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Abstract

The Operator Product Expansion for null polygonal Wilson loop in planar maximally supersymmetric 
Yang–Mills theory runs systematically in terms of multi-particle pentagon transitions which encode the 
physics of excitations propagating on the color flux tube ending on the sides of the four-dimensional con-
tour. Their dynamics was unraveled in the past several years and culminated in a complete description of 
pentagons as an exact function of the ’t Hooft coupling. In this paper we provide a solution for the last 
building block in this program, the SU(4) matrix structure arising from internal symmetry indices of scalars 
and fermions. This is achieved by a recursive solution of the Mirror and Watson equations obeyed by the 
so-called singlet pentagons and fixing the form of the twisted component in their tensor decomposition. The 
non-singlet, or charged, pentagons are deduced from these by a limiting procedure.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A framework for a systematic analysis of the multi-collinear limit of the super Wilson loop 
in planar N = 4 super Yang–Mills theory on a four-dimensional null polygonal contour was 
proposed in Refs. [1,2]. It is akin to the Operator Product Expansion for correlation functions of 
local operators. The limit of adjacent segments of the loop as they approach the same null line 
introduces curvature field insertions into the Wilson link stretched along this direction. These in 
turn correspond to excitations on top of the Faraday flux tube. Their integrable dynamics was 
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Fig. 1. A tessellation of the polygon into pentagons with a sample set of insertions of flux-tube excitations from the 
resolution of the identity operator on the inner null lines (shown by the ⊗ symbols). These propagate from the bottom to 
the top and interact with each other along the way.

scrutinized in the context of the large-spin limit of high-twist single-trace Wilson operators in 
the maximally supersymmetric Yang–Mills theory [3] and is known at any value of the ’t Hooft 
coupling [4].

A geometric tessellation of the N -gon superloop WN in null squares introduces the main 
building block of the formalism, the pentagon P, formed by two adjacent squares, yielding the 
representation

WN = 〈0|PN−4 . . .P2P1|0〉 . (1.1)

The resolution of the unit operators between sequential pentagons produces the decomposition 
of the superloop in terms of transition matrix elements of multi-particle flux-tube excitations 
|pN 〉 ≡ |p1p2 . . .pN 〉 propagating with respective rapidities u = (u1, u2, . . . , uN) and interacting 
on the two-dimensional world-sheet of the loop (see Fig. 1 for a graphical representation),

WN =
∑∫

N,N ′,...,N ′′
〈0|PN−4|pN ′′(u′′)〉 . . . 〈pN ′(u′)|P2|pN(u)〉〈pN(u)|P1|0〉 , (1.2)

where we did not display for brevity the N − 5 accompanying propagation phases or integration 
measures. The subscripts on the flux-tube excitations cumulatively stand for their Lorentz spins 
and internal symmetry indices. The single-particle spectrum consists of (anti)gluons, scalars, aka 
holes,1 and (anti)fermions |p〉 = |ḡ〉, |g〉, |hAB〉, |�̄A〉, |�A〉, which transform in the 1, 1, 6, ̄4, 4
of the SU(4) internal symmetry group. In the above formula, the pentagon (or rather the su-

1 One can pass to O(6) indices instead making use of the 4 × 4 off-diagonal blocks �I,AB of the six-dimensional 
Dirac matrices in Euclidean metric, such that hAB = �I,ABhI /

√
2. These obey the following involution properties 

(�I,AB)∗ = �
I
AB ≡ εABCD�I,CD/2.
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perpentagon) P admits a terminating series in increasing powers of the Grassmann variable θA, 
carrying the index of the antifundamental representation of SU(4),

P=P + θAPA + 1
2!θAθBPAB + 1

3!θAθBθCPABC + 1
4!θAθBθCθDPABCD , (1.3)

starting with the singlet P followed by the SU(4) non-singlet, or charged, operators PA, PAB

etc.
The matrix elements in (1.2) can be written in the form

〈pN ′(v)|PA...|pN(u)〉 = [�A...]N |N ′(u|v)P (u|v) , (1.4)

where the second factor P(u|v) depends on the dynamics of the flux-tube excitations and was the 
subject of intensive research over the past several years [5–12]. In fact, it possesses a factorized 
form in terms of one-to-one particle pentagon transitions [5,10] as was rigorously demonstrated 
at leading order in ’t Hooft coupling g in the context of open (super)spin chains for the flux 
tube [13,14]. While the first (matrix) factor �A...

N |N ′(u|v) encodes information on the internal 
symmetry indices and enjoys rational dependence on differences of particles’ rapidities. It is 
independent of g and is thus purely kinematical in origin. It is the focus of the present work. 
At this point, it is worth pointing out that both of the above facts are, in principle, conjectures. 
However, they withstood all tests conducted to date against explicit data on scattering amplitudes 
made available by other means and methods. For the case at hand, the uniqueness of matrix part 
was again verified purely empirically as will be further discussed later.

Our subsequent presentation is organized as follows. In the next section, we start with the 
matrix elements of the singlet pentagon operator involving only holes and provide a systematics 
procedure for construction of all terms in its tensor decomposition which is based on the solu-
tion of Mirror and Watson equations obeyed by matrix pentagons. The seed for this recursion is 
provided by just one component which requires absolute fixing. Next, we move on to the purely 
fermion helicity-preserving transitions. Then we conclude with mixed fermion–hole singlet pen-
tagons and finally with the transition involving all charged excitations. In Sect. 3, we address 
the question of moving excitations from the initial to final state, giving an effective set of rules 
for fermions which lack a simple one-particle mirror transformation. We then demonstrate how 
to deduce the non-singlet transitions in Sect. 4 from the ones we just computed. We construct 
integrands of polygon loops in the flux-tube representation and verify our findings by comparing 
them with the integral representation suggested in Refs. [15,16] for the hexagonal Wilson loop in 
Sect. 5, finding agreement. In Appendix A we give a few examples of tensors with small number 
of particles, leaving the rest to the accompanying Mathematica notebook that contains routines 
for automatic solution of systems of Mirror and Watson equations, testing results against integral 
representation of the hexagon and limiting procedure to obtain all transition matrices from the 
minimal set considered in this paper.

