
Challenges 2014, 5, 123-137; doi:10.3390/challe5010123 

 

challenges 
ISSN 2078-1547 

www.mdpi.com/journal/challenges 

Concept Paper 

Moving Towards Sustainable and Resilient Smart Water Grids 

Michele Mutchek 
1
 and Eric Williams 

2,
*  

1 
Department of Civil, Environmental & Sustainable Engineering, Arizona State University, Engineering 

G-Wing, 501 E Tyler Mall, Tempe, AZ 85287, USA; E-Mail: Michele.Mutchek@asu.edu 
2
 Golisano Institute for Sustainability, Rochester Institute of Technology, 111 Lomb Memorial Drive, 

Sustainability Hall, Rochester, NY 14623, USA 

* Author to whom correspondence should be addressed; E-Mail: exwgis@rit.edu; 

Tel.: +1-585-475-7211; Fax: +1-585-475-5455.  

Received: 5 October 2013; in revised form: 26 February 2014 / Accepted: 5 March 2014 /  

Published: 21 March 2014 

 

Abstract: Urban water systems face sustainability and resiliency challenges including 

water leaks, over-use, quality issues, and response to drought and natural disasters. 

Information and communications technology (ICT) could help address these challenges 

through the development of smart water grids that network and automate monitoring and 

control devices. While progress is being made on technology elements, as a system,  

the smart water grid has received scant attention. This article aims to raise awareness of the 

systems-level idea of smart water grids by reviewing the technology elements and their 

integration into smart water systems, discussing potential sustainability and resiliency 

benefits, and challenges relating to the adoption of smart water grids. Water losses and 

inefficient use stand out as promising areas for applications of smart water grids.  

Potential barriers to the adoption of smart water grids include lack of funding for research and 

development, economic disincentives as well as institutional and political structures that favor 

the current system. It is our hope that future work can clarify the benefits of smart water grids 

and address challenges to their further development.  

Keywords: water management; smart technology; ICTs; water efficiency; sustainability; 

resiliency; energy-water nexus 
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1. Introduction 

Modern infrastructures—including urban water grids—face sustainability and resiliency challenges. 

Changes in climate and population are making water supplies scarcer in some areas [1–3]. Water systems 

often waste substantial quantities of treated water in both the distribution system and at the end-use 

location, mainly through leaks [4,5]. In many places, such as the Southwest U.S., water must be 

conveyed over long distances to water treatment plants, resulting in the use of significant amounts of 

energy for pumping [6]. Maintaining water quality also remains a challenge in the distribution system, 

where contaminant intrusion and biofilms reduce water quality [7,8]. Problems with end-user plumbing 

can then further decrease water quality. The water distribution system is also vulnerable to targeted  

attacks through water poisoning, as well as catastrophic water main breaks due to undetected  

pipe deterioration [3,9]. 

Technological revolutions such as electricity and the combustion engine transform economies and 

societies, including supporting infrastructures supplying water, energy, and mobility. Information and 

communications technology (ICT) has been the dominant technological revolution for several decades. 

In addition to economic and social effects, ICT also drives changes in environmental issues and add to 

the portfolio of potential solutions [10]. The benefits of ICTs can presumably be enhanced through 

intentional adoption for sustainability and resiliency.  

Compared to manufacturing and service sectors, adoption of ICT in infrastructure is relatively slow. 

One factor is presumably longer replacement time scales. The last decade has seen progress in the 

development of the smart electrical grid [11]. Smart electric meters and other two-way communication 

devices have been installed in homes and businesses to allow electric utilities to track electrical usage 

in real-time. This allows utilities to make continual adjustments to the system. Whether responding to a 

power transformer failure or trying to help shift electrical usage to off-peak time, the hope is that smart 

electrical grid will make power generation and delivery more efficient and resilient and less costly, 

while reducing total energy use [12]. 

