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Abstract 

Commercial buildings’ consumption is driven by multiple factors that include occupancy, system and equipment efficiency, thermal 
heat transfer, equipment plug loads, maintenance and operational procedures, and outdoor and indoor temperatures. A modern 
building energy system can be viewed as a complex dynamical system that is interconnected and influenced by external and internal 
factors. Modern large scale sensor measures some physical signals to monitor real-time system behaviors. Such data has the 
potentials to detect anomalies, identify consumption patterns, and analyze peak loads. The paper proposes a novel method to detect 
hidden anomalies in commercial building energy consumption system. The framework is based on Hilbert-Huang transform and 
instantaneous frequency analysis. The objectives are to develop an automated data pre-processing system that can detect anomalies 
and provide solutions with real-time consumption database using Ensemble Empirical Mode Decomposition(EEMD) method. The 
finding of this paper will also include the comparisons of Empirical mode decomposition and Ensemble empirical mode 
decomposition of three important type of institutional buildings. 
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1. Motivation 

A modern building energy system can be viewed as a complex dynamical system that is interconnected and influenced 
by external (weather) and internal (system efficiency) factors. Modern large scale sensor and tracking devices can be 
deployed to measure some physical signals to monitor real-time system behaviors. These devices generate dynamic, 
diverse and large dataset and signals that have the potential to transform the management of buildings. Such data has 
the potentials to detect anomalies, identify consumption patterns, determine supply-demand characteristics, and 
analyze peak loads.  The project team plans to develop a generic and systematic framework to detect hidden anomalous 
dynamical events, pre-process and analyze the data, and then process the analysis to aid the design and management 
of building energy design and systems. The mathematical foundation of the proposed framework is the Hilbert-Huang 
transform and instantaneous frequency analysis. The reason for this choice lies in the recognition that complex 
infrastructure systems are non-linear and non-stationary. For such systems, the traditional Fourier and wavelet 
transform based analyzes are limited because, fundamentally, they are designed for linear and stationary systems. The 
Hilbert-Huang transform and instantaneous frequency based analysis have proven to be especially suited for data from 
complex, non-linear, and non-stationary dynamical systems [1], [2]. 

2. Background 

Post-Occupancy Evaluations (POE) [3], [4], data-mining [5], model calibration [6]–[8], statistical analysis [9], [10], 
and investment analysis [11], [12] were commonly used to narrow the gaps between designs and operations in building 
energy modelling. However, these methods do not accurately generate sufficient information to connect existing 
design and operational performances[13]. Energy design involves connecting the intimate lifecycle relationships 
between energy demand and supply, and the successful connection would propel energy efficiency to the next level 
where energy losses would be accurately estimated, and integrated into energy design. The feedback from operation 
and factors identification is critical in closing the design-operation gap [13]–[19]. The level of relationships between 
factors and time vary, for example, occupancy rate depends heavily on time while humidity does not. These factors, 
however, affect energy system performances indirectly and directly. 

Traditional methods such as the Fourier transform and wavelet analysis assume stationarity and approximate the 
physical phenomena with linear models. These approximations may lead to spurious components in their time-
frequency distribution diagrams if the underlying signal is non-stationary and nonlinear. The authors of previous 
literature that the Empirical Mode Decomposition (EMD) is a technique [20] to deal specifically with non-stationary 
and nonlinear signals. Given such a signal, EMD decomposes it into distinct modes, the intrinsic mode functions 
(IMFs), each having a distinct time or frequency scale and preserving the amplitude of the oscillations in the frequency 
range. The decomposed modes are orthogonal to each other, and the sum of all modes gives the original data. The 
ease and accuracy with which one uses the EMD method to process non-stationary and nonlinear signals have led to 
its widespread use in various applications such as seismic data analysis [1], and chaotic systems analysis [2], [21], 
neural signal processing in biomedical science and engineering [22], meteorological data analysis [9], and image 
processing [23].  

While these methods are successful in identifying anomalies, the process of EMD has difficulties of high 
oscillations during reiterating IMFs at a different level. To overcome this issue, the paper proposes Ensemble 
Empirical mode decomposition (EEMD) algorithms that flatten the variation of oscillation during data discontinuities. 
Also, the methodology has a greater accuracy of results with energy data when compared to EMD.  

