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ABSTRACT 

This paper addresses the stochastic modeling of the stiffness matrix of slender uncertain curved 

beams that are forced fit into a clamped-clamped fixture designed for straight beams. Because of 

the misfit with the clamps, the final shape of the clamped-clamped beams is not straight and they 

are subjected to an axial preload. Both of these features are uncertain given the uncertainty on the 

initial, undeformed shape of the beams and affect significantly the stiffness matrix associated 

with small motions around the clamped-clamped configuration. A modal model using linear 

modes of the straight clamped-clamped beam with a randomized stiffness matrix is employed to 

characterize the linear dynamic behavior of the uncertain beams. This stiffness matrix is modeled 

using a mixed nonparametric-parametric stochastic model in which the nonparametric (maximum 

entropy) component is used to model the uncertainty in final shape while the preload is explicitly, 

parametrically included in the stiffness matrix representation. Finally, a maximum likelihood 

framework is proposed for the identification of the parameters associated with the uncertainty 

level and the mean model, or part thereof, using either natural frequencies only or natural 
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frequencies and mode shape information of the beams around their final clamped-clamped state. 

To validate these concepts, three simulated, computational experiments were conducted within 

Nastran to produce populations of natural frequencies and mode shapes of uncertain slender 

curved beams after clamping. The three experiments differed from each other by the nature of the 

clamping condition in the in-plane direction. One experiment assumed a no-slip condition (zero 

in-plane displacement), another a perfect slip (no in-plane force), while the third one invoked 

friction. The first two experiments gave distributions of frequencies with similar features while 

the latter one yielded a strong deterministic dependence of the frequencies on each other, a 

situation observed and explained recently and thus not considered further here. Then, the 

application of the stochastic modeling concepts to the no-slip simulated data was carried out and 

led to a good matching of the probability density functions of the natural frequencies and the 

modal components, even though this information was not used in the identification process. 

These results strongly suggest the applicability of the proposed stochastic model. 

 

KEYWORDS: uncertain geometry, uncertain preload, uncertain stiffness, maximum entropy, 

parametric stochastic model 

 

1. INTRODUCTION 

The assembly of substructures is well known to induce uncertainty on the dynamic behavior of 

the overall structure they form, e.g. see [1] for a comprehensive review and [2,3] for recent 

studies. The flexibility of the attachment has in particular been recognized as a notable source of 

this uncertainty and both parametric, e.g. see [4,5], and maximum entropy based nonparametric 

[6,7] stochastic models of the corresponding stiffness properties have been proposed. The latter 



3 
 

method, see [8] for a recent state-of-the-art is particularly convenient as it can also incorporate, 

as demonstrated in [9,10], many other model and data uncertainties that exist in attachment 

modeling, e.g. contact and friction/microslip nonlinearities, variability in friction properties and 

loading induced by fasteners. 

 An uncertainty which appears to have received little attention so far is the one induced by the 

random state of stress, referred to as preload in the sequel, that tends to arise during the assembly 

due to a slight mismatch in shape or size of a substructure as compared to the ones it should have 

to fit perfectly in the assembly. When the substructure considered is very slender/thin, an axial 

state of stress induces a large change in natural frequencies, especially for the lowest ones while 

the change in mode shape may be significantly less. Clearly then, uncertainty in the preload 

magnitude and distribution, rooted for example in shape/size mismatch, must be included in the 

stochastic modal model. 

