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We report on a new numerical approach for multi-band drift within the context of full band Monte

Carlo (FBMC) simulation and apply this to Si and InAs nanowires. The approach is based on the

solution of the Krieger and Iafrate (KI) equations [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33,

5494 (1986)], which gives the probability of carriers undergoing interband transitions subject to an

applied electric field. The KI equations are based on the solution of the time-dependent

Schr€odinger equation, and previous solutions of these equations have used Runge-Kutta (RK)

methods to numerically solve the KI equations. This approach made the solution of the KI equa-

tions numerically expensive and was therefore only applied to a small part of the Brillouin zone

(BZ). Here we discuss an alternate approach to the solution of the KI equations using the Magnus

expansion (also known as “exponential perturbation theory”). This method is more accurate than

the RK method as the solution lies on the exponential map and shares important qualitative proper-

ties with the exact solution such as the preservation of the unitary character of the time evolution

operator. The solution of the KI equations is then incorporated through a modified FBMC free-

flight drift routine and applied throughout the nanowire BZ. The importance of the multi-band drift

model is then demonstrated for the case of Si and InAs nanowires by simulating a uniform field

FBMC and analyzing the average carrier energies and carrier populations under high electric fields.

Numerical simulations show that the average energy of the carriers under high electric field is sig-

nificantly higher when multi-band drift is taken into consideration, due to the interband transitions

allowing carriers to achieve higher energies. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4959881]

I. INTRODUCTION

The full band Monte Carlo method (FBMC) has been

used to simulate high field transport in a variety of materi-

als. It is a statistical method used to solve the Boltzmann

transport equation by including the full band structure and

scattering processes. The traditional method requires the

calculation and storage of the band structure of the mate-

rial on the full Brillouin zone (BZ). This is done through

various methods such as the k•p method,1 the Empirical

Pseudopotential method (EPM),2 the empirical Tight

Binding method (ETB),3 etc. The calculation of the scatter-

ing rate is usually done using Fermi’s golden rule for every

initial state k to final state k0. The acceleration of carriers

in the presence of an electric field is accomplished using

the free-flight drift routine detailed in Ref. 4, which

involves moving all the carriers according to the Bloch

acceleration theorem for a time t and then scattering the

carriers according to their rates previously calculated at the

end of the so-called free flight.

The free-flight drift routine is a single band model in

which the carriers are assumed to remain in the same band

during the drift. This model does not work well at band

crossings or when the energy separation between the bands

is small. At band crossings, it is difficult to maintain the car-

rier’s band identity because the bands are sorted in energy

after being calculated in an eigenvalue solver and there

exists no unique way to sort the bands in energy. Therefore,

when a carrier reaches a band crossing, for example, it is

unclear which band it should follow after the crossing.5 An

electric field can induce interband transitions6 when the

energy separation between the bands are small, and the elec-

tric field is sufficiently large. This effect becomes prominent

in materials such as nanowires where the energy spacing

between the bands is small and the bands intercross and anti-

cross frequently across the Brillouin Zone (BZ). The utility

of the multi-band drift model is to replace the traditional

free-flight drift routine in full band Monte Carlo models.

After a carrier undergoes a drift for a particular duration of

time, there is a finite possibility of it undergoing a transfer to

the other bands. Various approaches have been proposed to

incorporate carrier transitions between different bands such

as the overlap test7 and the velocity continuity method.8 The

overlap test calculates the overlap integral between the wave

function at ki of a particular band index j, to all the bands at

kiþ1. The band index that has the largest overlap is assumed

to have the band index j and the carrier is drifted to that band

index as it moves from ki to kiþ1. If the k-space gridding is

very coarse, deciding which band has the largest overlap

could be ambiguous. The velocity continuity method calcu-

lates the velocity vi at ki and tries to find a close match with

the velocity viþ1 at kiþ1 with all the available band indices.

The band index with the closest velocity match is then
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assumed to be the correct band index and the carrier is

drifted to that band index. Both these methods have draw-

backs that the transition rate does not depend on the electric

field and that it is sensitive to the mesh size in k-space.

