γ

g
+,v(2gt) = −

∞∫
0

dt

t
eiut γ

g
+,v(2gt)

− 2

∞∫
0

dt

t (et − 1)
(cos(ut) − J0(2gt))

[
γ

g
v (−2gt)

+ et/2 cos(vt) − J0(2gt)
]
,

∞∫
0

dt

t
e−iut γ̃

g
−,v(2gt) =

∞∫
0

dt

t
eiut γ̃

g
−,v(2gt) + 2i

∞∫
0

dt

t (et − 1)
sin(ut)

[
−γ̃

g
v (−2gt)

+ et/2 sin(vt)
]
, (199)

as well as with the help of Eq. (182), we can safely get across the cut to our final destination by 
the replacement u → u + i

2 , getting

Sgg′(uγ , v) = u − v

u − v + i
exp

(
2σ̂gg′(u, v) + 2f

(3)

gg′ (u, v) − 2f
(4)

gg′ (u, v)
)

, (200)

where

σ̂gg′(u, v) = σ̂hh(u, v), (201)

and

f
(3)

gg′ (u, v) =
∞∫

0

dt

t
e−t/2 sin(ut)

[
γ̃

g
+,v(2gt)

et − 1
− γ̃

g
−,v(2gt)

1 − e−t

]
, (202)

f
(4)

gg′ (u, v) =
∞∫

0

dt

t

(
e−t/2 cos(ut) − J0(2gt)

)[
γ

g
+,v(2gt)

1 − e−t
− γ

g
−,v(2gt)

et − 1

]
. (203)
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4.3. Gauge–hole S-matrix in hole rapidity

Now we analyze the hole–gauge field S-matrix that will play a pivotal role in the calculation 
of NMHV amplitudes. Namely, we will demonstrate in this section the following identities that 
it obeys:

• Crossing:

Shg(u
2γ , v)Shg(u, v) = Shg(u, v2γ )Shg(u, v) = 1. (204)

• Mirror:

Shg(u
γ , vγ ) = Shg(u, v). (205)

• Unitarity:

Shg(u, v)Sgh(v,u) = 1, (206)

where Sgh(v, u) = Shg(−u, −v). We can also establish a chain of useful identities

Shg(u, vγ ) = [Shg(u
γ , v)]−1 = Sgh(v,uγ ) = [Sgh(v

γ , u)]−1, (207)

where the first equality is a consequence of the mirror transformation and crossing, while the 
second and the last are consequences of unitarity.

4.3.1. Mirror transformation
Let us analytically continue f (1)

hg given in Eq. (161). The first step is the same as for the f (1)
hh , 

i.e., for u → u + i
2 , we get

f
(1)
hg (u+ − i0+, v) =

∞∫
0

dt

t (et − 1)
sin(ut)γ

g
v (2gt) − i

2

∞∫
0

dt

t
eiut γ

g
v (−2gt) (208)

+ i

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ

g
+,v(2gt) +

∞∫
0

dt

t
sin(ut)γ

g
−,v(2gt).

(209)

Substitution of the gauge field flux-tube equations from Appendix A.3 into f (1)
hg (u + i

2 , v) gives

f
(1)
hg (u+ + i0+, v) = −if

(4)
hg (u − i

2 , v)

− i

∞∫
0

dt

t (et − 1)

(
e−iut − J0(2gt)

)(
et/2 cos(vt) − J0(2gt)

)

+
∞∫

dt

t
e−t/2 sin(ut) cos(vt), (210)
0
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where

f
(4)
hg (u, v) =

∞∫
0

dt

t (et − 1)

(
et/2 cos(ut) − J0(2gt)

)
γ

g
v (−2gt). (211)

Further analytic continuation to uγ is straightforward here.
For the case of f (2)

hg , the first step of analytic continuation produces

f
(2)
hg (u+ − i0+, v) =

∞∫
0

dt

t (et − 1)
(cos(ut) − J0(2gt)) γ̃

g
v (2gt) − 1

2

∞∫
0

dt

t
eiut γ̃

g
v (−2gt)

+
∞∫

0

dt

t
(cos(ut) − J0(2gt)) γ̃

g
+,v(2gt) − i

∞∫
0

dt

t
sin(ut)γ̃

g
−,v(2gt).

(212)

Here the last two terms can be worked out using Eqs. (A.11) and (A.12) from Appendix A.3 such 
that

f
(2)
hg (u+ + i0+, v) = −if

(3)
hg (u−, v) −

∞∫
0

dt

t (et − 1)

(
e−iut − J0(2gt)

)
et/2 sin(vt)

+
∞∫

0

dt

t
(cos(ut) − J0(2gt)) e−t/2 sin(vt), (213)

with

f
(3)
hg (u, v) =

∞∫
0

dt

t (et − 1)
et/2 sin(ut)γ̃

g
v (−2gt). (214)

Finally, for σhg we split it into two terms

σhg(u, v) =
∞∫

0

dt

t (et − 1)

[
sin(u−t)J0(2gt) − e−t/2 sin(vt)J0(2gt) − sin((u − v)t)

]
(215)

+ i

2

∞∫
0

dt

t
e−iut−t/2J0(2gt). (216)

While the shift u → uγ is straightforward for the first line, in the second, one has to use the 
analytic continuation of the integral given in Eq. (182) first.

Summarizing all of the above, we find the mirror S-matrix

S∗hg(u, v) ≡ Shg(u
γ , v) = exp

(
2σ̂hg(u, v) + 2f

(3)
hg (u, v) − 2f

(4)
hg (u, v)

)
, (217)

where f (3,4)
hg were introduced earlier and

σ̂hg(u, v) = σ̂hh(u, v), (218)
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with the latter given in (188). In Eq. (217), we introduced a notation S∗hg(u, v) for the S-matrix 
with the hole in the mirror kinematics.

4.3.2. Crossing
To establish the crossing relation for the mixed S-matrix, we have to perform a further γ -shift 

in u. The f (3,4) then read

f
(3)
hg (uγ , v) = −if

(2)
hg (u, v) − i

∞∫
0

dt

t (et − 1)

(
eiu+t − J0(2gt)

)
et/2 sin(vt)

+ i

∞∫
0

dt

t

(
cos(u+t) − J0(2gt)

)
e−t/2 sin(vt), (219)

f
(4)
hg (uγ , v) = −if

(1)
hg (u, v) −

∞∫
0

dt

t (et − 1)

(
eiu+t − J0(2gt)

)(
et/2 cos(vt) − J0(2gt)

)

+ i

∞∫
0

dt

t
e−t/2 sin(u+t) cos(vt), (220)

such that

Shg(u
2γ , v) = [

Shg(u, v)
]−1

. (221)

4.4. Gauge–hole S-matrix in gauge rapidity

In this section, we will do the same consideration as above but now for the gauge rapidity v.

4.4.1. Exchange relations
To perform the analytic continuation in v, we have to make it explicit by means of exchange 

relations obtained in a manner identical to the discussion in Section 3.2.4. Namely, we find

f
(1)
hg (u, v) = −2

∑
n≥1

(2n)γ
g
2n(v)̃κh

2n(u) − 2
∑
n≥1

(2n − 1)γ
g
2n−1(v)̃κh

2n−1(u), (222)

= −2
∑
n≥1

(2n)γ̃ h
2n(u)κ

g
2n(v) − 2

∑
n≥1

(2n − 1)γ̃ h
2n−1(u)κ

g
2n−1(v), (223)

so that

f
(1)
hg (u, v) =

∞∫
0

dt

t

[
γ̃ h+,u(2gt)

1 − e−t
+ γ̃ h−,u(2gt)

et − 1

](
e−t/2 cos(vt) − J0(2gt)

)
. (224)

An analogous consideration yields two equivalent series representation for f (2)
hg as well

f
(2)
hg (u, v) = −2

∑
n≥1

(2n)γ̃
g
2n(v)κh

2n(u) − 2
∑
n≥1

(2n − 1)γ̃
g
2n−1(v)κh

2n−1(u)

= −2
∑

(2n)γ h
2n(u)̃κ

g
2n(v) − 2

∑
(2n − 1)γ h

2n−1(u)̃κ
g
2n−1(v), (225)
n≥1 n≥1



528 A.V. Belitsky / Nuclear Physics B 896 (2015) 493–554
with the latter one that can be cast in the integral form making the dependence on the gluon 
rapidity manifest,

f
(2)
hg (u, v) =

∞∫
0

dt

t

[
γ h+,u(2gt)

et − 1
+ γ h−,u(2gt)