A preliminary effort in this direction was accomplished in [11] as part of a broader 

investigation focused on the experimental validation of stochastic reduced order models for the 

geometrically nonlinear response of beams. In this study, 11 nominally straight but effectively 

curved beams were set in a fixture providing a near clamping on both ends (see section 2 for 

experimental detail) and their first three natural frequencies were measured experimentally. It 

was observed that these triplets of frequencies deviated significantly from those of the flat beam 

as well as from one another, i.e. with standard deviations equal to 25%, 12%, and 7% of the flat 

beam values for the first, second, and third natural frequencies, respectively. Further, a very 

strong correlation between the three frequency variations were observed. 
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Relying on a parallel between the clamping induced preload and a change in the beam 

temperature, it was proposed in [11] that the modal stiffness matrix K of the clamped-clamped 

beams be expressed as the sum of two terms, i.e. as 

                   10 KKK P+=                        (1) 

where 0K  and 1K are the preload independent and preload induced modal stiffnesses with P 

denoting the preload. A justification of Eq. (1) can be drawn from the analysis of shallow slender 

beams under preload. Specifically, considering the beam to be straight under the action of a 

constant preload P and adopting an Euler-Bernoulli model leads to the partial differential 

equation for the transverse displacements y(x,t) 
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where, following standard notations, E, ρ, I, and A are the beam’s Young modulus, density, and 

its cross-section moment of inertia and area. Note in Eq. (2) that the stiffness operator on the left-

hand-side is the sum of two operators, the first one, 
4
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2

2

x
yP

∂

∂  is linear in this variable. Thus, a finite element implementation of 

Eq. (2) leads to a stiffness matrix K in the form of Eq. (1). 

Note as well from Eq. (2) that the geometry of the beam is present in the two operators 

composing the stiffness. Then, it is tentatively suggested that the two matrices 0K  and 1K  be 

considered random, described more specifically by the nonparametric approach, while the 

preload P would be represented as a random variable independent of 0K  and 1K . In fact, a 

Gaussian assumption on P was proposed [11] consistently with the maximum entropy principle. 
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However, a validation of this full stochastic model was not performed in [11] because the very 

strong correlation between the measured natural frequencies suggested that the dominant 

uncertainty was on the preload, not the matrices 0K  and 1K , an assumption that was supported 

by a good fit of the frequency data obtained by selecting those matrices as those associated with 

the flat beam and an appropriate (least square) selection of the preload values. In fact, a revisit of 

this issue [12] obtained an even closer fit of the first and third natural frequencies (those best 

captured in the test) with an appropriate updating of the matrix 1K . 

In light of these observations, the focus of the present investigation is first on suggesting an 

explanation for the behavior seen in [11,12] and second on considering in details a related case  

in which at least one of the two matrices 0K  and 1K  ought to be randomized. Key in these 

efforts is the availability of data. To this end, a “computational experiment” is first carried out 

which models the clamping process of the beams in the original study of [11] but can be 

performed over a large sample of beams and yields a complete description of displacements, 

forces, natural frequencies, and mode shapes which would represent a daunting task to capture 

experimentally. This computational experiment is described in the next section.  

 

2. THE COMPUTATIONAL EXPERIMENT 

The physical experiment reported in [11] involved 11 precision-machined feeler gages of 

nominal thickness, width, and length equal to 0.031in (0.79mm), 0.5in (1.27cm), and 12in 

(30.48cm). These beams were clamped in the fixture shown in Fig. 1(a) through two clamping 

blocks, one at each end, of length 1.5in (3.81cm) which were screwed in the base of the fixture. 

Thus, the length of the beam, from clamp to clamp was 9in (22.86cm). Further, the material 
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properties of the beams were identified in an earlier investigation [13] as: Young’s modulus of 

204.7 GPa, Poisson’s ratio of 0.28, and mass density of 7.86•103 kg/m3. 

This physical experiment was simulated computationally as described in Fig. 1(b). Initially 

curved beams of length L equal to 12in (30.48cm) were discretized by finite elements within 

Nastran using beam elements (referred to as “CBEAM”) and 51 nodes spanning the entire beam 

length. Further, nodes 1-6 and 46-51 were positioned directly under the clamping blocks. 