A more rigorous approach to the problem was provided

by Krieger and Iafrate (KI), who developed a set of equa-

tions which give the transition probability of a carrier under

an electric field as a function of time.9 These equations are a

series of complex partial differential equations, which were

previously solved using the 4th order Runge-Kutta method

(RK4).7,8,10 Since this method is computationally expensive,

the KI equations were previously only solved on a small part

of the BZ in bulk materials, where band crossings were

expected to result in interband tunneling at high electric

fields. In nanowires, the band crossings and interband tunnel-

ing can occur throughout the BZ due to the dense nature and

mixing of the bands. Therefore, a fast and full BZ wide solu-

tion of the KI equations is necessary to properly account for

interband tunneling in nanowires, as well as providing a

more computationally efficient algorithm for treating inter-

band tunneling in bulk materials as well.

We present numerical calculations of the multi-band

transport and interband tunneling process in nanowires. A

new method of solving the KI equations is also presented

which greatly improves the accuracy and speed of the simu-

lation. Section II discusses the KI equations, a new method

to solve them, the methods numerical advantages over the

RK4 method and its implementation in a FBMC routine. In

Section III, we then discuss the results of the method applied

to Si and InAs nanowires, followed by conclusions.

II. MODEL DESCRIPTION

A. Krieger and Iafrate equations

The Krieger and Iafrate (KI) equations provides the

solution of the time-dependent Schrodinger equation for

Bloch waves under an electric field described by9

Hw r; tð Þ ¼
p� e=cð ÞA½ �2

2m
þ v rð Þ

� �
w ¼ i�h

@w
@t
; (1)

where

A ¼ �c

ðt

0

Fðt0Þdt0; (2)

and vðrÞ is the crystal periodic potential, c is the speed of

light, and FðtÞ is the time varying electric field. Substituting

wðr; tÞ ¼
X

n

CnðtÞ/0nðr; tÞ (3)

into Eq. (1), where /0nðr; tÞ is the solution to the eigenvalue

problem

p� e=cð ÞA½ �2

2m
þ v rð Þ

� �
/0n r; tð Þ ¼ en tð Þ/0n r; tð Þ; (4)

where enðtÞ are the eigenvalue solutions, we get the KI

equations

i�h
@Cn tð Þ
@t

¼ en tð Þ:Cn tð Þ þ eF tð Þ
X

n0
Xn;n0 tð Þ:Cn0 tð Þ; (5)

where FðtÞ is the time dependent electric field, �e is the

electronic charge, enðtÞ is the eigenvalue of the nth band with

wave vector kðtÞ, and CnðtÞ are time dependent coefficients

and the X matrices given by

Xn;n0 ðkðtÞÞ ¼ �i

ð
X

u�n;kðtÞðxÞ:rkun0;kðtÞðxÞ:d3x; (6)

where X is the volume of the primitive cell, and un;kðtÞ is the

Bloch function for band n for wave vector kðtÞ. The wave

vector kðtÞ is determined from the Bloch acceleration

theorem

�h
@k tð Þ
@t
¼ �eF tð Þ; (7)

where e is the charge of the carrier.

B. Solution of the Krieger and Iafrate equations

Previous methods to solve the Krieger and Iafrate equa-

tions have used the Runge-Kutta method of the 4th order

(RK4) to solve Eq. (5).7,8,10 This method required solving

the coupled complex partial differential equations for every

possible initial condition (n possible conditions if there are n
bands). This is numerically expensive as the time step

required to solve the KI equations using the RK4 method can

be very small (�10�18 s to �10�19 s). This time step

becomes more problematic at higher electric fields as the

time steps need to be readjusted to be progressively smaller

according to the value of the electric field. Solutions to the

KI equations are assumed to be correct if
P

n jCnðtÞj2 � 1.

The probability coefficients rapidly diverge if the time step

is too large, so one has to continuously check the sum and

recalculate the coefficients with a smaller time step if it is

too large.