Using ICTs in water systems could lead to smart water grids that are analogous to smart electrical 

grids. A smart water grid would integrate sensors, controls, and analytical components to ensure that 

water is efficiently delivered only when and where it is needed and help to ensure the quality of that 

water. Considering smart water grids as integrated systems is just beginning to be considered by 

researchers and utilities. In the literature, there are efforts to develop and analyze the components of 

smart water grids. Some of the literature focuses on the benefits of specific technologies such as smart 

pumps [13]. Other research takes a step further and analyzes the implementation of specific smart 

technology systems, such as automated meter reading (AMR) and advanced metering infrastructure 

(AMI) for water infrastructure, which are two different systems for using smart water meters for 

residential and commercial water consumption billing [14,15]. However, integrative, strategic,  

and macro-level discussions of smart water grids are lacking in academic and other literatures. 

This paper begins to fill this gap by presenting a vision of how smart technologies could be 

implemented at several scales and combined to contribute to more sustainable and resilient water 

systems. Additionally, this paper seeks to outline the challenges to the realization of smart water grids. 

It is interesting to note that the smart phone is a marvel of modern information technology that is 

owned by hundreds of millions of consumers around the world. In contrast, much of the technology for 
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water distribution and use is similar to that of fifty, or even a hundred years ago. Outside of the water 

treatment plant, there is little use of information technology in water systems. Clearly, there are 

structural differences in markets for personal information products versus water infrastructure 

underlying this dramatic gap in adoption. It is important to understand the barriers to the adoption of 

smart water grids and in the following sections, some issues are proposed.  

For this initial work, the focus is on drinking water distribution in an urban environment.  

Future work beyond the current scope would include more environments and other parts of the water 

cycle. For example, agriculture is an important part of a complete vision for the smart water grid given 

its high share of water use. 

In Section 2, we present an overview of the technological elements of the smart water grid in a 

systems context. Section 3 is a summary of sustainability and resiliency challenges for urban water 

systems and how smart water technologies could contribute to addressing these issues. In Section 4, 

example communities beginning to implement smart water grids are described. Finally, in Section 5, 

funding and economic issues we view are important challenges are summarized.  

2. Overview of Smart Water Grid Technologies and Systems 

2.1. General Overview 

A theoretical smart water grid begins at the water source, where smart meters, smart valves,  

smart pumps, and flood sensors are installed. Water continues on through water treatment with more 

smart meters, valves, and pumps. Within the city water distribution system, there is the addition of 

water contaminant sensors. At the end-use locations (homes and businesses), end-use sensing devices, 

smart irrigation controllers, contaminant sensors, and smart meters may be used. Finally, water moves 

through the sewage system to wastewater treatment and final use or discharge, where the same 

technologies used at the beginning of the system are used here too. Figure 1 presents a visual depiction 

of a smart water grid. 

2.2. Technological Description 

2.2.1. Sensing Devices 

Sensing devices that collect and transmit data about the water system on a real-time basis is the 

foundation of any smart water grid. At the municipal level, the most common way to monitor the water 

delivery system has been to manually read flow and pressure meters, while water contamination is 

commonly monitored by collecting water samples that are analyzed in a laboratory environment.  

In a smart water grid system, these parameters would be collected, stored, and transmitted to a 

computer by the meter itself, or from a sensor to detect contamination. This increases the amount and 

frequency of information about the system and decreases the need for field work.  

Smart sensors for municipalities include smart water meters for flow, smart water meters for pressure, 

and contaminant sensors and biosensors for contamination detection [16,17].  
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Figure 1. A simplified diagram of an example urban smart water grid. 

 

Smart water meters have additional advantages over manual meters. One of these advantages is 

increased sensitivity to low water flows, which increases data collection accuracy. Other advantages of 

these more sensitive meters include the ability to measure backflow, which can indicate a problem in 

the system. They are also less susceptible to corrosion from particles in the system [18].
 

Whether in a residential, commercial or industrial setting, the typical situation for water use 

detection is a single flow meter measuring total water consumption of a facility. How total water 

consumption breaks down for different uses is generally not measured. Only measuring total flow has 

two disadvantages: leaks are difficult to detect by metering and users lack information on potential 

inefficiencies in the system. One option is to install additional meters within a facility. With current 

technology, installing meters for every fixture would be prohibitively expensive for most end-users.  

An alternative to installing additional flow meters is to use a device that measure pressure waves. 