Clamping was then simulated by imposing that the vertical (i.e., along y) positions and out-of-

plane (i.e., along z) rotations of the nodes 1-6 and 46-51 become zero. Out of plane 

displacements (i.e., along z) and rotations (i.e., along y and x) of these nodes were also assumed 

to stay zero. A more subtle question regards the in-plane (i.e., along x) displacements of these 

nodes. Three particular scenarios were considered here: 

(A) a no-slip condition in which all in-plane displacements were imposed to zero, 

(B) a perfect slip condition in which all in-plane displacements were free to move, i.e. with zero 

in-plane force, on one side with the other under a no-slip condition to prevent rigid body 

motions, 

(C) a slip condition with friction in which the in-plane load was limited to µN where N is the 

smallest of the vertical forces at the two clamps.  

The numerical clamping, either A, B, or C, of each beam considered was achieved as a 

nonlinear static problem (the Nastran solution 106 or “SOL 106”) which was followed by a linear 

modal analysis that provided the natural frequencies )(i
jω , mode shapes )(i

jφ , and linear stiffness 

matrix )(i
GK  of each preloaded beams (superscript (i)) for small motions around their deformed 

positions. Note that option C was implemented as a two step process. First, a no-slip condition 
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was imposed on both clamps and the corresponding in-plane and vertical forces were determined, 

the smallest of the two, N, in particular. If the in-plane load was found to exceed µN (µ was 

selected here as 0.3), then the boundary condition on the side exhibiting the smallest vertical 

force (i.e., N) was replaced by a perfect slip condition to which was added the force µN in the 

direction of the original in-plane force. The nonlinear static deformed configuration resulting 

from this second step was the one used for the determination of the natural frequencies and 

modes. 

In keeping with the smooth shape of the experimental beams, the random undeformed profiles 

of the beams were selected to be of the form 

( ) LxLxLxxy /3sin/2sin/sin 210 πβ+πβ+πβ= , [ ]Lx ,0∈                 (3) 

where 0β , 1β , and 2β  were chosen as independent zero mean Gaussian random variables. An 

inspection of the experimental beams suggested that the peak of the profile be typically less than 

one thickness (h=0.79mm) and that the profiles be dominated by their half-wave components (i.e. 

0β ). These observations led to the selection of the standard deviations 0σ , 1σ , and 2σ  of  0β , 

1β , and 2β  as ηh/2, ηh/4 and ηh/6, respectively, with η = 1 for cases A and B and 0.5 for case 

C. 

A population of M = 1000 such curved beams were simulated and subjected to each of the 

three computational clamping options described above. Scatter plots of the beam frequencies f1, 

f2, f3 are presented in Figs 2 and 3. First and foremost, note that a large fraction of the frequencies 

obtained in case C, Fig. 2(c), and 3(c) are strongly concentrated around a curve in the (f1, f2, f3) 

space indicating that these frequencies depend only on one random parameter, i.e., the preload 

µN. This situation is in contrast with cases A and B but in full agreement with the experimental 

observations of [11], see [12]. These results suggest that a friction-controlled slip is the 



8 
 

mechanism that induced the preload dominated variations in natural frequencies seen and 

modeled in these investigations. Since that case has been clarified in [12], it will not be covered 

in the present investigation. Rather, the focus will be on either of the two other cases for which a 

wide spread of frequencies exist and for which the stochastic modeling of the preload P will 

clearly not be sufficient. More specifically, the no-slip case (option A) was considered.  

In keeping with the focus of the original study [11] on the dynamic response of the beams in 

the low frequency range, modal models of the computationally clamped beams were established 

using the first 10 transverse and first 10 in-plane mass normalized modes of the straight clamped-

clamped beam. These 20 modes, 
jψ for  j =1, ..., 20, were stacked as columns in the matrix Ψ  

and the linear modal matrices of the 1000 beams were then obtained as 

     ΨΨ )()( i
G

Ti KK = ,    i =1,..., 1000                 (4) 

with the corresponding mass matrices equal to the 20x20 unit matrix. To validate the use of this 

modal basis, the natural frequencies obtained from the modal models were compared to those 

obtained directly from Nastran. For the first 3 frequencies (those considered of interest here), the 

means and standard deviations of the relative errors were all below 0.2%  with the largest error 

over the 3x1000 set being 1.4% on a second natural frequency. These errors were considered 

small enough to warrant the use of the chosen basis. 