2. Singlet pentagons

To begin with, we address the matrix structure of the lowest Grassmann component P in the 
expansion of the superpentagon P. We will discuss in turn three cases of increasing complexity 
from purely hole transition matrix elements passing to purely fermionic ones and finally address-
ing their mixed states.
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Fig. 2. Two contributions out of (2N − 1)!! of perfect pairings of O(6) indices of holes which are displayed in Eq. (2.4). 
The picture on the right shows the twisted graph which corresponds to the seed rational function for the recursive solution 
of the defining equations.

2.1. Hole matrices

We start with a comment. The singlet pentagon operator itself obviously does not carry any 
SU(4) indices, so its matrix elements can have a total even number of holes shared between the 
initial and final states. In this section we provide a solution to the diagonal N -to-N case. The 
particle number-changing transitions can be deduced from this one making use of the known 
double Wick, aka mirror, transformation properties which allow one to move excitations between 
different sides of the pentagon.

With this in mind, let us introduce transitions from the initial state of N scalars carrying 
rapidities u = (u1, . . . , uN) and O(6) indices2 I = (I1, . . . , IN), cumulatively called hI (u), to 
the final state of N scalars hJ (v),

P I |J (u|v) = 〈hJ (v)|P|hI (u)〉 . (2.1)

The above pentagons can be cast in the form of a scalar factor accompanied by an O(6) tensor

P I |J (u|v) = �I |J (u|v)Ph|h(u|v) . (2.2)

Here Ph|h(u|v) contains dynamical information about the transition of N -to-N hole states 
through the dependence on the ’t Hooft coupling. It was shown to admit a factorized form in 
terms of two-particle pentagons [5,10,13,14]

Ph|h(u|v) =

N∏
i,j

Ph|h(ui |vj )

N∏
i>j

Ph|h(ui |uj )
N∏

i<j

Ph|h(vi |vj )

. (2.3)

As was already stated in the Introduction, the matrix �I |J (u|v) does not depend on the cou-
pling constant and, as a function of the rapidity variables, it enjoys dependence only through 
their differences and is purely rational in nature. Its tensor decomposition runs over (2N − 1)!!
perfect pairings of all indices3

2 We will find useful using the SU(4) indices instead when discussing mixed matrix elements. For the time being the 
O(6) conventions are the most economical.

3 We adopt the numbering scheme that naturally emerges from a pairing routine in the accompanying Mathematica 
notebook.
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�I |J (u|v) = . . . + δI1J1δI2J2δI3J3 . . . δINJN π[(2N−1)!!+1]/2(u|v) + . . . (2.4)

+ δI1JN δI2JN−1δI3JN−2 . . . δINJ1π(2N−1)!!(u|v) ,

shown schematically in Fig. 2. The last matrix structure corresponds to the twisted graph, i.e., 
when the ordering on all of the sites on the top is completely reversed, i.e., (123 . . .N) →
(N . . .321). It will play a distinguished role in our consideration. In principle, one could intro-
duce extra tensor structures involving odd number of SO(6) Levi-Civita symbols for each sextet 
of holes. However, solution to Mirror and Watson equation combined with Bose symmetry do 
not yield nontrivial solutions for the corresponding structures. Thus, they will be ignored in what 
follows.

2.1.1. Solution to Mirror and Watson equations
The matrix pentagon (2.2) obeys a system of defining relations. It is formed by the Mirror and 

Watson equations. The first of this kind emerges from the invariance of the flux-tube background 
with respect to the double Wick rotation [1], which allows one to interchange space and time 
variables on the two-dimensional worldsheet of the loop. From the point of view of the hole 
excitation, this interchanges the energy and momentum in its dispersion relation. As a function of 
the rapidity variable, an analytic continuation that accomplishes this goal was found in Ref. [17]. 
For the hole-to-hole pentagon transition, it takes the following form [5]

Ph|h(u|vγ ) = Ph|h(v|u) , (2.5)

where γ stands for the aforementioned path in the complex rapidity plane. In fact, since Ph|h(u|v)

is a meromorphic function of rapidities with an infinite number of cuts equidistantly spaced along 
the imaginary axis [−2g + i(k + 1

2 ), 2g + i(k + 1
2 )], with k ∈ Z, the continuation vγ = v + i

implies going through the lowest cut in the upper half-plane and passing to another (mirror) 
Riemann sheet [17,18]. Multiple application of the mirror transformation to the same excitation 
allows one to move it from the initial to the final state, yielding a creation form factor [5]

Ph|h(u2γ |v) = Rhh(u, v)

Ph|h(u|v)
, Rhh(u, v) = 1

(u|v)1(u|v)2
. (2.6)

It is related to the inverse of the original transition pentagon up to an overall rational function 
Rhh(u, v) of hole rapidities. Here and below, we use the notation

(u|v)σ ≡ u − v + iσ (2.7)

to make expressions more compact. Obviously, (u|v)σ = −(v|u)−σ .
For the multi-hole matrix pentagon (2.1), moving α excitations from the top to bottom and 

the same number of the bottom ones to the top, say, in the clockwise direction, yields the same 
object but with accordingly changed rapidities and O(6) matrix structure. The Mirror equations, 
shown diagrammatically by the top panel in Fig. 3, then read

P I |J (u + 2iα|v + 3iᾱ) (2.8)

= P Iα+1,...,IN ,JN ,...,JN−α+1|Iα,...,I1,J1,...,JN−α (uα+1, . . . , uN , vN, . . . , vN−α+1|
uα, . . . , u1, v1, . . . , vN−α) .