1 − e−t

]
e−t/2 sin(vt). (226)

Applying the same analysis to f (3,4)
hg , we merely list the results in the series representation

f
(3)
hg (u, v) = −2

∑
n≥1

(2n)γ̃
g
2n(v)̃κh

2n(u) + 2
∑
n≥1

(2n − 1)γ̃
g
2n−1(v)̃κh

2n−1(u)

= −2
∑
n≥1

(2n)γ̃ h
2n(u)̃κ

g
2n(v) + 2

∑
n≥1

(2n − 1)γ̃ h
2n−1(u)̃κ

g
2n−1(v), (227)

f
(4)
hg (u, v) = −2

∑
n≥1

(2n)γ
g
2n(v)κh

2n(u) + 2
∑
n≥1

(2n − 1)γ
g
2n−1(v)κh

2n−1(u)

= −2
∑
n≥1

(2n)γ h
2n(u)κ

g
2n(v) + 2

∑
n≥1

(2n − 1)γ h
2n−1(u)κ

g
2n−1(v), (228)

and the integral form

f
(3)
hg (u, v) =

∞∫
0

dt

t
e−t/2 sin(vt)

[
γ̃ h+,u(2gt)

et − 1
− γ̃ h−,u(2gt)

1 − e−t

]
, (229)

f
(4)
hg (u, v) =

∞∫
0

dt

t

(
e−t/2 cos(vt) − J0(2gt)

)[
γ h+,u(2gt)

1 − e−t
− γ h−,u(2gt)

et − 1

]
, (230)

respectively.

4.4.2. Mirror kinematics in gluon rapidity
Following the same footsteps as in the gauge–gauge S-matrix we find by moving to the Gold-

stone sheet u → u+ + i0+

f
(1)
hg (u, v+) = −1

2

∞∫
0

dt

t
eivt

(
1 − e−t

)[
γ̃ h−,u(2gt)

et − 1
+ γ̃ h+,u(2gt)

1 − e−t

]

−
∞∫

0

dt

t (et − 1)
(cos(vt) − J0(2gt)) et/2 sin(ut), (231)

f
(2)
hg (u, v+) = i

2

∞∫
0

dt

t
eivt (1 − e−t )

[
γ h+,u(2gt)

et − 1
+ γ h−,u(2gt)

1 − e−t

]

−
∞∫

0

dt

t (et − 1)
sin(vt)

(
et/2 cos(ut) − J0(2gt)

)
. (232)

So that the phases possess only a finite number of cuts by analogy to the gauge field energy and 
momentum studied in Appendix C. Performing all steps, one finds
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Shg(u, v±γ ) = exp
(
∓2σ̂hg(u, v) ∓ 2f

(3)
hg (u, v) ± 2f

(4)
hg (u, v)

)
, (233)

where f (3,4)
hg (u, v) are given in Eqs. (229) and (230). That is, we immediately conclude that

Shg(u, vγ ) = [Shg(u
γ , v)]−1, (234)

by comparing above to Eq. (217).

4.4.3. Crossing in gluon rapidity
Performing an additional mirror transformation in gluon rapidity, one finds the crossing rela-

tion

Shg(u, v2γ ) = [Shg(u, v)]−1. (235)

4.4.4. Unitarity
One can easily construct the gauge–hole S-matrix,

Sgh(u, v) = exp
(

2iσgh(u, v) − 2if
(1)
gh (u, v) + 2if

(2)
gh (u, v)

)
, (236)

where

σgh(u, v) =
∞∫

0

dt

t (et − 1)

[
e−t/2J0(2gt) sin(ut) − et/2J0(2gt) sin(vt) − sin((u − v)t)

]
,

(237)

while

f
(1)
gh (u, v) = −2

∑
n≥1

(2n)γ̃
g
2n(u)κh

2n(v) − 2
∑
n≥1

(2n − 1)γ̃
g
2n−1(u)κh

2n−1(v), (238)

f
(2)
gh (u, v) = −2

∑
n≥1

(2n)γ
g
2n(u)̃κh

2n(v) − 2
∑
n≥1

(2n − 1)γ
g
2n−1(u)̃κh

2n−1(v). (239)

These obviously obey

σgh(u, v) = −σhg(v,u), f
(1)
gh (u, v) = f

(2)
hg (v,u), f

(2)
gh (u, v) = f

(1)
hg (v,u), (240)

such that

Shg(u, v)Sgh(v,u) = 1, (241)

as expected.

4.4.5. Mirror transformation
Finally, one can demonstrate that

Shg(u
γ , vγ ) = Shg(u, v) = [Sgh(v,u)]−1, (242)

by combining Eq. (234) with (221) and the unitarity relation (241).
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4.5. Hole–fermion S-matrix in hole rapidity

To prepare ourselves to the construction of the mirror S-matrix for fermions, let us perform a 
mirror transformation in the hole rapidity in the hole–fermion ShF matrix (112) since it will be 
an ingredient in the construction of the former. As before, it is done in two steps. First, we go 
just below the cut [−2g + i/2, 2g + i/2] and then cross it all the way to uγ = u + i using the 
integral form of flux-tube equations for the large fermion spelled out in Appendix A.1. This way 
the combination f (1)

hF − f
(2)
hF after the analytic continuation reads

f
(1)
hF (uγ ) − f

(2)
hF (uγ )

= −i

∞∫
0

dt

t

γ F
v (−2gt)

et − 1

[
et/2 cos(ut) − J0(2gt)

]

+ i

∞∫
0

dt

t

γ̃ F
v (−2gt)

et − 1
et/2 sin(ut)

− i

∞∫
0

dt

t (et − 1)

[
e−i(u−v)t+t/2 −

(
e−iut+t/2 + eivt

)
J0(2gt) + J 2

0 (2gt)
]

− i

2
ln

(
x[v]

u − v + i
2

)
,

where we substituted the explicit form of the integral

∞∫
0

dt

t

[
cos((u − v)t) − J0(2gt) cos(vt)

] = ln

(
x[v]
u − v

)
.

We have to add to this the analytic continuation of σhF

σhF(uγ , v) =
∞∫

0

dt

t (et − 1)

[
et/2J0(2gt) sin(ut) − J0(2gt) sin(vt) − et/2 sin((u − v)t)

]

+ i

∞∫
0

dt

t

[
J 2

0 (2gt) − e−t/2 cos((u − v)t)
]
+ i

2
ln

(
u − v + i

2

u − v − i
2

)
. (243)

So that combining all of these contributions together, the mirror hole–large-fermion S-matrix 
finally reads

S∗hF(u, v) ≡ ShF(uγ , v)

= −g2

i
exp

(
2σ̂hF(u, v) + 2f

(3)
hF (u, v) − 2f

(4)
hF (u, v)

)
, (244)
x[v](u − v + 2 )
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with

σ̂hF(u, v) =
∞∫

0

dt

t (et − 1)

[(
et/2 cos(ut) + cos(vt)

)
J0(2gt)

− et/2 cos((u − v)t) − J 2
0 (2gt)

]
, (245)

and

f
(3)
hF (u, v) =

∞∫
0

dt

t

γ̃ F
v (−2gt)

et − 1
et/2 sin(ut), (246)

f
(4)
hF (u, v) =

∞∫
0

dt

t

γ F
v (−2gt)

et − 1

[
et/2 cos(ut) − J0(2gt)

]
. (247)

We will use this result momentarily.