As a starting point for the stochastic modeling of the matrices )(iK  as in Eq. (1), the matrices 

0K  and 1K  for the straight beam, denoted in the sequel as 0K̂  and 1K̂  were evaluated next. 

Given the choice of modal basis, the matrix 0K̂  is diagonal with elements equal to the squared 

natural frequencies of 20 straight beam modes. The evaluation of the matrix 1K̂  was 

accomplished by imposing a small uniform temperature on the beam (1.0°C), extracting the 
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global stiffness matrix of the finite element model of the heated beam, projecting it on the basis 

as in Eq. (4), and forcing an equality of the matrices in Eq. (1) with the identified preload of P = 

22.1N. Note that the part of the matrix 1K̂ relevant to the transverse modes is positive definite as 

expected but the part associated to the in-plane modes is not due to the limited computational 

accuracy, i.e. the frequencies of these modes should not be affected by the preload. Since positive 

semi-definiteness is required for the proposed modeling, as described in the ensuing section, the 

matrix 1K̂  was modified as follows. It was first decomposed into its eigenvectors and 

eigenvalues, the latter ones which are negative were then replaced by their absolute values, and 

the matrix was recomposed from these eigenvalues and the eigenvectors. The matrix denoted as 

1K̂  in the ensuing discussion is the one resulting from this modification.  

 

3. MAXIMUM ENTROPY BASED NONPARAMETRIC MODELING 

It is proposed here to accomplish the stochastic modeling of the matrices 0K  and 1K  with 

the maximum entropy based nonparametric approach. In the context of random matrices, the 

approach is centered around the modeling of symmetric positive definite matrices of finite 

inverse (assuming that there are no rigid body modes). The maximization of the entropy under 

these constraints was carried out in [14] and leads to the representation of such random matrices 

B in the form 

                 
TT LHHLB =                         (5) 

where L  is any decomposition, e.g. Cholesky, of the mean matrix B , i.e. satisfying TLLB = . 

Further, H denotes a lower triangular random matrix the elements of which are all statistically 

independent of each other. Moreover,  



10 
 

(a) The diagonal elements iiH  are obtained as 
µ

= ii
ii

Y
H  where iiY  is Gamma distributed 

with parameter ( )( ) 2/1−ip , and 

(b) the off-diagonal elements ilH , li ≠ , are normally distributed (Gaussian) random variables 

with standard deviation µ=σ 2/1 as pictorially described in Fig. 4. Note further that 

( ) 12 −λ+−= inip     and  
2

12 −λ+
=µ

n                (6),(7) 

with n denoting the size of the matrices B. 

In the above equations, the parameter λ> 0 is the free parameter of the statistical distribution 

of the random matrices H and B and can be evaluated to meet any given information about their 

variability, often the standard deviation of the lowest natural frequency of the random linear 

system will be specified and used to obtain λ. This condition, coupled with Eqs (5)-(7) and 

properties (a) and (b) provides a complete scheme for the generation of random symmetric 

positive definite matrices B. 