3. Objectives and Methodology 

The objective is to develop an automated computational method to detect, characterize, and understand anomalous 
dynamical behaviors from big energy data sets. The steps include: (1) perform EEMD and calculate distinct IMFs, (2) 
determine anomalies based on the amplitudes of IMFs, and (3) classify the anomalies regarding their frequencies. 
Unlike Fourier transform that usually becomes ineffective in a time-series analysis when the signal frequency changes 
with time, EEMD is well suited for generating IMFs where frequencies vary with time when the IMF period is a 
function of time: T = T (t). 
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3.1 Data Pre-processing 
In reality, it is not possible to preserve the integrity of the large and complex data set, especially for continuous 
recording over a long period, during which disturbances in the experiments or malfunctioning of sensors and detectors 
are inevitable. It is typical that most files would contain various segments of data that reflect those disturbances and 
interruptions that are irrelevant. It is necessary to pre-treat the data files to exclude these “damaged” segments. The 
resulted “data-mining” algorithm is generic and can be used to deal with any large and complex data sets. 
     The first step of this research is to apply Ensemble Empirical Mode Decomposition (EEMD) and generate Intrinsic 
Mode Functions (IMFs) using data set available. Using IMFs frequency signals and standard mathematical concepts 
(Hilbert Transform), the anomalies are detected, and this gives the intrinsic relationship between the features used 
(equipment, weather, thermal resistance). Second, the frequency signals from iterated IMFs are constructed back into 
the original database using inverse Hilbert Transform (IHT), and the constructive data is utilized using semi-
supervised machine learning algorithms to automate the process of pattern detection, cluster analysis, energy loss 
remediation and peak analysis.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1 Proposed EEMD-SSL Framework 

4. Preliminary Results and Discussion 

Ideally, for a given data file, the EMD method returns a set of IMFs in separate frequency ranges. Practically, since 
each data file may be too large to be processed computationally, we need to divide the data into small segments so 
that each can be computed efficiently. To deal with the boundary effects properly, for each data segment, we include, 
from neighboring segments, an extra but much smaller subset of data points at both ends of the segment, forming the 
corresponding boundary sets. After performing the EMD calculations, only the IMFs within the original data segment 
are kept, while those associated with the boundary sets are disregarded.  For a given data segment, the resulting IMFs 
usually depend on the choices of the sizes of the segment and the boundary sets. In particular, the larger the boundary 
sets, the more accurate the IMFs, but the amount of the computation will also increase. Our proposed procedure for 
analyzing large data sets thus consist of performing the EEMD to obtain different IMFs, calculating the amplitudes 
and frequencies of the IMFs that are deemed to reveal the dynamical evolution of the underlying system, and 
performing suitable statistical analyzes. Preliminary Results and Discussion 

The research team completed a preliminary analysis on both EMD and EEMD to examine the differences and to 
modify the algorithm for the dataset collected. The data set is collected from the Energy Information System (EIS) 
and contains data at different time intervals (1 min, 15 min, hourly, daily and yearly). To perform the preliminary 
analysis on EEMD, the research team selected the medium frequency data that involves daily totals electricity 
consumption data for the whole year for commercial building.  Figures 2 below depict the result of the EEMD and 
EMD for the same dataset for a year (365 data points) on energy consumption, and it is clear that EEMD has better 
results than EMD in handling oscillations. With x-axis on the number of days in a year (365), Figures 2 show the 
IMFs (1-5) with raw signals at the top. For instance, on IMF-2, the process of iteration looks different in both of the 
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graphs where EEMD tends to display more intrinsic signals. Processing further, IMFs 3 and 4 show how EMD 
generates high oscillations when compared with the similar frequency of EEMD.  
 