A more elegant solution can be obtained by using the

Magnus expansion.11 Writing Eq. (5) in matrix notation we get

@C tð Þ
@t
¼ C tð ÞA tð Þ; (8)

where CðtÞ is an n� 1 matrix and AðtÞ is an n� n matrix,

where n is the number of bands and each element is given by

Ann0 tð Þ ¼
en tð Þ

i�h
� eF tð Þ

i�h
Xnn tð Þ n ¼ n0

� eF tð Þ
i�h

Xnn0 tð Þ n 6¼ n0:

8>><
>>:

(9)

Due to the nature of the problem, k-space and time are syn-

onymous and related to each other by Eq. (7). It is easier to

operate over k-space rather than time and therefore convert-

ing from dt to dk, using Eq. (7), Eqs. (8) and (9) can be writ-

ten as

@C kð Þ
@k

¼ C kð ÞA kð Þ; (10)
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where

Ann0 kð Þ ¼ � ien kð Þ
eF kð Þ

þ iXnn kð Þ n ¼ n0

iXnn0 kð Þ n 6¼ n0:

8><
>: (11)

Applying the Magnus expansion to Eq. (10), we get

Cðkf Þ ¼ exp ½Xðkf Þ�CðkiÞ; (12)

where

Xðkf Þ ¼
X1
j¼1

Xjðkf Þ: (13)

The first two terms of the infinite series expansion are given

by9

X1ðkf Þ ¼
ðkf

ki

Aðk1Þdk1; (14)

X2 kfð Þ ¼
1

2

ðkf

ki

ðk1

ki

A k1ð Þ;A k2ð Þ½ �dk2dk1; (15)

where ki is the value of the wave vector when t ¼ 0 and kf is

the wave vector at t ¼ t1, and ½Aðk1Þ;Aðk2Þ� ¼ Aðk1ÞAðk2Þ
�Aðk2ÞAðk1Þ is the commutator operator. A recursive proce-

dure to generate the 2nd and higher terms in the Magnus

expansion is given by12

Xn kfð Þ ¼
Xn�1

j¼1

Bj

j!

ðkf

ki

Sj
n kð Þdk; (16)

where

Sj
nðkÞ ¼

Xn�j

m¼1

½XmðkÞ; Sj�1
n�mðkÞ�

S1
nðkÞ ¼ ½Xn�1ðkÞ;AðkÞ�; (17)

where Bj are the Bernoulli numbers. The main advantage of

the Magnus solution is that very often, the truncated series

still has important qualitative properties of the exact solu-

tion.13 For example, regardless of the truncation of the

Magnus series,
P

n jCnðkÞj2 is always equal to 1.0 due to the

unitary nature of the solution. In fact, this is a property

shared by all exponential perturbation methods such as the

Fer method and the Wilcox method.14,15 This is not true in

the case of RK4 methods or other perturbation methods like

the Dyson series method.

Solving Eq. (12) requires the calculation of the exponen-

tial of a matrix. The calculation of the matrix exponential is

usually numerically expensive for large matrices and scales

as the cube of the matrix size, but in this case, the size of the

matrix is the number of bands, which even in the case of

nanowires, is at most 100. Also, once the matrix is com-

puted, the final probabilities can be calculated by a simple

matrix multiplication with the initial conditions; thus, this

approach is numerically advantageous over the RK method,

in which the KI equations are simply recalculated for every

possible initial condition.

To calculate the X matrices defined in Eq. (6), the calcula-

tion of the k-space derivative of the Bloch function un;kðtÞ
is required. Two methods have been used to calculate the deriv-

ative, Rayleigh-Schrodinger perturbation theory (RSPT)16 and

the finite difference method. Rayleigh-Schrodinger perturbation

theory (RSPT) states that

rkun kð Þ ¼
X

n0;n0 6¼n

hun0;kj@H kð Þ=@kjun;ki
en0 kð Þ � en kð Þ

un0 kð Þ ; (18)

where HðkÞ is the tight binding (TB) Hamiltonian for the

time independent Schrodinger equation

HðkÞwk ¼ ekwk; (19)

where wk is the wave vector containing the Bloch functions

un;kðtÞ. Inserting Eq. (18) into Eq. (6) and using the orthogo-

nality of the Bloch functions, we get

Xn;n0 k tð Þð Þ ¼
hun0;kj@H kð Þ=@kjun;ki

en0 kð Þ � en kð Þ
n 6¼ n0

0 n ¼ n0:

8<
: (20)

For the case of degenerate bands at a certain kðtÞ, degenerate

perturbation theory has to be used. The result of the X matri-

ces obtained from using Rayleigh-Schrodinger perturbation

theory is independent of the k-space gridding.