Each fixture has a pressure ―signature‖ that propagates through the piping system, and a sensitive 

pressure-gauge can distinguish between these signatures. The HydroSense technology developed by 

Jon Froehlich and others needs only one sensor to determine the disaggregated use of all fixtures  

(e.g., faucets, toilets, and dishwashers) in a single family home [19]. If a fixture starts to leak,  

the end-use sensing device will pick up this flow as ―noise‖ in the system. For larger end-users, 

multiple smart meters and end-use sensing devices would be more appropriate. The key point is that a 

combined flow meter and pressure sensor system requires fewer devices, substantially reducing costs.  
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A technological addition to the water system that is useful for water storage is the flood sensor. 

Flood sensors detect strain on water infrastructure, such as dams, and detect early flooding over  

flood embankments [20].  

2.2.2. System Controls—Smart Pumps and Valves  

Smart valves and pumps adjust their operations based on environmental conditions or signals from 

sensors. These adjustments can happen automatically or remotely by a human controller. The main 

benefit of smart controllers is increased efficiency. For example, variable speed pumps sense water 

conditions and will ramp up or down depending on those conditions. These pumps can also be 

equipped to sense clogs in the system and respond by breaking up clogs and/or reversing the flow.  

This is especially useful for wastewater and raw water conveyance. One manufacturer of a smart pump 

estimates up to 70% cost savings over the life cycle of the pump [13]. Smart valves adjust or block the 

flow of water in pipes based on environmental conditions. They can be used as part of pressure 

management strategies, as a part of leak detection activities, or to prevent environmental contamination 

due to combined sewer overflows [21,22]. 

At the end-use level, smart irrigation controllers show promise in helping to save water that is 

wasted on landscape irrigation. Smart irrigation controllers can receive and/or collect weather data or 

sense soil moisture levels, as well as other parameters, which helps determine proper water scheduling. 

Using this information, the watering schedule can be updated automatically on a daily basis.  

The valves and pumps that implement the actual watering of the landscape will then turn on and off at 

best times possible [23]. 
 

2.2.3. Data Transmission and Power 

Once data is collected and stored temporarily in a data logger connected to a sensing/control device,  

it needs to be transmitted to a centralized location. Direct line transmission via cable is ideal in principle, 

because there would be no practical limits on bandwidth. While direct connection is an attractive 

option within an end-user facility, it may not be practical to hardwire the water delivery system. 

Another possibility is to bridge the smart meter from the broadband systems of water customers to the 

utility, but this is organizationally infeasible as the utility cannot be dependent on the end-user.  

These jurisdictional and technical issues make wireless data transmission an attractive approach. 

Because the smart water grid is comprised of various technologies with different data transmission 

goals, a variety of wireless technologies and protocols are potentially useful. This includes mobile 

broadband (cellular towers), wireless broadband (Wi-Fi), personal area networks (device-to-device 

transmission), and satellite communication. For example, AMR, which is a drive-by meter reading 

system via personal area networks, is already becoming a common alternative to manual meter reading 

for water utilities for their water billing programs. In addition, satellite communication is a common 

technology used by smart irrigation controllers companies to update landscape water scheduling on a 

daily basis. The regularity in spacing of smart water meters suggest that a mesh network design,  

in which each device is a communication hub for neighboring devices, is a promising approach for the 

smart water grid [24]. Another promising technology for smart water grids is a wireless protocol able 

to broadcast a signal up to 45 miles that is designed specifically for smart meter communication [25].
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Another issue that comes up with wired or wireless communication is the powering of devices. 

Direct connection to the power grid is feasible within a facility, but for devices on the water 

distribution system, off-grid power may be needed. This means that the power needed by the device to 

use a particular wireless technology/protocol will be an issue, along with the frequency of data 

collection and transmission by the device. Current off-grid power solutions include solar panels, 

water turbines, and long-life batteries [18,26–28]. The wireless communication protocol developed just 

for smart grids has the advantage of low-power usage [25].
 

3. Urban Water System Issues and Potential Smart Solutions 

The section provides an overview of sustainability and resiliency issues for urban water systems: 

Losses, waste/overuse, quality, energy consumption, disasters and drought. The potential of the smart 

water grid to address each issue is reviewed, focusing not only on individual technological solutions, 

but also the combination of technologies to create a problem-solving system. 