4.6. Large-fermion–large-fermion S-matrix

A complication with a naive mirror transformation for the fermion was uncovered early on 
in the analysis of Ref. [25] which failed to find a path that double Wick rotates the fermionic 
dispersion relation. This issue was readdressed in Ref. [14] where it was demonstrated that a 
transformation of this type is not even possible since it would break U(1) charge assignment 
for flux-tube excitations. It was shown instead that there exists an interpolation that brings a 
twist-one fermion into a composite twist-two excitation. Then one can use fusion to recover the 
mirror S-matrix for the original fermion. The outcome of the analysis [14] can be summarized in 
the following mirror S-matrix for two large fermions

S∗FF(u, v) = SfF(u, v)S∗hF(u + i
2 , v), (248)

with the two ingredients given above in Eqs. (142) and (244), respectively. A simple calculation 
immediately gives

S∗FF(u, v) = − g2

x[u]x[v]
u − v

u − v + i
exp

(
2σ̂FF(u, v) + 2f

(3)
FF (u, v) − 2f

(4)
FF (u, v)

)
. (249)

Here we used the fact that

σ̂hF(u + i
2 , v) = σ̂FF(u, v) + 1

2
ln

(
u − v

x[u]
)

, (250)

with

σ̂FF(u, v) =
∞∫

0

dt

t (et − 1)

[
(cos(ut) + cos(vt)) J0(2gt) − cos((u − v)t) − J 2

0 (2gt)
]
,

(251)

while the phase factors depending on the flux-tube functions are
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f
(3)
FF (u, v) =

∞∫
0

dt

t

γ̃ F
v (−2gt)

et − 1
sin(ut) − 1

2

∞∫
0

dt

t
γ̃ F−,v(2gt) sin(ut), (252)

f
(4)
FF (u, v) =

∞∫
0

dt

t

γ F
v (−2gt)

et − 1

[
cos(ut) − J0(2gt)

] + 1

2

∞∫
0

dt

t
γ F+,v(2gt) cos(ut). (253)

This object will be indispensable in the construction of the pentagon transitions involving large 
fermions.

4.7. Small-fermion–large-fermion S-matrix

The analytic continuation to the small fermion sheet in rapidity u follows the same footsteps 
as used in Section 3.2.5. Sparing the reader from repetitious details, we just quote the final answer

S∗fF(u, v) = x[u]
u − v + i

exp
(

2f
(3)
fF (u, v) − 2f

(4)
fF (u, v)

)
, (254)

where

f
(3)
fF (u, v) = 1

2

∞∫
0

dt

t
γ̃ F−,v(2gt) sin(ut)

=
∞∫

0

dt

t

γ̃ f
u(−2gt)

et − 1
sin(vt) − 1

2

∞∫
0

dt

t
γ̃ f−,u(2gt) sin(vt), (255)

f
(4)
fF (u, v) = −1

2

∞∫
0

dt

t
γ F+,v(2gt) cos(ut)

=
∞∫

0

dt

t

γ f
u(−2gt)

et − 1
(cos(vt) − J0(2gt)) + 1

2

∞∫
0

dt

t
γ f+,u(2gt) cos(vt). (256)

Here we used exchange relations after the second equality sign to make explicit the dependence 
on v for the subsequent analytic continuation to the small fermion sheet. This is done in the next 
section.

4.8. Small-fermion–small-fermion S-matrix

Finally, the analytic continuation to the small fermion sheet in rapidity v yields

S∗ff(u, v) = u − v

u − v + i
exp

(
2f

(3)
ff (u, v) − 2f

(4)
ff (u, v)

)
, (257)

where
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f
(3)
ff (u, v) = +1

2

∞∫
0

dt

t
γ̃ f−,u(2gt) sin(vt), (258)

f
(4)
ff (u, v) = −1

2

∞∫
0

dt

t
γ f+,u(2gt) cos(vt). (259)

5. Nonsinglet form factors and pentagons

As we advertised in the introduction, the goal of this work is to provide a nonperturbative 
description for twist-two contribution in the operator product expansion of the null polygonal 
super Wilson loop with SU(4) nonsinglet quantum numbers in the expansion channel. Our focus 
here will be on the particle pairs transforming in the 6 of SU(4) and carrying one unit of total 
helicity. These will contribute nontrivially to a specific component of the NMHV amplitude 
that the super Wilson loop is dual to. There are two types of two-particle flux-tube excitations 
that fit the profile. These are either hole–gluon or two-fermion composite states. Let us discuss 
their coupling to the Wilson loop contour and provide an educated guess for their form factors. 
The latter arise as solutions to conjectured axiomatic equations that are based on interplay with 
two-dimensional scattering of flux-tube excitations and nontrivial consequences under mirror 
transformations and reflections. These turn out to be so constraining that they allow us to uniquely 
fix the functional form of form factors on particle rapidities as well as the coupling constant. 
Recently, this approach was successfully applied to form factors that emerge in the description 
of MHV amplitudes [12–14] and leading twist contribution to certain components of NMHV 
ones. Presently we generalize these considerations to the NMHV case at twist-two level.

5.1. Hole–gluon pentagons

We start with a simpler hole–gauge field case. Let us introduce the amplitudes for creation of 
the hole and gluon excitations with positive/negative helicity g/ḡ on the top side of the pentagon

Fhg(0|u,v) = 〈h(u)g(v)|P̂|0〉, Fgh(0|u,v) = 〈g(u)h(v)|P̂|0〉, (260)

and similarly with g being replaced by ḡ. Permutation of the two excitations sitting on the same 
side is achieved by acting on it with a scattering matrix, such that the above form factors obey 
the Watson equations [36]

Fhg(0|u,v) = Sgh(v,u)Fgh(0|v,u), Fgh(0|u,v) = Shg(v,u)Fhg(0|v,u). (261)

Sequential application of these equations yields an identity making use of the unitarity (241). 
These two equations are not sufficient to solve for the form factors. One has to use extra con-
straints that arise from the mirror transformations. Namely, moving either of the excitations in 
a complete cycle around the pentagon contour yields the other form factor, see the left panel in 
Fig. 2. Namely,

Fhg(0|u−5γ , v) = Fgh(0|v,u), Fgh(0|u,v5γ ) = Fhg(0|v,u). (262)

These form factors obey the reflection and cyclicity identities

Fhg(0|u,v) = Fhg(−u,−v|0) = Fgh(v,u|0) = Fgh(0| − v,−u). (263)



534 A.V. Belitsky / Nuclear Physics B 896 (2015) 493–554
Fig. 2. Relation between Fhg and Fgh form factors through multiple mirror transformations which bring the flux-tube 
excitation in a complete cycle around the contour (left panel). A particular way to obtain the pentagon transition Phg as 
a double mirror transformation in hole rapidity of the hole–gluon form factor (right panel).

The above equations can be solved to determine the mixed form factors. However, we will choose 
a different route to proceed. Namely, by shifting one of the excitations along the piece-wise 
contour, we will introduce mixed pentagon transitions

Phg(u|v) = 〈g(v)|P̂|h(u)〉, Pgh(u|v) = 〈h(v)|P̂|g(u)〉, (264)

as well as analogous definitions for Phḡ and Pḡh. This can be done in a variety of ways

Fhg(0|u−2γ , v) = Phg(u|v), Fhg(0|u−3γ , v) = Pgh(v|u), (265)

Fhg(0|u,v3γ ) = Pḡh(v|u), Fhg(0|u,v2γ ) = Phg(u|v). (266)

See the graphical representation of the first equation in the right panel of Fig. 2. Notice that for 
an odd number of mirror transformations of the gluon, its helicity gets changed. We conjecture 
these pentagon transitions to obey the following equations, echoing the axioms of Ref. [13] for 
singlet transitions,

Phg(u|v) = Shg(u, v)Pgh(v|u), Pgh(u|v) = Sgh(u, v)Phg(v|u), (267)

and mirror identities

Phg(u
−γ |v) = Pgh(v|u), Pgh(u

−γ |v) = Phḡ(v|u), (268)

Phg(u|vγ ) = Pḡh(v|u), Pgh(u|vγ ) = Phg(v|u),

as well as the reflection equation

Phg(u|v) = Pḡh(−v| − u). (269)

One can easily check the consistency of Eqs. (267) with the Watson equations (261), though the 
former do not follow from the latter. Namely, starting from the ratio of form factors, we find

Sgh(v,u) = Fhg(0|u,v)

Fgh(0|v,u)
= Phg(u

2γ |v)

Phg(u−3γ |v)
= Shg(u

2γ , v)Shg(u
γ , v)

Sgh(v,u−2γ )Sgh(v,u−γ )Sgh(v,u)
, (270)

which can be verified as a consequence of the identity

Shg(u
2γ , v)Shg(u

γ , v)Shg(u
−2γ , v)Shg(u

−γ , v)Shg(u, v) = Sgh(v,u). (271)

The following two solutions are consistent with Eqs. (267)

P 2
hg(u|v) = whg(u, v)

Shg(u, v)
, P 2

gh(u|v) = whg(v,u)
Sgh(u, v)

, (272)

S∗hg(u, v) S∗gh(u, v)
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with an overall function whg(u, v). Similar expression holds for the negative helicity gluon which 
differs from the above by the overall function whḡ(u, v). Here the mirror S-matrix S∗hg was com-
puted in Eq. (217) while S∗gh(u, v) = Sgh(u

γ , v) ≡ S∗hg(v, u). Eqs. (268) imply that whg(u, v)

and whḡ(u, v) are mirror invariant in hole rapidity whg/ḡ(u, v) = whg/ḡ(u
γ , v) but related to each 

other by the mirror transformation in gluon rapidity whg(u, v) = whḡ(u, vγ ). Next, using the ob-
vious properties of the S-matrix Shg(−u, −v) = [Shg(u, v)]−1 and Shg(−uγ , −v) = Shg(u

γ , v)

(and the same for Sgh), we find from (269) that w is an even function of its arguments 
w(−u, −v) = w(u, v). For scalars the mirror is basically a shift uγ = u + i, while for gluons, 
one returns to the “same” point but passing through two cuts such that x[vγ ] = g2/x[v]. We will 
confirm by an explicit comparison with multiloop perturbative data that the simplest solution 
whg(u, v) = 1 will lead agreement with OPE predictions. This implies that Phg(u|v) = Phḡ(u|v).