Using the finite difference method, the derivative of the

Bloch function can be written as

Xn;n0 k tð Þð Þ

¼ �i

ð
X

u�n;k tð Þ xð Þ
un0;k tð Þþdk=2 xð Þ � un0;k tð Þ�dk=2 xð Þ

dk

� �
d3x;

(21)

which can be simplified to

Xn;n0 k tð Þð Þ ¼ � i

dk
In0kþ;n;k � In0k�;n;k½ �; (22)

where

In0kþ;n;k ¼
ð

X
u�n;kðxÞ:un0;kþðxÞ:d3x (23)

is the overlap integral between two neighboring states, with

k6ðtÞ ¼ kðtÞ6dk=2 and dk is a small separation in k-space.

If n ¼ n0, the X matrix must be purely real to ensure thatP
n jCnðtÞj2 ¼ 1. This is enforced by setting the imaginary

part to be 0 in Eq. (10) when n ¼ n0; this result is similar to

result obtained using Rayleigh-Schrodinger perturbation the-

ory, where the X matrix value is 0 when n ¼ n0. The phase

of the wave functions must be treated carefully as detailed in

Ref. 17 to obtain smoothly varying X matrices in the com-

plex plane across the BZ. To compare the two methods, the

X matrices were calculated on a fine k-space grid for a 3 nm

� 3 nm InAs nanowire along [100]. Figure 1 shows the value

of the magnitude of X using both methods.

As can be seen in Fig. 1, the finite difference method is

just as accurate as the perturbation method for a fine k-space
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grid. The 1D BZ was equally divided into 2400 grid points

on which the band structure was calculated. In all the simula-

tions in this work, the finite difference method was used to

calculate the X matrices.

C. Numerical solution of the Krieger and Iafrate
equations in nanowires

The band structure of the nanowire is calculated on a

discrete k-space grid using the empirical tight binding

method with the sp3d5s* orbitals including spin-orbit interac-

tions.18 Since the k-space is divided into discrete k-cells, the

solution of the probability coefficients from Eq. (12) at the

ðiþ 1Þth cell is given by

Cðkiþ1Þ ¼ expðX�ÞCðkiÞ; (24)

where X� is the truncated Magnus series expression from

Eq. (13). As can be seen in Eqs. (14)–(16), the higher order

terms of the Magnus series are numerically expensive to

compute and involve several nested integrals. To solve them

numerically, the X matrices are calculated at discrete

k-points, and then, a linearly interpolation scheme is used for

the points in between. The energy in between the k-points is

interpolated using a quadratic scheme. The individual terms

of the Magnus series can then be calculated using a Gaussian

quadrature of the nested integrals in Eqs. (14) and (15). The

value of X� up to the 4th order in k is given by19

X� ¼ X1 þ X2; (25)

X� ¼ 1

2
h A1 þ A2½ � �

ffiffiffi
3
p

12
h2 A1;A2½ �; (26)

where kiþ1 ¼ ki þ h and

A1 ¼ A ki þ
1

2
�

ffiffiffi
3
p

6

� �
h

� �

A2 ¼ A ki þ
1

2
þ

ffiffiffi
3
p

6

� �
h

� �
; (27)

where ½A1;A2� represents the commutator operator. The

value of the coefficients at the next grid point is then calcu-

lated using Eq. (24). The exponential of the matrix is calcu-

lated using the method described in Ref. 20. The 4th order

Magnus (MG4) integrator described in Eq. (26) has been pre-

viously used to solve linear differential equations with a very

high accuracy.21,22 Figure 2 shows the difference between

using just X1 and using both X1 and X2 in Eq. (26) in solving

the KI equations. Even though the difference is small, in this

work, both X1 and X2 are used to solve the KI equations. It

should be noted once again that even though we use just 2

terms of the Magnus series, we obtain a 4th order accurate

solution in k.