The entropy maximization-based formulation of the nonparametric approach permits the 

consideration of different or additional constraints as required by the problem at hand. This 

observation has led in particular to an extension [15] of the above, original methodology in 

which the standard deviation of several, p < n, natural frequencies are imposed in addition to the 

above constraints (symmetry, positive definiteness, finiteness of inverse). The resulting 

probabilistic model then exhibits more than the single parameter λ for an improved matching of 

available data and shares many features of the one described above. Specifically, the 

corresponding random matrices C can be expressed as 

                                   
TT DHHDC ~~=                         (8) 
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where D  is a particular decomposition of the mean matrix C  satisfying T
DDC = , see [15]. The 

matrix H~  is, as H in Eq. (5),  lower triangular. Moreover, the elements of these two matrices are 

related to one another as 

ii
ii

il
il G

G
H

H ~~ =     for  l=1,..., i  and i = 1, ..., p     

  ilil HH =~     for  l=1,..., i  and i = p+1, ..., n                       (9)    

where 

      ∑
=

=
i

l
ilii HG

1

2 .          (10) 

Finally, the random variables iiG~  are independent of the above ones and of each other. They are 

distributed according to the probability density functions 

( ) [ ]22/)32(~ exp gggCgp ii
n

iGii
τ−µ−= −λ+ g ≥0                 (11) 

in which iC  are the appropriate normalization constants to ensure unit total probability and the 

parameters iµ  and iτ  must satisfy the mean condition 

      [ ] 1=iiGE           (12) 

and the prescribed standard deviations of p natural frequencies. Note finally that algorithms for 

the simulation of the samples iiG~  from the distribution of Eq. (11) are discussed in details in 

[15]. 

The above developments can also be relied on for the modeling of arbitrary random matrices 

U of mean U  using the decomposition (see [16]) 

      BQU =                      (13) 
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where B  is the symmetric positive definite matrix such that 

     UUB T=2                      (14) 

and Q  is the unitary matrix (i.e., satisfying the property IQQ =T , I denoting the identity 

matrix of appropriate dimension) 

      1−= BUQ .                        (15) 

Using either of the modeling procedures described above for symmetric positive definite 

matrices, random matrices B of mean B  are obtained to which correspond realizations of the 

matrix U as 

    BQU = .          (16) 

Note that the matrix Q  is identity if the matrix U  is square, symmetric, and positive definite 

so that Eq. (16) simply reduces to the previous representation. 

 

4. PRELOAD PARAMETRIC MODELING 

It is proposed here to adopt a polynomial-chaos type representation of the preload, i.e. (e.g. see 

[17,18]) 

      ( )∑
=
γ=

0l
ll VQP          (17) 

where V is a random variable of specified distribution, ( )vQl  are appropriate polynomials in the 

variable v, and lγ  are deterministic parameters. To accelerate the convergence of the series, the 

distribution of the random variable V is selected according to the range of values exhibited by the 

preload (see discussion of [17]). For example, preload values exhibiting both negative and 

positive values without any particular upper or lower bound would suggest the use of a Gaussian 
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random variable V and to the selection of the Hermite polynomials for ( )vQl . However, purely 

positive values of P would lead to a Gamma modeling of the random variable V and the use of 

the Laguerre polynomials for ( )vQl . 

The combination of the maximum entropy based nonparametric approach, for 0K  and/or 1K , 

and a polynomial chaos representation, for the preload P, proposed here is along the same 

perspective as the generalized stochastic modeling introduced recently in [19]. 

 

5. MEASUREMENTS AND MAXIMUM LIKELIHOOD PARAMETER ESTIMATION 

The stochastic model of Eq. (1) involves a series of deterministic parameters that characterize 

it, including in particular the parameters lγ  specifying the distribution of the random preload P 

as well as the value of λ for the matrices 0K  and/or 1K . If the extended methodology of Eqs 

(8)-(12) is adopted, the description of these matrices also requires the determination of the 

coefficients  iµ  or iτ , one of these two sets of coefficients being evaluated from the mean 

condition of Eq. (12). In addition to these parameters characterizing mostly the variability of the 

beam stiffness matrix, it may also be necessary to update the mean matrices 0K  and 1K which 

may deviate from their straight beam counterparts 0K̂  and 1K̂ owing to a possible asymmetry 

induced by the randomness of the beam curved profiles. 