3.1. Water Losses 

Water losses occur from leaks, unmetered consumption (legal or illegal), and meter inaccuracies [15]. 

A multi-city study done by Mayer and DeOreo found that 13.7% of indoor residential water use is due 

to leaking water fixtures in the U.S. [4]. At the level of the municipality and distribution system,  

the percent of water lost varies by location, from 3 to 8 percent in newer cities and 25 to 30 percent in 

older cities [5].  

Smart meters and end-use sensing devices can help with leak detection. For example, continuous data 

from a residential smart meter could reveal a leak by showing a positive water flow when all fixtures 

are off. Finding leaks in municipal water supply could also be accomplished through smart step testing. 

Traditional step testing involves manually monitoring the flow rate on a section of pipe, 

while manually turning off valves in order to pinpoint the section of pipe a leak is located in—a water 

flow in an isolated pipe means there is a leak. With a smart step testing system, smart valves and smart 

meters can replace workers out in the field and would require only one person at a computer terminal. 

The process could even be automated, only requiring human attention if something goes wrong. 

3.2. Water Waste/Over-Use 

Water waste/over-use can be defined as consuming more water than is needed to achieve the 

desired function, e.g., maintaining landscape, flushing toilets, and cleaning dishes. Water conservation 

has seen improvement in recent decades through low-flow fixtures and educational campaigns [29]. 

An area where water over-use has yet to be addressed is watering of urban landscapes in water scarce 

regions. Landscape watering is significant in these locations, where more than 50% of the total 

household water used goes to landscaping, especially in the summer months. Comparing three U.S. cities,  

a residential home in Las Vegas may use 100 gallons per day of water for outdoor uses, while Atlanta 

homes may use 21 gallons and in Seattle, 9 gallons [30]. 

In arid regions, irrigation controllers are often used to apply water to landscapes. It is challenging to 

use traditional irrigation controllers to both save water and keep plants healthy. Smart irrigation 
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controllers have the potential to manage this for the homeowner. In studies of smart irrigation 

controllers in the Western U.S., on average homeowners save water, though there are cases  

where water use increases when the end-user was actually under-watering their landscape before 

installing the smart irrigation controller [31,32]. Currently, smart irrigation controllers are not 

economically profitable for most homeowners, even in the arid West. There are, however, many areas 

in the U.S. where the investment in a smart irrigation controller would be profitable given modest 

improvements in design and reduction in prices [23]. 

3.3. Water Quality 

Water quality monitoring in the water distribution system and end-use pipe system is usually very 

limited. At the same time, 30 to 60 percent of contamination events occur in the water distribution 

system. These events are often detected by consumers who have already been exposed.  

Once the existence of a problem is discovered, it may take days to identify the source of the event in 

order to fix it [33]. 

The water quality in the drinking water distribution system can be affected by several factors including 

disinfectant depletion (water age), contaminant intrusion from pressure differentials and pipe work  

(i.e., installation, repair, and replacement), biofilms, pipe corrosion, accidents, and terrorism [7,8,34–36].  

In a smart water grid, biosensors and multi-contaminant sensors could alert authorities to potential 

problems and their location immediately, while smart meters could detect leaks and pressure differentials 

that cause contaminant intrusion. Smart meters could also help in the monitoring of water age.  

Lastly, smart valves can isolate contaminated water to prevent its spread through the distribution system. 

3.4. Energy Consumption 

The most energy intensive portions of water delivery are usually source pumping and wastewater 

treatment [6,37]. The U.S. Environmental Protection Agency (EPA) estimates that it takes an average 

of 1.5 kilowatt-hours of energy to convey, treat, and distribute one thousand gallons of drinking water 

in the U.S. [38]. In the southern Los Angeles basin the estimate is 9.9 kilowatt-hours per thousand 

gallons [6]. This larger energy consumption is mainly due to the long distances and altitude changes 

for conveying water from source to drinking water treatment plant.  

Undetected leaks and biofilms can also increase energy consumption. Leaks in the distribution 

system result in a loss of water pressure. Energy is required to rebalance this pressure loss. In turn, 

increasing the pressure actually increases the severity of the leaks, which means more water and 

energy lost [39]. Biofilms increase the frictional resistance in pipes, slowing the water down,  

resulting in increased pumping to compensate [40]. 