In Ref. 22, it has been shown that the operation counts

for a single time/k-vector step for a MG4 method scales as

6n2 þ 5n3 while the RK4 method scales as 10n2, where n is

the matrix size. In our particular case, we need the probabil-

ity coefficients for each permutation of initial conditions, so

the RK4 method has to be resolved for every possible initial

condition while the MG4 method needs to perform addi-

tional n½n� n�½n� 1� matrix multiplications (additional n2

operations n times) to obtain the final probability coeffi-

cients. The total operation counts then becomes 6n2 þ 6n3

for the Magnus 4th order and 10n3 for the RK4 method for a

single time/k-vector step. Therefore, for the same step size,

the solutions of the KI equations using the Magnus 4th order

method provides a slightly better form of solution, although

they both scale as Oðn3Þ. A limiting factor in the case of the

Magnus 4th order method is the computation of the matrix

exponential (5n3). Nevertheless, the key difference between

the RK4 method and the MG4 method lies with the choice of

the time/k-vector step size. The MG4 method being inher-

ently exponential in nature, more accurately captures the

exact solution and therefore a coarser step size can be used.

On the other hand, the RK4 method is a polynomial approxi-

mation and requires a much smaller step size, typically two

orders of magnitude less.

Figure 3(a) shows the variation of the probability coeffi-

cient for band 1 after passing through a band crossing. The

MG4 method is highly accurate for the standard step size

over which the band structure is calculated. Reducing the

step size by a factor of 3 does not change the result in any

significant way. However, the RK4 method requires a much

finer step size to obtain an accurate solution. Therefore, for a

reasonably accurate solution, the RK4 method would be 100

times slower when evaluating the above band crossing. Also,

the RK4 method is very unstable if the step size is below a

certain size. As seen in Fig. 3(b), dividing the original step

size by a factor of 1, 2, and 3 can significantly change the

result and cause it to runaway exponentially if the step size

is too large. This effect is problematic since there is no way

of knowing the correct step size beforehand. Therefore, one

has to adopt a step size and then recalculate the problem

with a smaller step size till
P

n jCnðtÞj2 is reasonably close to

1.0. This approach is numerically expensive, and adopting

the MG4 method over the RK4 method improves the compu-

tational time significantly (at least by 100 times in the above

case).

FIG. 1. The magnitude of the X matrix between band 1 and band 7, and band

1 and band 4 in a 3 nm� 3 nm InAs nanowire along [100]. The symbols repre-

sent values obtained using Rayleigh-Schrodinger perturbation theory (RSPT)

and the line represents values obtained using the finite difference method.
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D. Implementation of the KI equation solution
within the Monte Carlo method

As mentioned in the Introduction, the free-flight drift

model of the standard Monte Carlo algorithm needs to be

modified to account for interband transitions. A charge car-

rier undergoes a drift for a particular duration of time in the

presence of a given electric field, and during this free flight

period, there is a finite possibility of it transferring to the

other bands. Therefore, one would ideally like to solve the

KI equations for every carrier during its free-flight, at its cur-

rent position in k-space, and calculate the probability of

undergoing a transition to the other bands. However, this is

impractical as there are typically anywhere between 107 and

1011 carrier drifts in a traditional Monte Carlo routine, and a

significant increase in the computational time for each carrier

free flight greatly affects the overall simulation run time. A

less computationally expensive approach taken here is to cre-

ate a lookup table, storing the transition probabilities for

every possible initial condition and for a finite number of

points in k-space. During runtime, depending on the carrier’s

initial band and the position in k-space, the corresponding

transition probability table is pulled up and a random number

is used to decide the final band of the carrier after the end of

the free flight. The memory required to store the transition

probability tables is negligible compared to the already exist-

ing cost of storing the scattering tables within the full band

Cellular Monte Carlo (CMC) scheme.2 The algorithm

described above, and the results presented in Section III,

apply to the case of Monte Carlo simulations under a uni-

form electric field (so-called k-space simulation). However,

the look-up table approach can be generalized to different

fields as well, with the size of the look-up table still much

less than the scattering tables used in the CMC algorithm. It

is important to mention here that if the electric field varies

significantly across the device some consideration has to be

taken before using the KI equations. A key assumption in the

derivation of the KI equations is treating the effect of the

field in terms of a vector potential instead of a scalar poten-

tial (using the Weyl gauge). The scalar potential contribution

cannot be ignored if the field has a significant spatial gradi-

ent and the full Lorentz gauge has to be used. In situations

where the inhomogeneity of the field is localized and strong

as it might be in the case of impurities, heterojunctions, or

quantum wells, the wave functions have to be represented in

terms of localized basis states as the difficulty mainly arises

if the nature of the basis states is extended as discussed in

FIG. 2. (a) The conduction band of a 3 nm � 3 nm Si nanowire along [100]. The inset shows a magnified section of the band structure highlighting a crossing

calculated using the overlap test.4 (b) The difference between using the 1st term and both the 1st and 2nd terms in the Magnus expansion on the probability

coefficients for the region of the band structure shown in the inset of Fig. 2(a). The electron is initialized in the 1st band shown in red under an electric field of

10 kV/cm. The square symbols represent values obtained using just the 1st term and the delta symbols represent values obtained using both the 1st and 2nd

term of the Magnus expansion.