These various parameters, regrouped in the vector θ , will be estimated in a maximum 

likelihood framework from measurements of the modal characteristics of the beams. These 

include the first three random natural frequencies jΩ , j = 1, 2, 3, of observed values )(i
jω , and, 

potentially, measurements )(i
jφ  of the corresponding mode shapes jΦ . This mode shape 
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information is first reduced by projection on the straight beam modal basis yielding the random 

projection coefficients jkA   and their realized values jkα  satisfying 

∑ ψ=Φ
k

kjkj A     or        jG
T
kjkA Φψ= M         (18a,b) 

and similarly for the observed mode shapes 

∑ ψα=φ
k

k
i
jk

i
j

)()(    or       )()( i
jG

T
k

i
jk φψ=α M      (19a,b) 

owing to the orthogonality of the straight beam modes with respect to GM , the finite element 

mass matrix of the straight beam. 

Assuming that there is no randomness on the finite element mass matrix of the beams (the 

effect of the curvature is very small), the random mode shapes jΦ  satisfy the orthogonality 

properties 

                              0=ΦΦ jG
T
k M  for kj ≠                 (20) 

as well as a normalization condition such as 

                                       1=ΦΦ jG
T
j M .                                  (21) 

The existence of such conditions imply that the coefficients jkA  must be related to one another. 

In fact, one can show that of the 2m  values jkA , j,k =1, ..., m, m being the number of modes 

considered, i.e. m = 3 here, only m(m-1)/2 form an independent set. This observation has led (see 

[20]) to further reduce the modal information to the skew coefficients 

     ( ) 2/kjjkjk AAB −=    k > j            (22) 

and their realized values 

     ( ) 2/kjjkjk α−α=β    k > j.             (23) 
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The random vector of measurements X considered here is thus [ ]321 ΩΩΩ=X  when only 

the frequencies are observed or [ ]231312321 BBBX ΩΩΩ=  when the mode shapes are also 

captured. The vector of actual measurements for beam i will consistently be denoted as )(ix . 

Adopting the maximum likelihood framework, the deterministic parameters of the model 

stacked in the vector θ will be chosen to maximize the likelihood function 

          ( )θ=Π
=

;)(

1

i
X

M

i
xpL           (24) 

where ( )θ;xp X  denotes the probability density function of the random vector X. Two 

approaches will be considered for the estimation of this probability density function, the first one 

of which is the joint Gaussian approximation 

( )
( ) ( ) ( ) ( )



 µ−µ−−

π
=θ −

XXX
T

X
XX

π
G
X xKx

K
xπ 1

2/ 2
1exπ

det2

1;                (25) 

where p = 3 or 6 is the number of components of X and ( )θµ X  and ( )θXXK  denote the mean 

vector and covariance matrix of the random vector X determined from the model of Eq. (1) with 

the parameter values in θ. 

A more refined estimate of ( )θ;xp X  can be obtained by the kernel density estimation 

technique (see [21,22], for theoretical discussions and [23] for an application). According to this 

methodology, the probability density function is estimated as 

( ) ∑∏
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


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where ly  and )(i
ly  are the lth component of the vectors y  and )(iy  defined as 
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




 µ−Ξ= Ξ

T xy        and    




 µ−Ξ= Ξ

iTi xy )()(          (27) 

in which Ξ is the matrix obtained by stacking by columns the normalized eigenvectors of the 

covariance matrix ( )θXXK . Further, ( )⋅Κ  denotes the kernel and lh  denotes coefficients related 

to it. For the Gaussian kernel, one has 

( ) ( )2/exp
2
1 2uu −
p

=Κ  ;  ( )

( )p

lll pM
h

+









+

Λ=
4/1

2
4          (28) 

in which llΛ  is the lth eigenvalue of ( )θXXK . 

 

6. NUMERICAL RESULTS 

The above sections have presented a general framework for the representation of modal data, 

natural frequencies and/or mode shape information, according to the model of Eq. (1). A first 

validation of these concepts is presented here for the computational clamping data  of option A, 

see Figs 2(a) and 3(a) for the scatter plots of the frequencies. 