Here we introduced vectors α and ᾱ with unit components

α = (

α︷ ︸︸ ︷
1, . . . ,1,0, . . .0) , ᾱ = (0, . . . ,0,

α︷ ︸︸ ︷
1, . . . ,1) (2.9)
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Fig. 3. From top to bottom: Graphical representation of the Mirror and Watson equations for (top and bottom) hole 
flux-tube excitations.

and their length α = |α| = |ᾱ|.
The Watson equations can be written either for the initial or final state. They are, respectively,

P I |J (u|v) = SI�+1I�|K�+1K�(u�,u�+1)P
I1,...,K�+1,K�,...,IN |J (u1, . . . , u�+1, u�, . . . , uN |v) ,

(2.10)
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P I |J (u|v) = SK�+1K�|J�+1J�(v�+1, v�)P
I |J1,...,K�+1,K�,...,JN (u|v1, . . . , v�+1, v�, . . . , vN) ,

(2.11)

with 1 ≤ � ≤ N − 1 and where the S-matrix for scattering of the sextet of scalar excitations

SI1I2|J1J2(u, v) (2.12)

= Shh(u, v)
[
δI1J1δI2J2s

(1)
hh (u, v) + δI1J2δI2J1s

(2)
hh (u, v) + δI1I2δJ1J2s

(3)
hh (u, v)

]
,

differs from the Zamolodchikovs’ O(6) matrix by the overall dynamical phase Shh(u, v) that 
encodes information on the flux-tube background as a function of the ’t Hooft coupling. The 
nested Bethe Ansatz uniquely determines the rational factors in front of the identity, permutation 
and annihilation tensors [19]

s
(1)
hh (u, v) = u − v

u − v − i
, s

(2)
hh (u, v) = −i

u − v − i
, (2.13)

s
(3)
hh (u, v) = i(u − v)

(u − v − i)(u − v − 2i)
,

respectively. The two equations, (2.10) and (2.11), contain identical information, so only one of 
them provides an independent set of relations between π -functions. As a consequence, one is 
free to choose one of the above for the recursive solution of form factors in question.

It is important to realize that the Watson equation alone is not sufficient in general to determine 
all coefficients recursively. One has to rely on the Mirror equation as well to express all π ’s in 
terms of just one, π(2N−1)!!(u|v), in front of the twisted matrix structure. This last one has to 
be absolutely fixed and the most stringent constraint for it arises from the Mirror equations. The 
latter are specific to the flux-tube dynamics of the maximally supersymmetric Yang–Mills theory 
and, therefore, cannot be used in a generic form factor program. They read

π(2N−1)!!(uα+1, . . . , uN , vN, . . . , vN−α+1|uα, . . . , u1, v1, . . . , vN−α)

π(2N−1)!!(u + 2iα|v + 3iᾱ)
(2.14)

=

α∏
j1=1

N∏
k1=α+1

(uj1 |uk1)0(uj1 |uk1)1

N∏
j2=N−α+1

N−α∏
k2=1

(vk2 |vj2)−1(vk2 |vj2)−2

α∏
j1=1

N−α∏
k1=1

(uj1 |vk1)1(uj1 |vk1)2

N∏
j2=N−α+1

N∏
k2=α+1

(uk2 |vj2)−1(uk2 |vj2)−2

.

The origin of the rational function in the right-hand side is traced back to the product of Rh|h
coefficients in Eq. (2.6). The solution to these equations is given by the quotient of same degree 
polynomials in rapidity variables in the numerator and denominator,

π(2N−1)!!(u|v) =

N−1∏
k1=1

N−k1∏
j1=1

(uj1 |vk1)0

N∏
j2=2

N−k2∏
k2=j2

(uj2 |vN−k2+2)1

N−1∏
j1=1

N−1∏
k1=j1+1

(uj1 |uk1)−1(vj1 |vk1)1

. (2.15)

The correctness of this solution was verified by means of dedicated perturbative analyses for 
low number of particles, see, e.g., Refs. [6,11]. We provide an explicit example for 2 → 2 and 
3 → 3 transitions in Appendix A.1. Expressions for larger number of particles are prohibitively 
long to be displayed explicitly in the paper and are more suitable in a symbolic form of the 
accompanying Mathematica notebook.
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2.2. Fermion matrices

Let us continue with pentagon transitions involving only fermions, namely, the ones corre-
sponding to N fermions in the initial state and the same number of antifermions in the final 
state

P A|
B(u|v) = 〈�̄B(v)|P|�A(u)〉 = �A|

B(u|v)P�|�(u|v) . (2.16)

These correspond to the helicity-preserving matrix elements. Notice that the SU(4) symmetry 
also allows for transitions involving quartets of (anti)fermions in addition to the excitations al-
ready present in the in- and out-states due to possibility to carry internal symmetry group indices 
by the four-dimensional Levi-Civita tensor, however, these will be obtained from the ones we are 
about to analyze by taking a particular limit.

The decomposition in independent tensors is straightforward and arises from the pairwise 
contraction of the bottom and top indices with Kronecker symbols and N ! permutations of either 
the top or bottom positions,

�A|
B(u|v) = δ

A1
B1

δ
A2
B2

. . . δ
AN

BN
π1(u|v) + · · · + δ

A1
BN

δ
A2
BN−1

. . . δ
AN

B1
πN !(u|v) , (2.17)

with displayed terms shown graphically in Fig. 2.
Fermions do not enjoy a simple mirror transformation [6] so we do not have an equation to fix 

the twisted component. However, by analogy with the case of scalars discussed in the previous 
section, we anticipate that the rational function should differ from it only marginally, i.e., possibly 
by the imaginary shifts due to different helicity of the excitations involved if at all. In fact, we 
conjecture the πN ! to take the form

πN !(u|v) =

N−1∏
k1=1

N−k1∏
j1=1

(uj1 |vk1)0

N∏
j2=2

N−k2∏
k2=j2

(uj2 |vN−k2+2)1

N−1∏
j1=1

N−1∏
k1=j1+1

(uj1 |uk1)−1(vj1 |vk1)1

. (2.18)

We want to emphasize that this form is intrinsic to the flux-tube dynamics.
This seed provides the solution for the matrix structure in question since all functions accom-

panying other structures can be extracted making use of the Watson equations alone, contrary to 
the scalar sector where the number of independent components is much higher and one has to 
rely on additional relations emerging from the Mirror equations. The Watson equations for the 
fermion take the same form as Eqs. (2.10)–(2.11) with obvious replacements of O(6) indices on 
the bottom/top with covariant/contravariant SU(4) indices and the fermion–fermion scattering 
matrix being

S
A1A2
B1B2

(u, v) = S��(u, v)
[
δ
A1
B1

δ
A2
B2

s
(1)
��(u, v) + δ

A1
B2

δ
A2
B1

s
(2)
��(u, v)

]
, (2.19)

where the component of the R-matrix are [20]

s
(1)
��(u, v) = u − v

u − v − i
, s

(2)
��(u, v) = −i

u − v − i
. (2.20)

Due to a much smaller number of independent structures in Eq. (2.17), recursive solution to Wat-
son equations allow one to find all π ’s starting with (2.18). We give an example in Appendix A.2. 
All other multi-particle pentagons can be found analogously making use of the automatic solver 
in the accompanying notebook.
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2.3. Mixed matrices

Last but not least, we address the case when both holes and (anti)fermions are present in the 
transition. We start with holes and antifermions, first, and then add fermions to the mix.