FIG. 3. (a) The difference between

using different step sizes for the

Magnus 4th order and the Runge-Kutta

4th order (RK4) method. The region of

the band structure simulated is shown

in Fig. 2(a) inset. The band 1 is

highlighted in red. (b) The sensitivity

of the RK4 method to coarse step sizes

is shown. h is the step size on which

the band structure is calculated.
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Ref. 23. In these cases, it is advantageous to use the TB

method where the basis states are localized as opposed to the

EPM method where the basis states are extended.

To implement this method, a step size Dk for the

k-space grid is required. The grid on which the band struc-

ture is calculated is usually too coarse. To identify the cor-

rect Dk, a minimum electric field Fmin is used. Below Fmin,

the effect of multi-band drift is assumed to be unimportant,

and Dk can then be calculated as

Dk ¼ eFmintdrif t

�h
: (28)

The 1D BZ is then divided equally into N k-points separated

by Dk, where N is given by

N ¼ 2p
aDk

; (29)

where a is the periodicity of the supercell along the nanowire

axis. The KI equations are solved for the duration of the drift

and the transition probabilities for every k-point and initial

band index are then stored for a particular electric field F
and drift time, tdrif t. The electric fields used in the uniform

field simulation are then chosen to be integer multiples of

Fmin. This is important so as to correctly capture the transi-

tion probabilities. If F=Fmin ¼ p, where p is not an integer,

then after a drift time tdrif t, the final k-value of the carrier

will be

kf ¼ ki þ pDk; (30)

where ki is the initial k-value. Since the transition probabili-

ties are only stored for every Dk, there will be an error in the

stored transition probabilities during the actual carrier drift.

There still exists an error after a carrier undergoes a scattering

event, as its momentum will in general not lie on the k-points

of the pre-calculated transition tables. To minimize this error,

Fmin must be chosen as small as computationally possible. In

this work, Fmin was chosen to be 2 � 105 V/m, which gives a

Dk of 1.22 � 105 m�1 for a drift time of 4 � 10�16 s. This

gives a total of N¼ 94 843 k-points in the finer k-space grid

for a Si nanowire along [100]. The exponential in Eq. (24) is

the transition probability from ki to kiþ1. Depending on the

electric field and drift time, the final transition probability

matrix is calculated by successively multiplying the matrices

for the required number of k-cells obtained using Eq. (30)

Cðkf Þ ¼ Tf :::::Tiþ2Tiþ1TiCðkiÞ: (31)

Once the final transition matrix from ki to kf is calculated,

the probability coefficients for every possible initial condi-

tion is calculated and stored.

In the present work, the Si and InAs nanowire band

structures are calculated using the semi-empirical sp3d5s*

Tight Binding (TB) model including the spin-orbit interac-

tion.18 Deformation potential scattering rates are calculated

from the TB coefficients using the method outlined in Ref.

24. The polar optical phonon scattering rates are calculated

by the method described in Ref. 25. Impact ionization is not

included in this work. The carriers (electrons and holes) are

initialized according to a one-dimensional Maxwell distribu-

tion at room temperature. The traditional full band Monte

Carlo approach is then performed with the inclusion of the

modified free-flight drift routine to account for the interband

transitions after the free flight.

III. RESULTS AND DISCUSSION

The usefulness of the KI equations is the ability to simu-

late a field dependent probability of interband transitions. In

Fig. 4(a), a section of 3 nm � 3 nm InAs nanowire band

structure along [100] is magnified to demonstrate interband

tunneling. The electron is initially in band 1, shown in red in

the inset of Fig. 4(a) and undergoes drift for different con-

stant electric fields. The initial k-point is �3:3� 109 m�1

and the final k-point is �4:4� 109 m�1. The probability of

the electron being in various bands is presented as jCj2 and is

shown in Figs. 4(b), 4(c), and 4(d) for electric fields of 10

kV/cm, 100 kV/cm, and 1 MV/cm, respectively. In all plots

of band structures, the band indices at different k points are

determined using the overlap test. This is done so as to easily

talk about carriers moving across the BZ and has no signifi-

cance on the physics of the interband tunneling process.