As stated earrlier, it is observed from these figures that the natural frequencies occupy a 

wedge shaped domain as opposed to forming a narrow curve as seen in [12] on the data of [11]. 

It is thus concluded that either or both matrices 0K  and/or 1K  must be considered random in 

addition to the preload P. Further, the tip of the wedge, i.e. the lowest natural frequencies, closely 

corresponds to the straight beam values confirming the almost exclusively positive values of the 

preload. Further, the sharpness of the wedge indicates that very little variability does exist in the 

frequencies when the preload value is close to zero. This finding suggests that the matrix 0K  

should not be randomized here and should be close to its straight beam counterpart 0K̂ . 
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On the basis of these observations, the model of Eq. (1) will be sought with 1K  alone 

represented by the nonparametric approach and the preload P will be expressed in terms of a 

Gamma distributed random variable V of distribution 

    ( ) ( )
va

V ev
a

vp −−
Γ

= 11    [ )∞∈ ,0v   and 0≥a              (29) 

where ( )⋅Γ  denotes the Gamma function. In performing the maximum likelihood identification, it 

was found very valuable to start with a simple model and grow its complexity as necessary using 

as initial conditions for the optimization process (carried out here with fminsearch in matlab) the 

converged values obtained with a simpler model. Such an approach was also adopted in regards 

to the probability density function representation, i.e. initially with the Gaussian approximation 

of Eq. (25) and then with its kernel counterpart of Eq. (26). In this light, the nonparametric model 

of Eq. (5)-(7) was first adopted for the matrix 1K  and a two term representation of the preload P, 

Eq. (17), was selected. This model has 4 uncertainty-related parameters: the two parameters 0γ  

and 1γ , the shape parameter a, and the nonparametric coefficient λ. In addition to these 4 

parameters, the first three diagonal elements of the constant matrix 0K  and of the mean matrix 

1K  were also identified. In all, the parameter vector  θ included 10 components all identified by 

the maximum likelihood approach. 

Modal tests can provide both natural frequencies and mode shape data but the former are 

much easier to gather than the latter (only one sensor is needed for example). It was accordingly 

proposed to use only the natural frequencies data (the first three) in the identification process of 

the model parameters but to use the mode shape information as a mean to assess the validity of 

the model of Eq. (1) once the best parameter values were obtained. As a first check, the 

identification process led to values of the diagonal elements of 0K  that were very close from 
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those of 0K̂ , as expected from the above discussion. However, the diagonal elements of 1K  did 

not match those of 1K̂  demonstrating the importance of identifying the mean model as well as its 

uncertainty related parameters. The parameters 0γ , 1γ , the shape parameter a, and the 

nonparametric coefficient λ were identified as: 12.1, -11.0, 1.17, and 15.4. 

Then, shown in Fig. 5 are the probability density functions of the first three natural 

frequencies as obtained from the computational experiment and from the model of Eq. (1) while 

in Fig. 6 are the corresponding joint probability density functions of the first two natural 

frequencies. The good matching of these curves suggests indeed the applicability of the model of 

Eq. (1). As discussed above, the probability density functions of the modal coefficients 21β , 

31β , and 32β , see Eq.  (23), were also compared and are shown in Figs 7. In assessing the 

matching of these curves, note that the experimental modal coefficients were not used in the 

identification and are not strongly correlated to the frequencies used in the identification (the 

largest such coefficient of correlation is 0.27). Thus, the good to very good match of the curves in 

Fig. 7 further strengthen the validation of the model of Eq. (1) for the representation of the modal 

properties of preloaded structures. A similar comparison was finally made between the 

probability density functions of the preloads, see Fig. 8, which again match very well even 

though this information was also not used in the identification. 