Finally making use of the explicit solution (272) and the properties of the S-matrices, we can 
relate form factors directly to the pentagon transitions

Fhg(0|u,v) = Phg(u
2γ |v) = 1

Phg(u|v)
, (273)

Fgh(0|u,v) = Pḡh(u
2γ |v) = 1

Pgh(u|v)
. (274)

These obviously solve Eqs. (261) and (262) making use of the properties of the scattering matri-
ces (204), (205) and (206).

5.2. Fermion–fermion pentagons

Now we have to find the form factor for same-helicity fermion in the antisymmetric represen-
tation, that is 6. To accomplish this goal, we will start with the fermion–fermion scattering with 
open indices transforming with respect to the 4 of SU(4)

[S��(u, v)]AB
CD = S��(u, v)

[
u − v

u − v − i
δA
CδB

D − i

u − v − i
δA
DδB

C

]
, (275)

where � cumulatively denotes large (� = F) and small (� = f) fermions. The tensor structure 
in the above equation is determined by the fundamental R-matrices [37] and the overall phase 
specific to the flux-tube excitations S��(u, v). The product of two 4’s gets decomposed into 
symmetric and antisymmetric representations, 4 ⊗ 4 = 6 + 10. These can be projected out with 
the tensors

[�6]AB
CD = 1

2

(
δA
CδB

D − δA
DδB

C

)
, [�10]AB

CD = 1

2

(
δA
CδB

D + δA
DδB

C

)
. (276)

The scattering matrix for the two fermions in the 6 is

S6
��(u, v) = [�6]AB

CD [S��(u, v)]CD
AB = u − v + i

u − v − i
S��(u, v). (277)

Our ansatz for the two same-helicity fermion form factor in the 6 of SU(4) reads

F 6
��(0|u,v) = i

u − v + i

1

P��(u|v)
, (278)

which inherits the rational prefactor from the above scattering matrix. The pentagon transition 
P��(u|v) defining the above form factor was studied in Ref. [14] and conjectured to be
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Fig. 3. The path (in green) of analytic continuation from large to small fermion. In blue, we display the integration 
contour C = CF ∪ Cf for integrals in Eq. (305). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

P 2
��(u|v) = f��(u, v)

(u − v)(u − v + i)

S��(u, v)

S∗��(u, v)
, (279)

where

f��(u, v) = x[u]x[v]
g2

(
1 − g2

x[u]x[v]
)

. (280)

Since the index � cumulatively stands for both large and small fermions depending on what 
sheet of the Riemann surface, shown in Fig. 3, the corresponding rapidity belongs to, we will 
display below explicit formulas for all pentagons. Namely, when both rapidities are on the large 
sheet, we find

PFF(u|v) = ix[u]x[v]
g2(u − v)

(
1 − g2

x[u]x[v]
)1/2

× exp
(
iσFF − σ̂FF − if

(1)
FF (u, v) + if

(2)
FF (u, v) − f

(3)
FF (u, v) + f

(4)
FF (u, v)

)
,

(281)

while when one of them, say u, is on the small sheet, we find instead

PfF(u|v) = − i

x[u]
(

1 − g2

x[u]x[v]
)−1/2

× exp
(
−if

(1)
fF (u, v) + if

(2)
fF (u, v) − f

(3)
fF (u, v) + f

(4)
fF (u, v)

)
. (282)
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Finally, when both u and v are on the small fermion sheet, we get

Pff(u|v) = i

u − v

(
1 − g2

x[u]x[v]
)1/2

× exp
(
−if

(1)
ff (u, v) + if

(2)
ff (u, v) − f

(3)
ff (u, v) + f

(4)
ff (u, v)

)
. (283)

The first and last one are used to calculate the transition measure,

resv=u PFF(u|v) = i

μF(u)
, resv=u Pff(u|v) = i

μf(u)
. (284)

They read

μF(u) = g2

x[u]√x2[u] − g2
exp

(
σ̂FF(u,u) + f

(3)
FF (u,u) − f

(4)
FF (u,u)

)
, (285)

μf(u) = − x[u]√
x2[u] − g2

exp
(
f

(3)
ff (u,u) − f

(4)
ff (u,u)

)
, (286)

for large and small fermions, respectively. These results are in agreement with Ref. [14].

6. Twist-two contributions to NMHV hexagon

In this section, we will use nonsinglet pentagons defined in the previous section to calculate 
twist-two contributions to NMHV amplitudes.

6.1. NMHV hexagon observable

To start with, let us introduce a proper NMHV hexagon observable that will be matched 
against operator product expansion predictions. To this end, we construct the following combi-
nation

W6;1 = g2P6W
U(1)
6 eR6, (287)

where a power of the ’t Hooft coupling in the right-hand side of the equation is introduced in 
order to match the left-hand side to the definition of the superloop in Refs. [2–4] such that tree 
NMHV amplitude corresponds to a one-loop calculation on the Wilson loop side etc. In the above 
expression, WU(1)

6 is a ratio of Wilson loops computed in Abelian theory [10]

W6 = 〈W6〉〈Wsquare〉
〈Wtop pent〉〈Wbot pent〉 = exp

(
g2

U(1)X6(u, v,w)

)
, (288)

with U(1) coupling being replaced by the all-order cusp anomalous dimension g2
U(1) =

1
4�cusp(g) � g2

(
1 − 2ζ2g

2 + . . .
)

and the function X6 of conformal cross ratios reads [10]

X6(u, v,w) = −Li2(1 − u) − Li2(1 − v) − Li2(1 − w) − lnu lnw

+ ln(1 − v) ln
(1 − v)u

vw
+ 2ζ2. (289)

Here we introduced three conformal cross ratios

u = (1234)(4561)

(1245)(3461)
, v = (2345)(5612)

(2356)(4512)
, w = (3456)(6123)

(3461)(5623)
, (290)

determined by means of four-brackets (ijkl) = εABCDZAZBZCZD of momentum twistors ZA.
i j k l i
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Next, R6 is the hexagon remainder function that starts at two-loop order [40,42] and currently 
available all the way to four loops [41,29].

The main NMHV ingredient in the formula (287) is the NMHV ratio function P6 given by 
the quotient of the NMHV component of the superamplitude and its lowest bosonic component

P6 =A6;1/A6;0, (291)

that takes a well-known form [43,44]

PNMHV
6 = 1

2 [(2) + (5)]V (u, v,w) + 1
2 [(3) + (6)]V (v,w,u) + 1

2 [(1) + (4)]V (w,u, v)

− 1
2 [(2) − (5)]Ṽ (u, v,w) + 1

2 [(3) − (6)]Ṽ (v,w,u) + 1
2 [(1) − (4)]Ṽ (w,u, v),

(292)

with the R-invariants being [43,45]

(1) ≡ [23 456] = δ0|4 (χ2(3456) + χ3(4562) + χ4(5623) + χ5(6234) + χ6(2345))

(2345)(3456)(4562)(5623)(6234)
,

(293)

and the rest of them obtained by cyclic permutations. Here the functions V and Ṽ admit pertur-
bative expansion, with the even V being nontrivial already at tree level, while the odd Ṽ starts 
only from two loops

V = 1 +
∑
�≥1

g2�V (�), Ṽ =
∑
�≥2

g2�Ṽ (�). (294)

We quote here only the one-loop function

V (1)(u, v,w) = Li2(1 − u) + Li2(1 − v) + Li2(1 − w) − lnu lnw + ln(uw) lnv − 2ζ2,

(295)

to define our normalization, while the � = 2 case can be found in Ref. [44] and the three- and 
four-loop cases were recently worked out in Refs. [46] and [47], respectively, and we refer the 
reader to these papers for explicit expressions.