Namely, the N holes to 2N antifermion transitions,

P AB|
C(u|v) = 〈�̄C(v)|P|hAB(u)〉 , (2.21)

where the rapidity arrays are N , u = (u1, . . . , uN), and 2N , v = (v1, . . . , v2N), dimensional, 
respectively, and the sets of the SU(4) indices in the defining representation having the same 
lengths, A = (A1, . . . , AN), B = (B1, . . . , BN) and C = (C1, . . . , C2N). The above matrix ele-
ment factorizes as before

P AB|
C(u|v) = �AB|

C(u|v)Ph|�(u|v) . (2.22)

Here Ph|�(u|v) admits again the form

Ph|�(u|v) =

N,2N∏
i,j

Ph|�(ui |vj )

N∏
i>j

Ph|h(ui |uj )
2N∏
i<j

P�|�(vi |vj )

. (2.23)

The decomposition of �AB|
C(u|v) into independent tensors is accomplished in the same manner 

as for the purely fermionic transitions discussed above, i.e., generating 2N ! different pairings. 
However, this time one has to impose additional constraints for antisymmetry of N pairs of A
and B indices. This yields a total number of 2N !/2N independent structures,

�AB|
C(u|v) (2.24)

= δ
[A1
C1

δ
B1]
C2

. . . δ
[AN

C2N−1
δ
BN ]
C2N

π1(u|v) + · · · + δ
[AN

C1
δ
BN ]
C2

. . . δ
[A1
C2N−1

δ
B1]
C2N

π2N !/2N (u|v).

As in the purely fermionic case, there are no closed mirror equations for the amplitude in ques-
tion. So we will conjecture the twisted component again. It will take the form of the previous 
two cases, with a generalization to account for twice the number of rapidities on the top of the 
pentagon. Basically, we lump them up in nearest-neighbor pairs starting with the first position 
and double the number of rational factors in the numerator. Taking into account different values 
of helicity which result in half-integer imaginary shifts, we find

π2N !/2N (u|v) (2.25)

=

N−1∏
k1=1

N−k1∏
j1=1

(uj1 |v2k1−1)−1/2(uj1 |v2k1 )−1/2
N∏

j2=2

N−k2∏
k2=j2

(uj2 |v2N−2k2+1)3/2(uj2 |v2N−2k2+2)3/2

N−1∏
j1=1

N−1∏
k1=j1+1

(uj1 |uk1 )−1(uj1 |uk1 )−2
2N−1∏
j1=1

2N−1∏
k1=j1+1

(vj1 |vk1)1

.

The remaining functions in the tensor decomposition (2.24) arise from this by repeated use of 
(2N −1) final-state Watson equations involving fermionic S-matrices of the previous subsection. 
This is demonstrated on a simple example in Appendix A.3, with higher particle number cases 
deferred to the accompanying file.

Finally, it is left to consider all types of excitations with isotopic indices residing on the 
contour. The simplest case, that is the basis for all other possibilities, is of N fermions with 



A.V. Belitsky / Nuclear Physics B 923 (2017) 588–607 597
rapidities u = (u1, . . . , uN) and M holes with rapidities v = (v1, . . . , vM) on the bottom and 
N + 2M antifermions with rapidities w = (w1, . . . , wN+2M) on the top,

P ABC|
D(u,v|w) = 〈�̄D(w)|P|�A(u)hBC(v)〉 . (2.26)

Again the SU(4) matrix in the factorized expression

P ABC|
D(u,v|w) = �ABC|

D(u,v|w)P�h|�(u,v|w) (2.27)

admits the form

�ABC|
D(u,v|w) (2.28)

= δ
A1
D1

. . . δ
AN

DN
δ
[B1
DN+1

δ
C1]
DN+2

. . . δ
[BM

DN+2M−1
δ
CM ]
DN+2M

π1(u,v|w) + . . .

+ δ
A1
DN+2M

. . . δ
AN

D2M+1
δ
[B1
D2M

δ
C1]
D2M−1

. . . δ
[BM

D2
δ
CM ]
D1

π(N+2M)!/2M (u,v|w) .

The dynamical term has the same structure as earlier in terms of one-to-one pentagons

P�h|�(u,v|w) =

N,N+2M∏
i,j

P�|�(ui |wj)
M,N+2M∏

i,j

Ph|�(vi |wj)

N+2M∏
i<j

P�|�̄ (wi |wj)
N∏

i>j

P�|�̄ (ui |uj )
M∏

i>j

Ph|h(vi |vj )
M,N∏
i,j

Ph|�(vi |uj )

.

(2.29)

The twisted function in the matrix part now reads

π(N+2M)!/2M (u,v|w) = N1(u,v|w)N2(u,v|w)

D(u,v|w)
, (2.30)

where

N1(u,v|w) =
M∏

k=1

N+M−k∏
j=N+1

(vj |w2k−1)−1/2(vj |w2k)−1/2

N∏
j=1

(uj |w2k−1)0(uj |w2k)0

×
N+2M−1∏
k=2M+1

N+2M−k∏
j=N+1

(vj |wk)−1/2

N∏
j=1

(uj |wk)0 , (2.31)

N2(u,v|w) =
N−1∏
j=0

N−2∏
k=j

(uk+2|wN+2M−j )1

N+M−2∏
k=N−1

(vk+2|wN+2M−j )3/2

×
M−2∏
j=0

N+M−2∏
k=j+N

(vk+2|w2M−1−2j )3/2(vk+2|w2M−2j )3/2 , (2.32)

D(u,v|w) =
N∏

j<k=2

(uj |uk)−1

M∏
j<k=2

(vj |vk)−1(vj |vk)−2

×
N∏

j=1

M∏
k=1

(uj |vk)−3/2

N+2M∏
j<k=2

(wj |wk)1 . (2.33)

This is demonstrated in Fig. 4.
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Fig. 4. Distribution of excitations on the mixed pentagon. The rapidities of the first 2M antifermions on the top are 
lumped in pairs such that the twisted structure follows the same pattern as purely hole/fermion on up to different shift 
assignments.