Since Eqs (1) and (17) led to a good matching of the computational experiment data, it was 

decided to use this model to quantify the importance on the natural frequencies of the 

uncertainties in the preload and in the matrix 1K . For this purpose, two additional runs were 

carried out, one in which the preload was assumed to remain equal to its mean value while in the 

other it was the matrix 1K  which was not randomized. The coefficients of variations of the three 
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natural frequencies obtained in the former case were very close to 1/2 of those induced by the 

variability of the preload alone. This observation confirms the importance of modeling the 

preload randomly but also demonstrate that the variability in the resulting clamped geometry may 

also have a significant effect. 

 

7. CONCLUSIONS 

This paper addresses the stochastic modeling of the stiffness matrix of slender uncertain curved 

beams forced fit into a clamped-clamped fixture designed for straight beams as an example of 

structures preloaded during assembly. 

Central to the modeling is the explicit introduction of a random preload P multiplying a 

random preload-dependent stiffness matrix 1K . This preload-related component is then added to 

the preload-independent stiffness matrix 0K , see Eq. (1). A parametric stochastic modeling of 

the preload P was introduced while a nonparametric maximum entropy-based representation of 

the random matrices 0K  and/or 1K  was suggested. Finally, a maximum likelihood framework 

was proposed for the identification of the parameters associated with the uncertainty level and the 

mean model, especially the mean of the matrix 1K , using either natural frequencies only or 

natural frequencies and mode shape information of the structure after assembly. 

To validate these concepts, a simulated, computational experiment was conducted within 

Nastran to produce a population of natural frequencies and mode shapes of uncertain slender 

curved beams after clamping. The application of the above concepts to this simulated data led to 

a good to very good matching of the probability density functions of the natural frequencies and 

the modal components, even though this information was not used in the identification process. 

These results strongly suggest the applicability of the proposed stochastic model. 
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(b) 

Figure 1. (a) Clamping fixture and beam in the physical experiment. (b) Clamping process in the 
computational experiment. 
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Figure 2. Scatter plot of first and second natural frequencies obtained from the computational 

experiment according to the three clamping options (a) A, (b) B, (c) C. 
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Figure 3. Scatter plot of first and third natural frequencies obtained from the computational 

experiment according to the three clamping options (a) A, (b) B, (c) C. 
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Figure 4. Structure of the random H matrices with n=8, i=2, and λ=1 and 10. 
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Figure 5. Probability density functions of the (a) first, (b) second, and (c) third natural frequency. 

Computational experiment with Eq. (3) and model of Eq. (1) with maximum likelihood 
identified parameters.  

(a) 

(b) 

(c) 



28 
 

200
220

240
260

80
90

100
110

0

0.005

0.01

f2 (Hz)f1 (Hz)

PD
F

 
(a) 

200
220

240
260

80

90

100

110

0

0.005

0.01

f2 (Hz)f1 (Hz)

PD
F

 
(b) 

 
 

Figure 6. Joint probability density functions of the first and second natural frequencies. (a) 
Computational experiment with Eq. (3) and (b) model of Eq. (1) with maximum likelihood 

identified parameters. 



29 
 

 
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
0

5

10

15

20

25

30

35

40

45

 β21

Pr
oβ

aβ
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

 

 

Model
Experiment

 

 
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
0

10

20

30

40

50

60

70

80

90

 β31

Pr
oβ

aβ
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

 

 

Model
Experiment

 

 
-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
0

5

10

15

20

25

30

35

40

45

 β32

Pr
oβ

aβ
ili

ty
 D

en
sit

y 
Fu

nc
tio

n

 

 

Model
Experiment

 
Figure 7. Probability density functions of the modal coefficients (a) 21β , (b) 31β , and (c) 32β . 

Computational experiment with Eq. (3) and model of Eq. (1) with maximum likelihood  
identified parameters. 
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Figure 8. Probability density functions of the preload. Computational experiment with Eq. (3) 

and model of Eq. (1) with maximum likelihood identified parameters. 
 