To make contact with the operator product expansion, we use the hexagon parametrized by 
the twistors

Z1 = (eσ−iφ/2,0, eτ+iφ/2, e−τ+iφ/2), Z2 = (1,0,0,0), Z3 = (−1,0,0,1),

Z4 = (0,1,−1,1), Z5 = (0,1,0,0), Z6 = (0, e−σ−iφ/2, eτ+iφ/2,0),

with assignments of labels as shown in Fig. 1. The conformal cross ratios read in this case

u = e2τ−2σ vw, (296)

v = 1/(1 + e2τ ), (297)

w = 1/(1 + e2σ + 2 cos(φ)eσ−τ + e−2τ ). (298)

Notice that u, w do not interchange under σ → −σ , but rather under σ → σ ′ ≡ −σ +
ln(1 + e−2τ ), i.e., u(σ ′) = w(σ) and w(σ ′) = u(σ).
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Since we are after contributions with the quantum numbers of the scalar–gluon pair, the most 
natural choice for the NMHV component2 in question would be the χ1χ3χ4χ6 one that was used 
in Ref. [13] to constrain the twist-one contribution from scalars. However, as we will comment 
on it shortly, this component will not be good from the point of view of pentagon expansion. In-
stead, we consider χ2

1 χ2
4 . In this case, the nontrivial effect arises from the following R-invariants, 

expanded to order e−2τ ,

(2) + (5) = − χ2
1 χ2

4

cosh(σ )

[
e−τ − (1 + sinh(2σ)) cos(φ)

cosh(σ )
e−2τ + . . .

]
+ . . . ,

(3) + (6) = −2 cos(φ)e−2τ χ2
1 χ2

4 + . . . ,

(2) − (5) = (3) − (6) = −2i sin(φ)e−2τ χ2
1 χ2

4 + . . . , (299)

with the rest inducing no contribution to χ2
1 χ2

4 . The collinear expansion for V (1) in Eq. (295)
reads for three permutation of its arguments

V (1)(u, v,w) = −4τ
[
σ − ln(1 + e2σ )

]
+ 4σ ln(1 + e2σ ) − 2 ln2(1 + e2σ )

+ 4e−τ cos(φ)

cosh(σ )

[
τ − σeσ sinh(σ ) + sinh2(σ ) ln(1 + e2σ )

]
+ . . . ,

V (1)(v,w,u) = +4στ − 4e−τ cos(φ)
[
σeσ − cosh(σ ) ln(1 + e2σ )

]
+ . . . ,

V (1)(w,u, v) = −4στ − 4e−τ cos(ϕ)
[
σeσ − cosh(σ ) ln(1 + e2σ )

]
+ . . . ,

while for X6 it is

X6(u, v,w) = 4e−τ cos(φ)
[
σeσ − cosh(σ ) ln(1 + e2σ )

]
+ . . . . (300)

Assembling everything together, we find for twist-two contribution3 to (287),

W6;1 = χ2
1 χ2

4 e−2τ cos(φ)

2 cosh2(σ )

{
− e−2σ + g2

(
− 4τ

[
1 + σ(2 + e2σ )

− (1 + sinh(2σ)) ln(1 + e2σ )
]
− 4σ + 4(1 + σ + σ sinh(2σ)) ln(1 + e2σ )

− 2(1 + sinh(2σ)) ln2(1 + e2σ )
)

+ O(g4)
}
. (301)

This expansion will be matched below against results based on integrability to four-loop order in 
’t Hooft coupling.

6.2. Contributions from OPE

The Grassmann degree-four χ2
1 χ2

4 -contribution W6;1 to the hexagonal super Wilson loop with 
6 of SU(4) and unit charge with respect to U(1) in the operator product expansion channel takes 
the form

2 The fastest access to any component of one-loop non-MHV amplitudes can be achieved by using the package of 
Ref. [48] instead.

3 Further terms in the perturbative expansion are a way too cumbersome to be presented here. They are summarized in 
the accompanying Mathematica notebook.
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W6;1 = 2 cos(φ)e−2τ χ2
1 χ2

4

(
W�� + Whg

) + . . . , (302)

where the contributions from the above two-particle states admit the following generic structure

Wpp′ =
∫

dμp(u)

∫
dμp′(v)Cpp′(u, v)Fpp′(0|u,v)Fp′p(−v,−u|0) (303)

where we included potential additional coupling form factors C(u, v) not accounted by the pen-
tagon transitions. Here in the integration measure

dμp(u) ≡ du

2π
μp(u)e−τγp(u)+iσpp(u), (304)

we got absorbed particle propagation “phases”, with γp(u) = Ep(u) − 1 being the anomalous 
contributions to the energy of the flux-tube excitation.

As we pointed out in the previous subsection, there is a more natural candidate for oper-
ator product expansion analysis, i.e., χ1χ3χ4χ6 Grassmann component. A quick lowest order 
inspection suggests that (303) could potentially accommodate this one as well. Namely, with 
proper introduction of ad hoc form factors Cpp′ , the tree and one-loop NMHV amplitude can 
be reproduced for C�� = (x[u]x[v]/g2)2 and Chg(u, v) = x+[u]x−[v]/g2. However, these fail 
to produce the correct near-collinear limit at two loops and higher, making the corresponding 
component of the amplitude inappropriate for naive OPE. The question remains what determines 
whether a given Grassmann component is good or bad.

Before, we turn to the calculation of individual contributions, let us point out that the easiest 
way to infer the weak coupling expansion of the S-matrices and find corresponding pentagon 
transitions is to use the exchange relations. Since

γn ∼ γ̃n ∼ κn ∼ κ̃n ∼ O(gn),

the perturbative solution of the flux-tube equation becomes iterative and elementary. Then every-
thing boils down to the use of the following basic integral

∞∫
0

dt

t

eiwt − 1 − iwt

et − 1
= ln�(1 − iw) + iwψ(1)

and its derivatives with respect to w.

6.3. Two-fermion states

It appears counterintuitive from the point of view of perturbative theory for the super Wil-
son loop that two-fermion intermediate states in the operator product expansion play a leading 
role in the weak coupling series compared to the two-particle gauge–hole flux tube excitations. 
Therefore, we discuss the fermionic case first. In addition to pentagon form factors, to prop-
erly encode the near-collinear limit of the NMHV amplitude, we have to introduce ad hoc 
NMHV form factors for fermions, a power of the Zhukowski variable for each of them, i.e., 
C��(u, v) = x[u]x[v]/g2. Then

W�� =
∫
C

dμ�(u)

∫
C

dμ�(v)
x[u]x[v]

g2
F 6

��(0|u,v)F 6
��(−v,−u|0), (305)

where the integration contour C = CF ∪ Cf runs over both fermion sheets as shown in Fig. 3, 
see Ref. [14]. As we can see, the integration over the path on the Riemann surface can be split 
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into three distinct contributions depending on the position of the integration variable on the large 
or small fermion sheet, such that W�� = WFF + WfF + Wff. The intermediate contribution WfF
comes from the integration with respect to the rapidity u over the closed infinite half-circle in 
the lower half-plane and receives a nonvanishing effect only thanks to the existence of a pole 
u = v − i in F 6

�� . Due to the regularity of the resulting integrand in v belonging to the small 
Riemann sheet, Wff = 0. Now, let us analyze these contributions in turn.