These results are all one needs to extract other singlet pentagon transitions which are allowed 
by quantum numbers, namely, by sending pairs of (conjugate) hole (fermion and anifermion) as 
well as quartets of (anti)fermionic rapidities to infinity. The origin for this limiting procedure is 
discussed in Sect. 4 below.

3. Moving excitations around

To obtain non-diagonal transitions, i.e., involving different number of excitations on the top 
and the bottom or all of them residing on one side, we have to move particles around the contour. 
For scalars, it is straightforward and is accomplished with the help of the double Wick rotation 
already used in the derivation of the Mirror equations in Sect. 2.1.1. We will be interested here in 
the creation form factor but other cases can be obtained analogously. Starting with the N -to-N
transition (2.2), every time we get a hole from the bottom to the top side of the pentagon, we 
acquire one power of Rh|h. When we move all excitations from the bottom to the top, we deduce 
the form factor in question

P 0|IJ (0|u,v) = P Ī |J (ū2γ |v) = �0|IJ (0|u,v)P0|h(0|u,v) , (3.1)

where we used barred notations for reversed order of rapidities ū = (uN, . . . , u1) and O(6) in-
dices Ī = (IN , . . . , I1). Here we stripped the dynamical component from the emerging rational 
prefactors,

P0|h(0|u,v) = 1
N∏
i,j

Ph|h(ui |vj )
N∏

i<j

Ph|h(vi |vj )Ph|h(ui |uj )

, (3.2)

and shifting them into the SU(4) matrix, which reads as a result

�0|IJ (0|u,v) = �Ī |J (ū + 2i|v)

N∏
i,j

(ui |vj )1(ui |vj )2

(3.3)

in terms of the one determined for the transition amplitude (2.4). For instance, the matrix part of 
the two-hole creation form factor is
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�0|I1,I2(0|u) = δI1I2Rhh(u1, u2) , (3.4)

with Rhh(u1, u2) given in Eq. (2.6).
Fermions, on the other hand, do not have a one-particle mirror transformation. However, from 

the point of view of the matrix rational prefactor, the modification of changing the tensor as one 
“moves” fermions around should not be drastic. We found a useful mnemonic rule, which results 
in producing a rational factor every time we pass the fermion from the initial to the final state

R��(u, v) = 1

(u|v)2
. (3.5)

Recall that for scalars, the denominator of the rational factor was (u|v)1(u|v)2, see Eq. (2.6), 
while for gluons there will be none, i.e., it equals one. The fermion is somewhat intermediate 
between the two and thus was conjectured to have just one factor of particle rapidities. This is 
analogous to the consideration in Ref. [6] where a relation between single-fermion transition 
and two-fermion form factor was found using similar arguments. The creation form factor of N
fermions and N antifermions is

P 0|A
B(0|u,v) = �0|A

B(0|u,v)P0|�(0|u,v) , (3.6)

where the dynamical part,

P0|�(0|u,v) = 1
N∏
i,j

P�|�(ui |vj )
N∏

i<j

P�|�(vi |vj )
N∏

i<j

P�|�(ui |uj )

, (3.7)

is accompanied by the matrix one

�0|A
B(0|u,v) = �Ā|

B(ū + 2i|v)

N∏
i,j

(ui |vj )2

, (3.8)

similar to the rules for the hole excitations.
For the pentagon transitions involving both fermions and holes, one has to add the following 

mirror transformation

Ph|�(u2γ |v) = Rh�(u, v)

Ph|�(u|v)
, Rh�(u, v) = 1

(u|v)3/2
. (3.9)

Then the creation form factor of N scalars and 2N antifermions is

P 0|AB
C(0|u,v) = �0|AB

C(0|u,v)P0|h�(0|u,v) , (3.10)

where

P0|h�(0|u,v) = 1
N,2N∏

i,j

Ph|�(ui |vj )
2N∏
i<j

P�|�(vi |vj )
N∏

i<j

Ph|h(ui |uj )

, (3.11)

and

�0|AB
C(0|u,v) = �ĀB̄|

C(ū + 2i|v)

N∏
i,j

(ui |vj )3/2

. (3.12)
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Finally, for the pentagons with all excitations present on its top, using the rules advocated for 
the fermions and mirror transformation for the holes, we find

P 0|BCA
D(0|v,u,w) = �0|BCA

D(0|v,u,w)P0|h�̄�(0|v,u,w) , (3.13)

where the dynamical component is

P0|h�̄�(0|v,u,w) = 1
N+2M∏

i<j

P�|�̄ (wi |wj)
N∏

i<j

P�|�̄ (ui |uj )
M∏

i<j

Ph|h(vi |vj )

× 1
M,N∏
i,j

Ph|�(vi |uj )
N,N+2M∏

i,j

P�|�(ui |wj)
M,N+2M∏

i,j

Ph|�(vi |wj)

,

(3.14)

while the matrix part reads

�0|BCA
D(0|v,u,w) = �ABC|

D(ū + 2i, v̄ + 2i|w)

N,N+2M∏
i,j

(ui |wj)2

M,N+2M∏
i,j

(vi |wj)3/2

. (3.15)

4. Non-singlet pentagons

Having discussed the singlet pentagons, we are ready to discuss the non-singlet, or charged, 
transitions. We will not need to address anew equations they obey. We will provide expressions 
for these making use of the fact that fermions at zero momentum become supersymmetry gener-
ators [21]. While for the dynamical component the zero-momentum limit has to be taken on the 
small fermion sheet [4], where p = 0 corresponds to u → ∞, for the rational matrix this can be 
achieved without performing the analytical continuation and simply taking the infinite-rapidity 
limit. This allows one to find the 4 (and 4̄) pentagons, or rather their tensor structures