If pumping distances in the Southwest U.S. cannot be reduced, the use of smart pumps has the 

potential to at least reduce the energy consumption of pumping water, because they adjust their power 

levels based on environmental conditions—ramping up when water is flowing slowly and ramping down 

when water is flowing quickly [13]. Smart pumps can also be used in the distribution system as part of a 

smart pressure management program. Used in the same way as smart step testing described previously, 

smart pressure management with smart pressure meters, smart valves, and smart pumps can reduce pipe 
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deterioration. This saves energy in the long-run, because leaky pipes lose pressure and require more 

energy to balance. Lastly, biosensors can locate problematic biofilms that slow the water flow. 

3.5. Disasters 

Disasters that affect urban water systems include water main breaks, weather and geologic events, 

terrorism, and accidents. Pipes normally break down as they age. Their breakdown can be accelerated, 

however, due to corrosive elements in the water or surrounding the pipe, high water pressure,  

pressure transients, vibrations, and traffic loads [3]. Eventually, the stress in the pipes may reach a 

point that causes a water main break.  

Weather events, geologic events, terrorism, and accidents can directly cause damage to water 

infrastructure or damage water infrastructure through a domino effect [41,42]. For example,  

the terrorist attack on the World Trade Center caused significant damage to water mains and caused 

flooding that damaged communication infrastructure [42]. Disasters can also shut down water 

treatment facilities and prevent the distribution of drinking water to taps. Flooding events can also 

overwhelm sewer systems and prevent the proper disposal of wastes. 

Smart pressure management could manage and prevent premature pipe deterioration that leads to 

water main breaks. Flood sensors could also detect a pipe that is about to break and alert authorities.  

Smart flood management could detect flooding and respond to reduce the amount of damaged caused 

using flood sensors, smart valves, and smart pumps. Flood sensors could detect a pipe break,  

which would trigger a smart valve to shut off the water supply. Then, a smart pump could pump water 

away from the immediate area. 

3.6. Drought 

Drought is currently a resiliency challenge in many areas and climate change may increase the 

magnitude, frequency, and locations of impact [2,43]. A typical strategy that municipalities employ to 

deal with short-term drought is to impose blanket, outdoor watering restrictions on residential 

customers [43]. There are several downsides to this strategy. First, it requires the type of enforcement 

that involves patrolling streets to look at people’s lawns, which is resource intensive, and neighbors 

reporting each other, which is socially negative. Second, it may result in a loss of a household’s 

landscaping. This type of loss would affect residents unequally, putting a heavier financial burden on 

lower income people. Lastly, it may not be an adequate strategy in times of extreme or long-term 

drought.  

Long-term drought planning is a complex and is data and modeling intensive. The drought plan for 

the State of Arizona cites a lack of sufficient data and instruments to predict drought and mitigate its 

impacts. Two of the mitigation strategies that Arizona has chosen include increasing water storage and 

conservation [44]. 

The smart water grid enables more creative solutions for dealing with drought. For example, water 

restrictions could be managed better with a smart water grid system. Rather than using a simple lawn 

watering restriction that requires field enforcement and the potential loss of landscapes,  

a more flexible approach can be taken. If users are able to monitor their own water use on a 

disaggregated and real-time basis through the use of smart meters and end-use sensing devices,  
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they can make decisions about how to save water during a drought. At the same time, utilities will be 

able to monitor on a real-time basis and from a remote location, what end-users are saving water 

during drought and what end-users are not. 

Alternatively, smart water grids could support temporary drought pricing of water. In the same way 

that conservation-promoting tiered pricing and smart water meters can help people save money and 

conserve water on a daily basis through online tools and real-time data, drought pricing can also be 

supported by smart water grids. Consumers will be able to track their water rates and consumption 

more easily when drought prices and in use. If water utilities want to change the drought pricing in the 

middle of a billing period, consumers will easily be able to see this when using their online tools and 

can adjust their use patterns accordingly. 

On the broader level of long-term drought and regional water planning, water saved from the 

reduction of water losses could be banked through water storage projects, creating more water 

availability during times of drought. Additionally, real-time data from smart water grids can feed into 

water resource planning and modeling, making drought and long-term water planning a more accurate 

and dynamic process. 