6.3.1. Small–large fermion state
According to the analysis of Ref. [11], the small fermion acts as a supersymmetric generator 

such that when it acts on the large fermion it produces a scalar accompanied by a covariant 
derivative, {Q̄B

β̇
, ψA

α } = i
√

2Dαβ̇φAB . The contribution of the small–large fermion pair follows 
straightforwardly from Eq. (305) and reads

WfF =
∫

R+i0+

dμfF(v). (306)

It takes the form of a single composite particle excitation

dμfF(v) = du

2π
μfF(v)e−τγfF(v)+iσpfF(v), (307)

with the measure μfF being

μfF(v) = x[v]
x[v − i]

μF(v)μf(v − i)

PfF(v − i|v)PfF(−v + i| − v)
. (308)

Here we absorbed the ad hoc NMHV form factor into the measure. The anomalous energy and 
momentum of the resulting composite two-fermion excitation are

γfF(v) = EF(v) + Ef(v − i) − 2 = 2g2 (ψ(1 − iv) + ψ(1 + iv) − 2ψ(1)) + O(g4),

(309)

pfF(v) = pF(v) + pf(v − i) = 2v + g2
(

−2π coth(πv) + 2

v − i

)
+ O(g4), (310)

where we displayed the first two terms in their perturbative expansion. The small–large fermion 
pentagon can be computed to any order of perturbation theory from the results of the previous 
section and reads to O(g2)

PfF(u|v) = 1

x[u]
(

1 + ig2

u
H−1−iv + O(g4)

)
, (311)

while the large and small fermion measures read [14]

μF(u) = g2π

u sinh(πu)

[
1 + g2

(
2ζ2 + 1

u2
+ π

u
coth(πu) + π2

sinh2(πu)
− H 2

iu − H 2−iu

)]
+ O(g6), (312)

μf(v) = −1 − g2

v2
+ O(g4) (313)

where Hu = ψ(1 + u) + γE is the harmonic number. Combining these results together, the mea-
sure μfF(v) of the composite excitation can be found to be
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μfF(v) = π(v − i)

sinh(πv)

×
[
g2 + g4

(
2ζ2 − 1 + iπ coth(πv)

v(v − i)
+ π2

sinh2(πv)
− H 2

iv − H 2−iv

)
+ O(g4)

]
.

(314)

The weak coupling expansion of WfF starts at order g2, i.e., as we will see two orders earlier than 
the large-fermion case discussed in the next section,

WfF = g2W
(0)
fF + g4

(
−τW

(1)
fF;1 + W

(1)
fF;0

)
+ O(g6), (315)

with

W
(0)
fF =

∫
R+i0+

dv

2π
e2ivσ π(v − i)

sinh(πv)
= − e−2σ

4 cosh2(σ )
, (316)

which induces, as we will see below, the twist-two e−2τ contribution to the tree-level NMHV 
amplitude. The two loop effects are split into the linear in τ term and the rest. The former arises 
from the anomalous energy of the composite fermion state and reads

W
(1)
fF;1 =

∫
R+i0+

dv

2π
e2ivσ 2π(v − i)

sinh(πv)

[
ψ(1 − iv) + ψ(1 + iv) − 2ψ(1)

]
= 1 + σ(2 + e2σ ) − (1 + sinh(2σ)) ln(1 + e2σ )

cosh2(σ )
. (317)

The τ -independent part comes from the corrections to the measure and momentum. The can be 
easily evaluated to be

W
(1)
fF;0 = −2σ + 2(1 + σ + σ sinh(2σ)) ln(1 + e2σ ) − (1 + sinh(2σ)) ln2(1 + e2σ )

2 cosh2(σ )
.

(318)

As a side technical remark, let us point out that these analytical results can be easily obtained by 
calculating both rapidity integrals by closing them in the lower half-plane and resuming resulting 
residues as was done in Refs. [38,39]. Higher order contributions up to four loops are summarized 
in the attached notebook.

As we can see the small–large two-fermion state is solely responsible for inducing the tree-
level and one-loop contributions to NMHV amplitude, i.e., both displayed term in Eq. (301). 
This is counterintuitive from the point of view of perturbation theory where the Born amplitude 
comes from a scalar propagator coupled to the contour of the Wilson loop, but demonstrates that 
the flux-tube constituents receive a very nontrivial expansion in terms of elementary excitations 
of Yang–Mills perturbation theory. This implies that large–large and scalar–gluon effects are 
pushed to two-loop order. Let us now to turn to their discussion next.

6.3.2. Large–large fermion state
The two large-fermion contribution is

WFF =
∫

dμF(u)

∫
dμF(v)

x[u]x[v]
g2[(u − v)2 + 1]PFF(u|v)PFF(−u| − v)

, (319)
R+i0+ R+i0+
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where the large fermion measure was introduced in Eq. (312), while the leading contribution to 
the nonsinglet pentagon can be read from Eq. (282). We immediately observe that the effect of 
large fermions starts at two-loop order

WFF = g6W
(2)
FF + O(g8) (320)

and reads

W
(2)
FF = π3

∫
R+i0+

du

2π

∫
R+i0+

dv

2π
e2iσ (u+v) (u − v)

(u − v)2 + 1

coth(πv) − coth(πu)

uv sinh(πu) sinh(πv)
. (321)

6.3.3. Gauge–hole state
To complete the result, we finally calculate the scalar–gluon contribution

Whg =
∫
R

dμh(u)

∫
R

dμg(v)Fhg(0|u,v)Fgh(−v,−u|0). (322)

Using perturbative expansion of the all-order expressions for the form factors derived in Sec-
tion 5.1 along with the hole and gluon measures, we find that Whg start at order g6, like the large 
two-fermion contribution introduced in the previous subsection,

Whg = g6W
(2)
hg + O(g8). (323)

We find for W(2)
hg ,

W
(2)
hg = π3

∫
R

du

2π

∫
R

dv

2π
e2i(u+v)σ tanh(πu) − tanh(πv)

(u − v)(v4 + 1
4 ) cosh(πu) cosh(πv)

. (324)

We computed the integrand for all contributions discussed to this point all the way to four 
loops in order to compare them with recent results of hexagon bootstrap approach [46]. This 
consideration can be extended to any perturbative order. However, in the lack of tools to compute 
the emerging integrals analytically, the resulting Fourier integrals were calculated numerically 
and a perfect agreement was observed4 with perturbative data of Refs. [43,46,47] for NMHV 
amplitudes to four-loop order.

7. Conclusions

In this paper we analyzed twist-two contributions in the operator product expansion of the 
null polygonal super Wilson loop in a specific nonsinglet channel. The latter is dual to certain 
Grassmann components of the NMHV amplitude. We derived nonperturbative expressions that 
govern the dependence on the coupling constant and a kinematical invariant reciprocal to the 
momentum of the flux-tube excitation propagating on the Wilson loop world sheet. The focus of 
the study was a channel with the quantum numbers of the elementary scalar that transforms in 
the 6 of SU(4). As a consequence, there were several two-particle states that contributed to the 
super Wilson loop: they are hole–gluon and two-fermion pairs. From the point of view of conven-
tional perturbation theory, both of them are visible at the level of the Feynman graphs. However, 

4 See the attached Mathematica notebook.
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the flux-tube excitations have little to do with elementary fields of the N = 4 SYM theory as it 
becomes obvious from the following observation. Namely, while the one-hole flux-tube excita-
tion induces the leading e−τ behavior of the NMHV component in question and it is realized in 
perturbation theory as an exchange of the elementary scalar between the Wilson loop vertices, 
see, e.g., [13]. However, the latter contains all higher twist effects as well at leading order in 
’t Hooft coupling. We run then into an immediate predicament when we attempt to understand 
the origin of twist-two contribution to the tree NMHV amplitude. Where does it come from? 
A naive observation based on Yang–Mills perturbation theory indicates that two-particle inter-
mediate states will be accompanied by at least four powers of g from the coupling of excitations 
to the Wilson loop contour. Instead, it should be of order O(g2) since the tree NMHV amplitude 
is dual to one loop super Wilson loop. As we saw above, the resolution of this puzzle lies in the 
fact that the two-fermion contributions with one of them belonging to the small-rapidity sheet 
acts as a supersymmetric transformation on a large-fermion exchange rather than being a true 
propagating excitation. This decreases the perturbative order when this effect sets in from O(g6)

to O(g2).
To find the main building blocks of the formalism, the nonsinglet pentagon form factors, 

we started from scratch by rederiving the theory of flux-tube excitations. The initial point of 
our consideration was the Baxter equation for magnons when their number tends to infinity and 
flux-tube excitation arise as insertions into this background. We hope that our approach provides 
a new perspective on the problem compared to the traditional technique that relies on the counting 
functions as a central object of corresponding analyses. Within our framework, we computed all 
two-particle S-matrices complementing and completing results available in the literature.

Our study revealed a conundrum about the proper choice of Grassmann components of the su-
per Wilson loop which are eagerly amenable to the operator product expansion analysis. As we 
pointed out in this paper, apparently perfect amplitudes turned out to be unsuitable for these 
purposes, i.e., χ1χ3χ4χ6 versus χ2

1 χ2
4 . The former was used in the past as a main observable 

in the study of twist-one hole excitations [13], but we failed to find its successful description at 
two-particle level. On the other hand, the χ2

1 χ2
4 component is naturally described by the pen-

tagon expansion to all loop orders and we found a perfect agreement with available multiloop 
calculations of Refs. [43,46].