At 10 kV/cm, the probability of an electron remaining in

band 1 is close to unity since the electric field is not high

enough to induce interband transitions as can be seen in Fig.

4(b) for the energy separation between the bands shown in

Fig. 4(a). As can be seen in Figs. 4(c) and 4(d), at higher

electric fields of 100 kV/cm and 1 MV/cm, the electron tun-

nels to the 2nd and 3rd band with increasingly higher proba-

bility with field, with the highest probability being to the 3rd

band even though the energy separation between the 1st and

3rd band is higher than that between the 1st and 2nd bands.

This somewhat non-intuitive result is due to the fact that the

X matrices are higher between the 1st and 3rd band as com-

pared to the 1st and 2nd band due to the overlap of the wave

functions related to symmetry.

A similar case is shown for a 3 nm � 3 nm Si nanowire

along [100] in Fig. 5(a), where we have the case of an actual

band crossing/anti-crossing. The initial k-point is �9:0
�108 m�1 and the final k-point is �1:9� 109 m�1. The band

crossing/anti-crossing occurs at �1:0� 109 m�1. Due to the

very low energy separation near the band crossing, interband

tunneling occurs even at electric fields as low as 1.0 kV/cm,

as shown in Fig. 5(b). As the carrier drifts across the band

crossing, the probability that the electron remains in the 1st

band reduces drastically. The probability of transition is

independent of the electric field in this case since the energy

bands are very close to one other. In Eq. (11) when the

energy difference between bands goes to 0, the KI equations

become independent of the electric field as is evident in Figs.

5(b) and 5(c). Therefore, interband tunneling is very impor-

tant and requires an accurate solution of the KI equations

across the full BZ.

In Figs. 6 and 7, the effect of the multi-band drift model

on the average kinetic energy of the carriers from a uniform

field Cellular Monte Carlo simulation is shown.

In Figs. 6(a) and 6(b), the conduction and valence band

of 3 nm � 3 nm Si nanowire along the [111] direction is
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shown. In the case of the 3 nm � 3 nm Si nanowire along the

[111] direction, in the valence band shown in Fig. 6(b), there

exists a number of band anti-crossings; therefore, the carriers

are unable to reach high energies with the traditional drift

algorithm and the addition of the multi-band drift signifi-

cantly increases the average energy. Similarly in Fig. 6(a),

without the multi-band drift approach, the carriers’ energy

saturates as carriers are unable to reach high enough energies

with just inelastic scattering, as can be seen in Figs. 6(c) and

6(d). In the case of 3 nm � 3 nm Si nanowires, the multi-

band drift model makes more of a difference for [111] Si

compared to [100] Si for both electrons and holes, due to the

differences in band structure between the two in the direction

of the electric field.

The effect of the multi-band drift is very apparent in the

case of the electrons in 3 nm � 3 nm InAs nanowires. In

Figs. 7(a) and 7(b), the conduction band of 3 nm � 3 nm

InAs nanowires along the [100] and [111] directions are

shown. In the [100] direction bands, there are several anti-

crossings near 2.2 eV (K.E. � 1.2 eV) which causes the

energy to saturate in the absence of interband tunneling. The

same situation is present in the [111] direction bands as there

is a small band gap present between the first two conduction

bands, and the rest of the conduction bands. This gap would

only be crossable with inelastic scattering processes such as

polar and non-polar optical phonon scattering in a traditional

Monte Carlo. This effect becomes apparent with consider-

ation of the average energy of the electrons, which saturate

at 0.6 eV above the conduction band minima as seen in Fig.

7(c). When the multi-band drift model is employed, the elec-

trons achieve much higher energies due to interband tunnel-

ing. The average kinetic energy of the holes is plotted in Fig.

7(d). The average kinetic energies of the holes when multi-

band drift model is used are higher than the case when it is

not used, although the change in energy is not as high as it is

in the case of electrons.