3.7. Summary of Problems Potentially Addressed by Smart Water Grids 

Table 1 summarizes the connections between smart technology and problems address.  

Components such as smart valves have the potential to address multiple issues, especially as part of a 

smart system such as smart step testing. Other components, such as flood sensor, are more limited in 

their contribution to a smart water grid. 

Table 1. Components of the smart water grid, problems each component can address,  

and the smart systems that components are part of. 

Component 
Problem(s) Directly 

Addressed 

Problem(s) Indirectly 

Addressed 
Embedding System for Component 

Smart Meters Water losses, water quality, 

disasters, and drought 

Energy consumption Smart step testing and smart pressure 

management 

Contaminant 

Sensors 

Water quality Energy consumption Contaminant isolation 

End-Use Sensing 

Devices 

Water losses and drought Energy consumption N/A 

Flood Sensor Disasters N/A Smart flood management 

Smart Valves Water losses, water quality, 

and disasters 

Energy consumption Smart step testing, contaminant isolation, 

smart pressure management, and smart 

flood management 

Smart Pumps Energy consumption and 

Disasters 

N/A Smart pressure management and smart 

flood management 

Smart Irrigation 

Controllers 

Water waste/overuse Energy consumption N/A 
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4. Example Communities that are Developing Smart Water Grids 

A number of communities have begun to install smart water technologies—AMI and AMR are 

probably the most popular components of the smart water grid that are implemented—but not many 

have begun to plan and implement a comprehensive smart water grid. Two communities that are 

partially on the way to implementing smart water grids are Singapore and part of the San Francisco 

Bay Area. 

In Singapore, large scale research and development funding has led to a number of smart water grid 

projects, including the development of a laser-based contaminant sensor and a smart water grid in the 

Singapore business district. The smart water grid in the business district tracks pressure, flow,  

and disinfectant levels in the distribution system. This data is transmitted via Singapore’s cell network 

to a computer center. At the computer center, modeling software is used on the data to locate problems 

in the water distribution system. Problems can be pinpointed to within 40 meters and when problems 

are found, an alarm is sent out to the utility [33,45,46]. Singapore has a multistage plan for 

implementing smart water grids in its city [47]. 

The East Bay Municipal Utility District (EBMUD) is the drinking water and wastewater utility for 

the eastern part of the San Francisco Bay Area. The EBMUD has several progressive programs 

including advanced leak detection device testing and deployment, smart irrigation controller rebates 

for consumers, and smart metering in conjunction with web-based tools for users. The web-based tools 

help consumers detect leaks on their property [48–50]. Data from the EBMUD’s pilot AMR/AMI 

program helped the utility discover problems on the consumer end of the water system. When these 

problems were fixed, there was an average water use reduction of 20% [48]. 

In Singapore, one of the reasons for the aggressive pursuit of the smart water grid is due to insecure 

water resources. Singapore relies heavily on rainfall to meet its water needs and does not have enough 

land for water storage. Whatever reason these communities have for being early adopters of smart 

water grids, however, they are in the unique position to spread the word about the smart water grid by 

sharing their research and lessons learned with other communities.  

5. Implementation Challenges for the Smart Water Grid 

Assuming that the smart water grid is desirable, in this section we discuss challenges to its 

development and adoption in a U.S. context. One challenge is obtaining the funding to implement 

changes, which includes the lack of a federal agency that focuses on water or the smart water grid and 

political and institutional barriers to funding and investment. Other challenges involve economic 

disincentives, such as the lack of new water markets, burdens on smaller utilities, and the cost of 

actually fixing problems found by a smart water grid.  

5.1. Funding and Investment 

The current U.S. water system has much deteriorating infrastructure due for replacement.  

It is estimated that it will take 325 billion dollars over the next 20 years to install needed replacements 

in the U.S. system, including new pipes and meters. One side effect of deteriorating infrastructure is 

water leaks. It is estimated that municipalities lose 3.4 billion dollars each year to water loses,  
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which are mainly leaks [15]. Presumably, some infrastructure replacements will include upgrades with 

smart technology, particularly smart water meters. However, many of the benefits of a networked 

system, like a comprehensive smart water grid, requires scale to be realized—scale that requires an 

investment that is difficult in the capital constrained environment of most U.S. water utilities.  