The refined form of the operator product expansion pursued in this paper provides a powerful 
nonperturbative framework to calculate all scattering amplitudes in maximally supersymmetric 
gauge theory. In order to achieve this goal, one has to compute all two-particle pentagon form 
factors with other nonsinglet SU(4) quantum numbers as well as their multiparticle counterparts. 
The latter are known to factorize into the above single-particle pentagons [12,22], however, un-
raveling the tensor index structure needs to be understood.5 Finally, the strong coupling analysis 
of the operator product expansion that goes beyond the area law [5] awaits its exploration [49].
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Appendix A. Integral form of flux-tube equations

In this appendix, we provide a compendium of integral flux-tube equations for all excitations. 
The ones for holes were already quoted in the main body of the paper in Section 2.1.6. Their 
derivation is identical to the above.

A.1. Large fermions

We start with large fermions. Making use of the sources (74)–(77), we deduce from 
Eqs. (37)–(40),

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ F+,v(2gt) = −

∞∫
0

dt

t

cos(ut) − J0(2gt)

et − 1

× [
γ F
v (−2gt) + cos(vt) − J0(2gt)

]
− 1

2

∞∫
0

dt

t
(cos(ut) − J0(2gt)) cos(vt), (A.1)

∞∫
0

dt

t
sin(ut)γ F−,v(2gt) = −

∞∫
0

dt

t

sin(ut)

et − 1

[
γ F
v (2gt) + cos(vt) − J0(2gt)

]
,

(A.2)

for even and
∞∫

0

dt

t
(cos(ut) − J0(2gt)) γ̃ F+,v(2gt) = −

∞∫
0

dt

t

cos(ut) − J0(2gt)

et − 1

[
γ̃ F
v (2gt) + sin(vt)

]
,

(A.3)
∞∫

0

dt

t
sin(ut)γ̃ F−,v(2gt) = −

∞∫
0

dt

t

sin(ut)

et − 1

[−γ̃ F
v (−2gt) + sin(vt)

]

− 1

2

∞∫
0

dt

t
sin(ut) sin(vt), (A.4)

odd v-parity functions, respectively.

A.2. Small fermions

Analogously for the small fermion sources (78) and (79), we get

∞∫
0

dt

t
(cos(ut) − J0(2gt))γ f+,v(2gt) = −

∞∫
0

dt

t

γ f
v(−2gt)

et − 1
(cos(ut) − J0(2gt))

+ 1

2

∞∫
dt

t
(cos(ut) − J0(2gt)) cos(vt), (A.5)
0
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∞∫
0

dt

t
sin(ut)γ f−,v(2gt) = −

∞∫
0

dt

t

γ f
v(2gt)

et − 1
sin(ut), (A.6)

∞∫
0

dt

t
(cos(ut) − J0(2gt))γ̃ f+,v(2gt) = −

∞∫
0

dt

t

γ̃ f
v(2gt)

et − 1
(cos(ut) − J0(2gt)) , (A.7)

∞∫
0

dt

t
sin(ut)γ̃ f−,v(2gt) =

∞∫
0

dt

t

γ̃ f
v(−2gt)

et − 1
sin(ut) + 1

2

∞∫
0

dt

t
sin(ut) sin(vt).

(A.8)

A.3. Gauge fields

Finally using Eqs. (93), we find

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ

g
+,v(2gt)

= −
∞∫

0

dt

t (et − 1)
(cos(ut) − J0(2gt))

[
γ

g
v (−2gt) + et/2 cos(vt) − J0(2gt)

]
, (A.9)

∞∫
0

dt

t
sin(ut)γ

g
−,v(2gt)

= −
∞∫

0

dt

t (et − 1)
sin(ut)

[
γ

g
v (2gt) + e−t/2 cos(vt) − J0(2gt)

]
. (A.10)

For odd parity functions we can obtain analogously from (94)

∞∫
0

dt

t
(cos(ut) − J0(2gt)) γ̃

g
+,v(2gt)

= −
∞∫

0

dt

t (et − 1)
(cos(ut) − J0(2gt))

[
γ̃

g
v (2gt) + e−t/2 sin(vt)

]
, (A.11)

∞∫
0

dt

t
sin(ut)γ̃

g
−,v(2gt) = −

∞∫
0

dt

t (et − 1)
sin(ut)

[
−γ̃

g
v (−2gt) + et/2 sin(vt)

]
. (A.12)

This concludes the list of integral flux-tube equations used in this paper.

Appendix B. From large to small fermion

Since we use it in the main text, let us recall the path of analytic continuation from the large to 
the small fermion domain. We demonstrate it making use of the dispersion relation, while in the 
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main text we apply it to scattering matrices. Namely, the large-fermion energy and momentum 
read as a function of the rapidity u

EF(u) = 1 +
∞∫

0

dt

t

γ
ø
+(2gt) − γ

ø
−(2gt)

et − 1
(cos(ut) − J0(2gt)) + 1

2

∞∫
0

dt

t
cos(ut)γ

ø
+(2gt),

(B.13)

pF(u) = 2u −
∞∫

0

dt

t

γ
ø
+(2gt) + γ

ø
−(2gt)

et − 1
sin(ut) − 1

2

∞∫
0

dt

t
sin(ut)γ

ø
−(2gt), (B.14)

both valid for |u| > 2g as will be clarified below. Here the γ ø functions entering these expressions 
are the coefficient of the logarithmic dependence of the vacuum solution

γ Ø = γ ø ln η̄ + δγ ø, (B.15)

in agreement with notations adopted in Ref. [20] and the source (54) decomposed accordingly, 
κØ = κø ln η̄ + δκø.

To start with, let us first recall the analytic properties of the energy and momentum. It is 
sufficient to analyze just one terms to draw conclusions about the rest. Namely, using the generic 
series representation of, say, the first term in Elf(u), we find

∞∫
0

dt

t

γ
ø
+(2gt)

et − 1
eiut =

∞∑
n=1

λ+ (u + in) , (B.16)

where λ+(u) has the following square-root cut structure

λ+(u) ≡
∞∫

0

dt

t
eiut γ

ø
+(2gt) = α+(u)

√
u2 − (2g)2 + β+(u), (B.17)

with analytic functions α+(u) and β+(u) of u, according to the analysis in Ref. [50]. Thus we 
observe that this particular term possess an infinite number of square root cuts [−2g, 2g] starting 
from 
m[u] = i and going all the way to infinity with i-interval along imaginary axis. While the 
last term in (B.13) possesses a cut on the real axis. Thus, extending the same consideration to 
other terms, we conclude that both energy and momentum have an infinite number of equidistant 
cuts in the rapidity plane as shown in Fig. 3.

As was demonstrated in Ref. [20], to pass to the small fermion kinematics, one has to cross the 
cut [−2g, 2g] and pass to another sheet of the Riemann surface, see Fig. 3. As it is obvious from 
the integral representations (B.13) and (B.14), we have to continue the last term only. We show 
it for energy. Namely, on the real axis for |u| > 2g, we have

∞∫
0

dt

t
cos(ut)γ

ø
+(2gt) =

∞∫
0

dt

t
e±iut γ

ø
+(2gt), (B.18)

where we used the fact that λ∗+(u) = λ+(u∗) and choose the negative sign in the exponent that 
will define the function in the lower half plane of u. Next we move inside the strip |
m[u]| ≤ 2g

in order to cross the cut, i.e., u → u + i0+. However, one cannot perform this step since the 
integral is not convergent due to growing exponent. To overcome this problem, we use Eq. (129)
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at first and then the vacuum flux-tube equations. The latter are found from generic equation (34)
with the logarithmically enhanced contribution κø to the source (54). With the help of the Jacobi–
Anger transformation these can be cast into the form

∞∫
0

dt

t
(cos(ut) − J0(2gt))

[
γ

ø
+(2gt)

1 − e−t
− γ

ø
−(2gt)

et − 1

]
= 0, (B.19)

∞∫
0

dt

t
sin(ut)

[
γ

ø
−(2gt)

1 − e−t
+ γ

ø
+(2gt)

et − 1

]
= 2u, (B.20)

valid for |u| < 2g. Applying the above relations to the even/odd part of γ ø, we find