[�A1 ]...|...(u′|v) = lim
u1→∞u#

1�
A1...|

...(u|v) , (4.1)

where u′ is obtained from u by removing the rapidity associated with the SU(4) index A1, i.e., 
u′ = u\u1 = (u2, . . . , uN) and # is the exponent of the leading power behavior. The latter de-
pends on in- and out-states involved in the transition. In the current study it was empirically 
found on case-by-case basis. It should be possible to derive its generic form for an arbitrary 
transition, however, we have not succeeded in accomplishing this at the moment. One can take 
the limit with respect to any rapidity of fermions involved, yielding the pentagon charged with 
respect to the corresponding index. Identical considerations give the 4̄-pentagon when one sends 
corresponding anti-fermion rapidity to infinity or equivalently three fermionic ones.

From the point of view of the matrix structure, two fermions with antisymmetrized indices 
are identical to the hole insertion. Therefore, one can extract pentagons charged with respect to 
the 6 of SU(4) by sending corresponding hole rapidity to infinity,

[�I1]......(u′|v) = lim
u1→∞u#

1�
I1...

...(u|v) , (4.2)

where u′ is the same as above. Conversion back to the indices in the (anti)fundamental repre-
sentation can be achieved as discussed in the Footnote 1. Of course, in all cases it is irrelevant 
whether we pick up an excitation sent to infinite rapidity in the initial or final state.
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With expressions in hand for (2.16), the pentagons involving quartets of anti- and fermions 
arise from by taking the rapidities of conjugate excitations to infinity, e.g.,

εB1B2B3B4�
A1A2A3A4|0(u1, u2, u3, u4|0) (4.3)

= lim
v→∞v#�A1A2A3A4|

B1B2B3B4(u1, u2, u3, u4|v, v, v, v) ,

where

�A1A2A3A4|0(u1, u2, u3, u4|0) = εA1A2A3A4

4∏
i<j

(ui |uj )−1

. (4.4)

Another example is demonstrated in Appendix A.1.

5. Gluing up polygons

The known matrix form of pentagon transitions allows one to immediately construct higher 
polygons. We will address the scalars only as a case of study. It clearly demonstrates the glu-
ing procedure without the complication of dealing with different flux-tube excitations and their 
SU(4) indices. The contraction of SU(4) tensors is not a problem for symbolic manipulations 
but the cumbersome form of the output prevents us from displaying final results explicitly in the 
paper. Thus they are left for the accompanying notebook.

The contribution of Nh-hole state propagating in the N -gon is

W
Nh
N = 1

Nh!
∫

dμh �0|I (1)

(0|u(1))

[
N−6∏
�=1

�Ī (�)|I (�+1)

(−u(�)|u(�+1))

]
�0|Ī (N−5)

(0|ū(N−5))

× P0|h(0|u(1))

[
N−6∏
�=1

Ph|h(−u(�)|u(�+1))

]
P0|h(0|ū(N−5)) ,

where the integration measure is conventionally determined by (here for p = h)

dμh =
Nh∏
i=1

N−5∏
�=1

dμh(u
(�)
i ) , dμp(u

(�)) = du

2π
μ(u�)e

−τ�Ep(u
(�))+iσ�pp(u

(�)) , (5.1)

with propagation exponents included. Obviously, for the MHV polygon, the creation and annihi-
lation form factors are singlets and have an even number of holes. While for the NMHV case, the 
number of scalars is odd since the pentagon operator itself is a sextet of SU(4). The correspond-
ing index gets contracted directly between the top and bottom as all intermediate pentagons are 
charge-free. The three-particle case is displayed explicitly in Eq. (A.19) of Appendix A.1. Here 
and above we used the relation between the creation/annihilation form factors

P I |0(u|0) = P 0|I (0| − u) . (5.2)

The contraction of SU(4) matrices can easily be done but results in extremely long expressions 
due to the factorial growth of the number of functions involved, except, of course, for the two-
hole case which yields a product of N −6 factors (6π1 +π2 +π3) with arguments as shown in Eq. 
(5.1). With these results in hand, one can extend the consideration of Refs. [15,22,23] dedicated 
to the hexagon to the analysis of collinear expansion of any superloop at strong coupling.
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To date, there are no explicit results available in the literature for generic number of excitations 
for polygons with more than six sides. However, we can test our expressions for tensor functions 
against the matrix part of the hexagon proposed in Refs. [15,16]. These consistency cross checks 
are performed in the accompanying notebook for a number of examples with excitations less than 
ten, the main obstacle for reaching higher numbers being the highly time consuming extraction 
of the rational function from the integral representation in the above papers by taking the residues 
of the integrand as the number of auxiliary rapidities grows pretty fast.

6. Conclusions

In this paper, we developed a constructive method for determination of the internal symmetry 
group structure of multi-particle (non)singlet pentagons which enter as fundamental building 
blocks in the operator product expansion of scattering amplitudes in maximally supersymmetric 
Yang–Mills theory. The formalism is based upon analytical solution of a system of the Mirror 
and Watson equations obeyed by the corresponding transitions. Their recursive solution reduces 
all functions accompanying independent tensor structures to just one. The latter was conjectured 
to admit a rational form in terms rapidities of flux-tube excitations and verified a number of 
tests, which convince us in its correctness. With this final ingredient in place, the problem of 
near collinear expansion of scattering amplitudes at any value of the coupling could be viewed 
as completed. However, it would nevertheless be highly important to deduce multiple integral 
representation for contraction of pentagon tensors as they enter the actual scattering amplitudes, 
generalizing the earlier consideration for the hexagon [16].
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Appendix A. Explicit examples

Let us provide a few examples for each representative case.