One reason for the lack of investment in smart water grids is a lack of a federal agency’s mission to 

support its research and development. The electricity sector is supported by the U.S. Department of 

Energy and the U.S. Department of Defense. The societal benefits of smart water grids span 

environmental, energy and security issues, but smart water grids have yet to be recognized as 

important enough to merit significant federal attention.  

Another reason for the lack of investment and funding in smart water grids is due to institutional 

and political legacies in the water sector. First, U.S. water utilities were founded on principles of 

delivering an invisible service at the lowest cost possible [51]. Smart technology can have large upfront 

costs that many water utilities would be reluctant to pay. Second, water prices are often determined by 

boards whose membership is determined by popular election. Increasing water prices, even for sensible 

infrastructure maintenance, is often viewed negatively by voters. The general public tends to take supply 

of clean and inexpensive water as given. These factors constrain availability of capital.  

5.2. Economic Disincentives 

Water is a monopoly. While smart electrical grid holds promise to create new power markets,  

this is unlikely to happen for the smart water grid. Water resources are unlike smart electrical grids—the 

application of smart technology to create producer markets does not work for water, because water is a 

resource to be distributed (excepting desalinization) rather than something to be made (i.e., electricity) 

The general lack of incentives to innovate in utilities affects adoption of smart water grid technologies.  

For any investment in new technology, the benefits should outweigh the costs for those paying. 

With technology that increases resource efficiency, there is typically a threshold payback period or 

return on investment. Smaller utilities typically have less capital to invest and water utilities tend to be 

smaller scale than electricity utilities. For end-use, property renters that pay their own utility bills may 

have leases that are shorter than the payback period for investments. In cases where property owners’ 

pay utility bills, property owners may make efficiency upgrades to decrease their utility bill or property 

owners may just pass on increased daily costs of inefficiency to renters in their monthly rent. 

An economic issue for both utilities and consumers is the cost and other negative effects of fixing 

leaks once they are found by a smart water grid. Distribution pipes are often underneath other 

infrastructure, so accessing leaks to repair involves removing and repairing this other infrastructure. 

Repair restricts use of those infrastructures, including roads, causing inconvenience to residents. At the 

home level, some leaks such as faucet leaks or toilet flapper leaks are easy to repair, but some are not. 

Leaks that occur underground or behind walls may require professional repair,  

which can be expensive and take many years to pay back to the consumer through lower water bills [26]. 

Additionally, although the utility is most often responsible for paying for a smart water grid,  

many of the economic, sustainability, and resiliency benefits of a smart water grid are divided among 

actors beyond the utility. For example, an end-use smart meter helps the utility via automated meter 

reading and improved flow data, but also provides value to the end-user by informing efficiency 
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actions. Another example is that a more secure water system benefits society as a whole, but from the 

perspective of the water utility, it is simply an additional cost.  

Water infrastructure changes slowly. Many system elements such as pipes, valves and meters last 

for decades. Barring changes in water regulations, keeping the existing system going can make sense 

when its components are expensive and long-lived. A smart water grid system needs to achieve a 

certain size scale to realize many of its benefits, i.e., the utility of a network increases with the number 

of nodes in the network. Incremental replacement of failed system elements with smart technology will 

not realize these size scale benefits. This scale issue is qualitatively different for newly developing 

areas installing water infrastructure for the first time. Newly developing communities and countries 

have opportunities that established ones do not.  

6. Conclusions 

Potential benefits of smart water grids include improved leak management, water quality 

monitoring, intelligent drought management, and energy savings. It is not yet well understood how 

different implementations of smart water grids yield what benefits and costs. We argue that integrative 

analysis of multiple benefits for larger-scale smart water grid systems could help pave the way for the 

future. For example, while viewing the smart water grid purely as a way to reduce water losses might 

not justify the investment, considering water losses and drought management might tip the balance.  

In addition, as the benefits can accrue to a number of different actors, e.g., utilities, homeowners,  

and society as a whole, there are important questions as how to distribute costs among beneficiaries. 

Support for research and development is needed to enable such work, coupled with cooperation with 

municipal water utilities.  
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