∞∫
0

dt

t
γ

ø
+(2gt)e−iut = −

∞∫
0

dt

t
γ

ø
+(2gt)eiut − 2

∞∫
0

dt

t

cos(ut) − J0(2gt)

et − 1
γ ø(−2gt),

(B.21)
∞∫

0

dt

t
γ

ø
−(2gt)e−iut =

∞∫
0

dt

t
γ

ø
−(2gt)eiut − 4iu + 2i

∞∫
0

dt

t

sin(ut)

et − 1
γ ø(2gt), (B.22)

where the first relation is relevant for energy, while the second one to the momentum. Using 
Eq. (B.21) we find

Ef(u + i0+) = 1 − 1

2

∞∫
0

dt

t
eiut γ

ø
+(2gt). (B.23)

Going outside the strip |
m[u]| ≤ 2g, we can then move back to the real axis by means of (B.18)
and get the final expression for small fermion energy. Identical considerations using Eq. (B.22)
yield the small fermion momentum. These read

Ef(u) = 1 − 1

2

∞∫
0

dt

t
cos(ut)γ

ø
+(2gt), (B.24)

pf(u) = 1

2

∞∫
0

dt

t
sin(ut)γ

ø
−(2gt). (B.25)

Appendix C. Mirror kinematics: holes

Here we will recapitulate the path of the analytic continuation to the mirror kinemat-
ics advocated in Ref. [25]. Though a detailed account on this transformation is available 
in the literature [26], we nevertheless provide it here to make the current presentation self-
contained.
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Fig. 4. The path of analytic continuation to the mirror kinematics for scalars.

The energy and momentum for the hole read

Eh(u) = 1 +
∞∫

0

dt

t

γ
ø
+(2gt) − γ

ø
−(2gt)

et − 1

(
et/2 cos(ut) − J0(2gt)

)
, (C.26)

ph(u) = 2u −
∞∫

0

dt

t

γ
ø
+(2gt) + γ

ø
−(2gt)

et − 1
et/2 sin(ut). (C.27)

Studying the analytical structure of the dispersion relation for the hole in the complex u-plane 
along the same lines as in the previous appendix, we conclude that the real sheet contains an 
infinite number of equidistant cuts as demonstrated in Fig. 4.

To reach the mirror kinematics by moving to another sheet of the Riemann surface of the 
energy/momentum as a function of complex rapidity u as was shown in Ref. [25], one first 
moves to u → u + i/2 − i0+

ph(u
+ − i0+) = 2u + i −

∞∫
0

dt

t

γ ø(2gt)

et − 1
sin(ut) − i

2

∞∫
0

dt

t
e−iut γ ø(2gt). (C.28)

Then substituting the relations (B.21) and (B.22) into Eq. (C.28), we cross the cut to another 
Riemann sheet,

ph(u
+ + i0+) = i + i

∞∫
0

dt

t

γ ø(−2gt)

et − 1
(cos(ut) − J0(2gt)) + i

2

∞∫
0

dt

t
eiut γ ø(−2gt).

(C.29)
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Fig. 5. The path of analytic continuation to the mirror kinematics for gluons. For simplicity, the real and mirror sheets 
are shown to coincide here. They do not.

Finally, we move u → u + i/2, to get

ph(u
+ + i0+ + i/2) = iEh(u). (C.30)

Identical considerations hold for the energy. Thus, under the above mirror transformations, the 
two interchange and acquire an i.

Appendix D. Mirror kinematics: gauge field and bound states

In this appendix we review the analytic continuation to the mirror kinematics for the gauge 
field bound states [25]. We will presently demonstrate it using dispersion relations as an example. 
We will use the same path to continue the scattering matrix in gluon rapidity in the main text. 
The energy and momentum of gluon bound states is given by

Eg(u) = � +
∞∫

0

dt

t

[
γ

ø
+(2gt)

1 − e−t
− γ

ø
−(2gt)

et − 1

](
e−�t/2 cos(ut) − 1

)
, (D.31)

pg(u) = 2u −
∞∫

0

dt

t

[
γ

ø
−(2gt)

1 − e−t
+ γ

ø
+(2gt)

et − 1

]
e−�t/2 sin(ut). (D.32)

Performing the consideration identical to the one for the scalars, we conclude that Eg(u) and 
pg(u) in real kinematics possess an infinite number of square root cuts [−2g, 2g] starting from 
|u| = i�/2 and going all the way to infinity with an i-interval along imaginary axis, as shown in 
Fig. 5.
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The path to the mirror kinematics was found in Ref. [25]. First, one has to cross the cut for 
|u| ≤ 2g in the upper half-plane down to the Goldstone sheet. This is done in two steps. Namely, 
one shifts u → u + i(�/2 − 0+) just below the cut,

pg

(
u[�] − i0+

)
= 2u + i� + i

2

∞∫
0

dt

t

[
γ

ø
−(2gt) + γ ø(2gt)

et − 1

](
eiut−�t − e−iut

)
. (D.33)

We can clearly see that the current expression cannot be use to cross the cut, i.e., u → u + i0+
since the cross-term γ øe−iut becomes divergent. However, this can be overcome by using the 
relation (B.22), such that one gets for u + i(�/2 + 0+),

pGoldstone(u) ≡ pg(u
[�] + i0+) = i� + i

2

∞∫
0

dt

t
eiut

[
γ

ø
+(2gt)

et − 1
+ γ

ø
−(2gt)

1 − e−t

](
e−�t − 1

)
.

(D.34)

This way we pass to another sheet of the Riemann surface, as shown in Fig. 5, which is dubbed 
as the Goldstone sheet. Notice that compared to the real sheet, pGoldstone(u) has only a finite 
number of cuts due to partial cancellation between denominator and denominator, for instance,

I+(u) ≡
∞∫

0

dt

t
eiut γ

ø
+(2gt)

e−�t − 1

et − 1
= −

�∑
n=1

λ+(u + in). (D.35)

And analogously for the rest. This exhibits a finite number of cuts equidistant from each other 
along the imaginary axis as shown in Fig. 5. Since there are no other singularities, pGoldstone(u)

is analytic outside the strip [−2g, 2g].
Next, we move outside the strip [−2g, 2g], i.e., |u| ≥ 2g and go just below the bottom cut 

in the lower half-plane, u → u − i�, on the Goldstone sheet. This is accomplished with the 
formula

I+(u − i�) = −
�∑

n=1

λ+(u − i(� − n)) = −
�−1∑
n=0

λ+(u − in)

=
∞∫

0

dt

t
e−iut γ

ø
+(2gt)

e−�t − 1

1 − e−t
. (D.36)

Here we used the fact that λ+(u) is real for |u| > 2g, see Eq. (B.18). Analogously

I−(u) ≡ −i

∞∫
0

dt

t
eiut γ

ø
−(2gt)

e−�t − 1

1 − e−t

→ I−(u − i�) = i

∞∫
0

dt

t
e−iut γ

ø
−(2gt)

e−�t − 1

et − 1
, (D.37)

since

λ−(u) = −i

∞∫
dt

t
eiut γ

ø
−(2gt) =

∞∫
dt

t
sin(ut)γ

ø
−(2gt) = i

∞∫
dt

t
e−iut γ

ø
−(2gt). (D.38)
0 0 0
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So that we get

pGoldstone(u − i�) = i� + i

2

∞∫
0

dt

t

[
γ

ø
+(2gt)

1 − e−t
− γ

ø
−(2gt)

et − 1

]
e−iut

(
e−�t − 1

)
, (D.39)

and move under the cut [−2g − i�/2, +2g − i�/2] by assuming that |u| < 2g.
To cross the cut and move back into the real sheet, we have to make the shift u → u + i0+. 

To this end we recognize that only the term involving γ ø
+ and the last exponent in the brackets in 

Eq. (D.39) needs to be addressed. This is handled again with the help of (129) and the flux-tube 
equations (B.19), yielding Eq. (B.21), and thus

pg(u − i�/2) ≡ pGoldstone(u + i0+ − i�)

= i� + i

2

∞∫
0

dt

t

[
γ

ø
+(2gt)

1 − e−t
− γ

ø
−(2gt)

et − 1

](
e−�t/2 cos(u[−�]t) − J0(2gt)

)
.

(D.40)

The final step is trivial, u → u + i�/2 and we find

pg(u
γ ) = iEg(u), (D.41)

by comparing the final expression with Eq. (D.31).
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