Figure 2 IMFs of EMD  and EEMD for energy consumption database 
Note: X axis is the number of days in a year (365) and Y-axis is the IMF signals (from 1 to 5) 

 
The final IMF shows a clearer view of how EEMD prevents the oscillation variations and flattens most of the lower 

value or zero data points. Thus, EEMD overcomes the difficulties of the “flat” parts that the EMD algorithm deviates 
to higher oscillations. Also, EEMD helps unlabeled or unstructured data set that can give us unknown pattern, 
behavioral changes and intrinsic relationships between devices [24]. The anomaly detection will be performed using 
the process above (EEG data). Thus, EEMD is utilized to develop a better comprehensive framework to detect 
anomalies that stand to the energy loss.  
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5. Proposed EEMD-SSL Framework  

Hilbert transform is a special case of harmonic analysis that undergoes convolution on the data u(t) [where u is the 
data which is time dependent] to produce discrete data in the frequency domain to undergo further case study in 
EEMD. However, this domain displaced data can be retraced using Inverse Hilbert Transform (IHT) [25]. It is due to 
the special case of a harmonic conjugate of this kernel function H (inverse), (h (u)) = -h [24]. Thus, getting back the 
original data necessary to implement paralleled study of Semi-supervised learning framework (SSL). It is a real-time 
energy demand and supply framework that would accurately estimate the energy consumption of building clusters by 
predicting the energy demand and supply for every cluster through the extensive implementation of semi-supervised 
learning techniques [25] (see following sections for existing work of PI on SSL). Through the learning process, the 
machine could predict energy loss percentage more accurately by analyzing unlabeled factors that account for energy 
losses. The unlabeled factors or features are selected using isolation technique that can select the confident unlabeled 
factors that improve the accuracy of the framework. With the proposed EEMD-SSL framework, dynamic model can 
be developed that would be an important decision-making and marketing strategy tool for the energy suppliers. 
 
5.1 Feature selection of Unlabeled factors using Isolation Forest Algorithm 
 

The proposed EEMD-SSL framework has two stages of anomalies. The PI proposed EEMD based anomaly method 
to identify the anomalies as a first step in analyzing the data. During semi-supervised learning framework, the research 
involves both labeled and unlabeled factors to elevate the accuracy of clustering by providing training set with no 
anomalies. The second stage of anomaly detection is during the selection of unlabeled factors. [26] surveys 3 different 
types of anomaly detection such as unsupervised clustering, supervised classification, and semi-supervised recognition 
and identified semi-supervised detection as the most effective method with greater accuracy. Ensemble based 
minimum margin active learning is a simple novel method for detecting anomalies using unsupervised learning [26], 
[27]. To detect anomalies and to select high confident unlabeled factors, a new and novel isolation forest algorithm is 
adopted that is faster and has greater accuracy than ORCA and Random forest [28]. The most important assumptions 
of Isolation forest algorithm is that the anomalies are a minority, and the attribute values are different from each 
other[28]. Isolation forest algorithm is best suited in high dimensionality [28] where the presence of irrelevant 
attributes (unlabeled data) is high (the case in big data) and in a situation where training set requires no anomalies, 
which is an important requirement for SSL.  

The unlabeled factors integrated with SSL algorithm is selected by using Isolation forest technique in this research. 
After training the machine with labeled factors, the confident unlabeled factors from the isolation forest results are 
integrated with SSL framework as the labeled data. Like SSL, Isolation forest has three stages that include training, 
testing, and evaluation. The method builds an iTrees for the consumption data set, and then normal consumption 
patterns are clustered at the top end of the tree whereas the anomalies stay at the roots. The advantage of iTrees is that 
it can provide results of high dimensionality and efficiency with small sub-sampling data.  

6. Conclusion 

The EEMD-based algorithms that the team plans to develop have the potential to optimize energy prediction/forecast 
and align energy design and operation. The algorithms will create a platform that leads to a fully automated method 
to detect dynamical anomalies from large and complex data sets. It is anticipated that the proposed method would 
detect a large number of anomalies from generic large and complex data sets, which are not detectable using traditional 
methods. It also provides a superior test ground for probing into the emergence and evolution of anomalies through 
detailed analysis using methods from nonlinear dynamics, statistics, and statistical physics. Special features associated 
with different types of dynamical activities will be identified, with the goal to exploit the predictive power of 
anomalous behaviors. The detection will lead to the development of energy control systems that could be used to 
optimize energy design and operation. With the optimized EEMD-SSL based method, anomalies can be detected 
reliably for all the channels. The issue of the spatiotemporal evolution of these dynamical events can then be addressed. 
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The framework will be extending to a complex infrastructure system, and the correlation patterns of the distinct 
anomalous events can be identified.   
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