A.1. Holes

We give the simplest example first, the two-to-two hole transition. The three independent 
matrix structures are parametrized by two sets of rapidities u = (u1, u2) and v = (v1, v2) for the 
initial and final states, respectively. The starting point of the recursion is

π3(u|v) = (u1|v1)0(u2|v2)1

(u1|u2)−1(v1|v2)1
, (A.1)

with the other two found from the Watson and Mirror equations

π2(u|v) = π3(u|v2, v1) − s
(2)
hh (v1, v2)π3(u|v)

s
(1)
hh (v1, v2)

, (A.2)

π1(u|v) = (u1|v1)0(u1|v1)−1(u2|v2)1(u2|v2)2

(u1|u2)−1(u1|u2)−2(v1|v2)1(v1|v2)2
π2(v1 + 2i, u1|v2, u2 + 3i) , (A.3)
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respectively. Substituting the explicit expressions for scattering matrix, we find an agreement 
with the result of Ref. [5] for the case at hand.

Next, for three-to-three scalar transition parametrized by rapidity arrays u = (u1, u2, u3) and 
v = (v1, v2, v3) for the initial and final state, respectively, the “boundary value” is set by

π15(u|v) = (u1|v1)0(u2|v1)0(u1|v2)0(u3|v2)1(u2|v3)1(u3|v3)1

(u1|u2)−1(u1|u3)−1(u2|u3)−1(v1|v2)1(v1|v3)1(v2|v3)1
. (A.4)

Then, one can immediately find with the help of a Mathematica routine in the accompanying 
notebook,

π14(u|v) = π15(u|v2, v1, v3) − s
(2)
hh (v1, v2)π15(u|v)

s
(1)
hh (v1, v2)

, (A.5)

π12(u|v) = π15(u|v1, v3, v2) − s
(2)
hh (v2, v3)π15(u|v)

s
(1)
hh (v2, v3)

, (A.6)

π11(u|v) = π14(u|v1, v3, v2) − s
(2)
hh (v2, v3)π14(u|v)

s
(1)
hh (v2, v3)

, (A.7)

π9(u|v) = π12(u|v2, v1, v3) − s
(2)
hh (v1, v2)π12(u|v)

s
(1)
hh (v1, v2)

, (A.8)

π8(u|v) = π11(u|v2, v1, v3) − s
(2)
hh (v1, v2)π11(u|v)

s
(1)
hh (v1, v2)

, (A.9)

π5(u|v)

= (u2|u3)−1(u2|u3)−2(u1|v1)0(u1|v1)−1(u1|v2)0(u1|v2)−1(u2|v3)1(u2|v3)2(u3|v3)1(u3|v3)2

(u1|u2)−1(u1|u2)−2(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v3)1(v1|v3)2(v2|v3)1(v2|v3)2

× π14(v2 + 2i, v1 + 2i, u1|v3, u3 + 3i, u2 + 3i) , (A.10)

π13(u|v) = (u1|v1)0(u1|v1)−1(u2|v1)0(u2|v1)−1(u3|v2)1(u3|v2)2(u3|v3)1(u3|v3)2

(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v2)1(v1|v2)2(v1|v3)1(v1|v3)2

× π8(v1 + 2i, u1, u2|v2, v3, u3 + 3i) , (A.11)

π1(u|v)

= (u2|u3)−1(u2|u3)−2(u1|v1)0(u1|v1)−1(u1|v2)0(u1|v2)−1(u2|v3)1(u2|v3)2(u3|v3)1(u3|v3)2

(u1|u2)−1(u1|u2)−2(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v3)1(v1|v3)2(v2|v3)1(v2|v3)2

× π8(v2 + 2i, v1 + 2i, u1|v3, u3 + 3i, u2 + 3i) , (A.12)

π10(u|v) = (u1|v1)0(u1|v1)−1(u2|v1)0(u2|v1)−1(u3|v2)1(u3|v2)2(u3|v3)1(u3|v3)2

(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v2)1(v1|v2)2(v1|v3)1(v1|v3)2

× π11(v1 + 2i, u1, u2|v2, v3, u3 + 3i) , (A.13)

π2(u|v)

= (u2|u3)−1(u2|u3)−2(u1|v1)0(u1|v1)−1(u1|v2)0(u1|v2)−1(u2|v3)1(u2|v3)2(u3|v3)1(u3|v3)2

(u1|u2)−1(u1|u2)−2(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v3)1(v1|v3)2(v2|v3)1(v2|v3)2

× π11(v2 + 2i, v1 + 2i, u1|v3, u3 + 3i, u2 + 3i) , (A.14)
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π6(u|v) = (u1|v1)0(u1|v1)−1(u2|v1)0(u2|v1)−1(u3|v2)1(u3|v2)2(u3|v3)1(u3|v3)2

(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v2)1(v1|v2)2(v1|v3)1(v1|v3)2

× π9(v1 + 2i, u1, u2|v2, v3, u3 + 3i) , (A.15)

π4(u|v)

= (u2|u3)−1(u2|u3)−2(u1|v1)0(u1|v1)−1(u1|v2)0(u1|v2)−1(u2|v3)1(u2|v3)2(u3|v3)1(u3|v3)2

(u1|u2)−1(u1|u2)−2(u2|u3)−1(u2|u3)−2(u1|u3)−1(u1|u3)−2(v1|v3)1(v1|v3)2(v2|v3)1(v2|v3)2

× π9(v2 + 2i, v1 + 2i, u1|v3, u3 + 3i, u2 + 3i) , (A.16)

π7(u|v) = π10(u|v2, v1, v3) − s
(2)
hh (v1, v2)π10(u|v)

s
(1)
hh (v1, v2)

, (A.17)

π3(u|v) = π2(u|v1, v3, v2) − s
(2)
hh (v2, v3)π2(u|v)

s
(1)
hh (v2, v3)

. (A.18)

In Sect. 5 dedicated to the construction of higher polygons, we need an expression for the 
charged pentagon creation form factor. As we explained in Sect. 3, all non-singlet pentagons can 
be found from the singlet ones. For the case at hand, we use the 2 → 2 hole transition and move 
all excitations to the top according to Eq. (4.2) and then, sending one of the rapidities there to 
infinity, we find, making use of the result (3.3),

[�I ]0|I1I2I3(0|v) = δI1I2δI3IR
(1)
hhh(v) + δI2I3δI1IR

(2)
hhh(v) + δI1I3δI2IR

(3)
hhh(v) . (A.19)

Here

R
(1)
hhh(v) = (v1|v3)3

(v1|v2)1(v1|v2)2(v1|v3)1(v1|v3)2(v2|v3)1
, (A.20)

R
(2)
hhh(v) = (v1|v3)−3

(v1|v2)1(v2|v3)1(v2|v3)2(v1|v3)1(v1|v3)2
, (A.21)

R
(3)
hhh(v) = − 1

(v1|v2)1(v1|v3)1(v1|v3)2(v2|v3)1
. (A.22)

Pentagons and form factors with larger number of particles are found in a similar manner.