Figures 8(a)–8(d) demonstrate the difference in carrier

populations with and without the inclusion of multi-band

transport. In Fig. 8(a), a snapshot of 10 000 electrons is

shown for a 3 nm � 3 nm InAs nanowire along the [111]

direction at an electric field of 1 MV/cm for the case of a

conventional CMC simulation, where the electrons are

FIG. 4. (a) Band structure of a 3 nm � 3 nm InAs nanowire band structure along [100]. The inset shows a magnified part of the band structure showing bands

close to one other. The 1st band is represented by square symbols, the 2nd band by left triangles and the 3rd band by right triangles. (b) Plot of transition proba-

bilities as a function of kðtÞ under an applied electric field of (b) 10 kV/cm, (c) 100 kV/cm, and (d) 1 MV/cm for the first three bands at the location shown in

the inset of Fig. 3(a).
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FIG. 5. (a) Band structure of a 3 nm

� 3 nm Si nanowire along the [100]

direction. The inset shows a magnified

part of the band structure showing a

band crossing. The first four bands are

colored and marked. (b) Plot of transi-

tion probabilities as a function of kðtÞ
under an applied electric field of (b)

1.0 kV/cm and (c) 100 kV/cm for the

first four bands at the band crossing

shown in the inset of (a).

FIG. 6. (a) Conduction band structure

of 3 nm � 3 nm Si nanowire along the

[111] direction. (b) Valence band

structure of 3 nm � 3 nm Si nanowire

along the [111] direction. (c) Plot of

average electron kinetic energies in

3 nm � 3 nm Si nanowires along the

[100] and [111] directions with and

without multi-band drift. (d) Plot of

average hole kinetic energies in 3 nm

� 3 nm Si nanowires along the [100]

and [111] directions with and without

multi-band drift.
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FIG. 7. (a) Conduction band structure

of 3 nm � 3 nm InAs nanowire along

[100]. (b) Conduction band structure

of 3 nm � 3 nm InAs nanowire along

[111]. (c) Plot of average electron

kinetic energies in 3 nm � 3 nm InAs

nanowires along [100] and [111] with

and without multi-band drift. (d) Plot

of average hole kinetic energies in

3 nm � 3 nm InAs nanowires along

[100] and [111] with and without

multi-band drift.

FIG. 8. (a) Snapshot of electrons in the

conduction band of 3 nm � 3 nm InAs

along [111] at the end of the simulation

without multi-band drift at 1 MV/cm.

Each red dot represents an electron. (b)

Snapshot of electrons in the conduction

band of 3 nm � 3 nm InAs along [111]

at the end of the simulation with multi-

band drift at 1 MV/cm. (c) Snapshot of

electrons in the conduction band of

3 nm � 3 nm Si along [111] at the end

of the simulation without multi-band

drift at 4 MV/cm. Each red dot repre-

sents an electron. (d) Snapshot of elec-

trons in the conduction band of 3 nm

� 3 nm Si along [111] at the end of the

simulation with multi-band drift at 4

MV/cm.
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unable to reach higher bands. When the multi-band drift

algorithm is employed, carriers are able to access much high

energies as is shown in Fig. 8(b). A similar case for Si is

shown in Figs. 8(c) and 8(d) at an electric field of 4 MV/cm.

IV. CONCLUSION

In the present paper, we presented a new solution of the

KI equations for multi-band transport using the Magnus

expansion method. The usefulness of the Magnus expansion

to solve the problem of multi-band drift is demonstrated by

using it to solve the KI equation across the full BZ in semi-

conductor nanowire systems. The ability of the Magnus solu-

tion to retain qualitative properties of the original solution

greatly simplifies the problem. Depending on the problem at

hand, the Magnus series can also be accordingly truncated to

the required degree of accuracy, reducing the computation

time without introducing exponentially increasing errors as is

the case with the Runge-Kutta 4th order method. The impor-

tance of field induced interband tunneling is shown by per-

forming uniform field full band Monte Carlo simulations of

Si and InAs nanowires by modifying the traditional free-

flight drift routine. Depending on the nature of the band struc-

ture, the multi-band drift model may or may not be necessary.

Interband tunneling also becomes very important at high elec-

tric fields where impact ionization may be dominant. In such

cases, it is important to include this model in the traditional

Monte Carlo routines to accurately account for the correct

number of impact events at high electric fields.
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