A.2. Fermions

For the transition of three fermions with rapidities u = (u1, u2, u3) to three antifermions with 
v = (v1, v2, v3), we have

π6(u|v) = (u1|v1)0(u2|v1)0(u1|v2)0(u3|v2)1(u2|v3)1(u3|v3)1

(u1|u2)−1(u1|u3)−1(u2|u3)−1(v1|v2)1(v1|v3)1(v2|v3)1
, (A.23)

and the rest are found from Watson equations

π5(u|v) = π6(u|v2, v1, v3) − s
(2)
��(v1, v2)π6(u|v)

s
(1)
��(v1, v2)

, (A.24)

π4(u|v) = π6(u|v1, v3, v2) − s
(2)
��(v2, v3)π6(u|v)

(1)
, (A.25)
s��(v2, v3)
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π3(u|v) = π5(u|v1, v3, v2) − s
(2)
��(v2, v3)π5(u|v)

s
(1)
��(v2, v3)

, (A.26)

π2(u|v) = π4(u|v2, v1, v3) − s
(2)
��(v1, v2)π4(u|v)

s
(1)
��(v1, v2)

, (A.27)

π1(u|v) = π3(u|v2, v1, v3) − s
(2)
��(v1, v2)π3(u|v)

s
(1)
��(v1, v2)

. (A.28)

A.3. Holes and (anti)fermions

We move on to the final two examples. To start with, let us present expressions for two holes 
u = (u1, u2) to four fermions v = (v1, v2, v3, v4) transitions. The seed for the recursion is

π6(u|v) = (u1|v1)−1/2(u1|v2)−1/2(u2|v3)3/2(u2|v4)3/2

(u1|u2)−1(u1|u2)2(v1|v2)1(v1|v3)1(v1|v4)1(v2|v3)1(v2|v4)1(v3|v4)1
, (A.29)

with the rest being

π5(u|v) = π6(u|v1, v3, v2, v4) − s
(2)
��(v2, v3)π6(u|v)

s
(1)
��(v2, v3)

, (A.30)

π3(u|v) = π5(u|v1, v3, v2, v4) − s
(2)
��(v1, v2)π5(u|v)

s
(1)
��(v1, v2)

, (A.31)

π4(u|v) = π5(u|v1, v2, v4, v3) − s
(2)
��(v3, v4)π5(u|v)

s
(1)
��(v3, v4)

, (A.32)

π2(u|v) = π4(u|v2, v1, v3, v4) − s
(2)
��(v1, v2)π4(u|v)

s
(1)
��(v1, v2)

, (A.33)

π1(u|v) = π2(u|v1, v3, v2, v4) − s
(2)
��(v2, v3)π2(u|v)

s
(1)
��(v2, v3)

. (A.34)

Now, we demonstrate the case of two fermions and a hole on the bottom along with four 
antifermions on the top. The twisted component is

π12(u,v|w) (A.35)

= (u1|w1)0(u1|w2)0(u1|w3)0(u2|w1)0(u2|w2)0(u2|w4)1(v1|w3)3/2(v1|w4)3/2

(u1|u2)−1(u1|v1)−3/2(u2|v1)−3/2(w1|w2)1(w1|w3)1(w1|w4)1(w2|w3)1(w2|w4)1(w3|w4)1
,

with the remaining ones emerging from the Watson equations,

π11(u,v|w) = π12(u,v|w1,w3,w2,w4) − s
(2)
��(w2,w3)π12(u,v|w)

s
(1)
��(w2,w3)

, (A.36)

π9(u,v|w) = π12(u,v|w1,w2,w4,w3) − s
(2)
��(w3,w4)π12(u,v|w)

s
(1)
��(w3,w4)

, (A.37)

π10(u,v|w) = π11(u,v|w2,w1,w3,w4) − s
(2)
��(w1,w2)π11(u,v|w)

(1)
, (A.38)
s��(w1,w2)
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π8(u,v|w) = π11(u,v|w1,w2,w4,w3) − s
(2)
��(w3,w4)π11(u,v|w)

s
(1)
��(w3,w4)

, (A.39)

π7(u,v|w) = π10(u,v|w1,w2,w4,w3) − s
(2)
��(w3,w4)π10(u,v|w)

s
(1)
��(w3,w4)

, (A.40)

π6(u,v|w) = π9(u,v|w1,w3,w2,w4) − s
(2)
��(w2,w3)π9(u,v|w)

s
(1)
��(w2,w3)

, (A.41)

π5(u,v|w) = π8(u,v|w1,w3,w2,w4) − s
(2)
��(w2,w3)π8(u,v|w)

s
(1)
��(w2,w3)

, (A.42)

π4(u,v|w) = π7(u,v|w1,w3,w2,w4) − s
(2)
��(w2,w3)π7(u,v|w)

s
(1)
��(w2,w3)

, (A.43)

π3(u,v|w) = π6(u,v|w2,w1,w3,w4) − s
(2)
��(w1,w2)π6(u,v|w)

s
(1)
��(w1,w2)

, (A.44)

π2(u,v|w) = π5(u,v|w2,w1,w3,w4) − s
(2)
��(w1,w2)π5(u,v|w)

s
(1)
��(w1,w2)

, (A.45)

π1(u,v|w) = π4(u,v|w2,w1,w3,w4) − s
(2)
��(w1,w2)π4(u,v|w)

s
(1)
��(w1,w2)

. (A.46)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.nuclphysb.2017.08.011. 
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