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Abstract: Proteins can exist as multiple proteoforms in vivo, as a result of alternative splicing and
single-nucleotide polymorphisms (SNPs), as well as posttranslational processing. To address their
clinical significance in a context of diagnostic information, proteoforms require a more in-depth
analysis. Mass spectrometric immunoassays (MSIA) have been devised for studying structural
diversity in human proteins. MSIA enables protein profiling in a simple and high-throughput manner,
by combining the selectivity of targeted immunoassays, with the specificity of mass spectrometric
detection. MSIA has been used for qualitative and quantitative analysis of single and multiple
proteoforms, distinguishing between normal fluctuations and changes related to clinical conditions.
This mini review offers an overview of the development and application of mass spectrometric
immunoassays for clinical and population proteomics studies. Provided are examples of some
recent developments, and also discussed are the trends and challenges in mass spectrometry-based
immunoassays for the next-phase of clinical applications.
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1. Introduction

Protein biomarkers are utilized in clinical diagnosis, prognosis and treatment monitoring of
many diseases [1]. Today, numerous protein lab tests are being used to provide clinically relevant
information for evaluation of physiological states and existence of pathological condition. In biological
specimens that are commonly used for biomarker assessment (such as human serum, plasma and
urine), proteins are present in a large span of concentrations [2]. Therefore, detection and analysis of
protein biomarkers is very complex and challenging.

The majority of methods for analysis of protein biomarkers in clinics are designed for intact
protein analysis and provide information about the abundance of the targeted protein in the
biological sample [3,4]. These methods primarily use immunoaffinity capture of the protein,
followed by detection. Depending on the type of detection, several methods, such as enzyme-linked
immunosorbant assays (ELISAs), radioimmunoassays (RIAs), electrochemiluminescence immunoassays,
and immunoturbidimetry/immunonephelometry assays [5], have been adopted in clinical laboratories
for protein biomarker analyses.

Many proteins are known to exist as multiple variants (or proteoforms) in vivo [6,7].
The term “proteoform” has recently been adopted to explain protein derivatives which originate
from posttranslational processing, genetic polymorphisms and mutations, or truncations [8].
Posttranslational modifications (PTMs) are chemical alterations in protein structure, typically
catalyzed by substrate specific enzymes, which are under strict control. Combinations of different,
sub-stoichiometric PTMs introduce the heterogeneity of the protein population. Currently, there are
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more than 300 known types of PTMs [9]. The frequency and abundance of different proteoforms are
influenced by genetic predisposition, as well as environmental factors. Since the proteome is a dynamic
system and changes continuously, proteoforms distribution can be viewed as a fingerprint of the
physiological state at a specific time. Studying PTMs is necessary to better understand the proteome
dynamic changes and the effects different PTMs have on cellular phenotypes. Proteins that undergo
posttranslational processing exhibit changes in their molecular weight. Some PTMs add to the protein
mass (e.g., phosphorylation + 80 Da, acetylation + 42 Da, cysteinylation + 119 Da, glycation + 162 Da,
different glycosylation patterns add from +160 to more than 1 kDa). Truncations, on the other hand,
cause shifts towards lower molecular weights, as a result of the removal of a single N- or C-terminal
amino acid, or a small side chain in the amino acid sequence of the protein.

Posttranslational modifications can be tracked as disease markers or used as molecular targets
for developing target-specific therapies. They have a profound effect on the stability, activity, and
pharmacokinetics of many therapeutic proteins and are used in clinical diagnosis [10]. For example,
hemoglobin A1C (HbA1C) is a known proteoform that is used on regular basis for monitoring glucose
clearance in type 2 diabetes patients [11]. Approximately 10% of the Food and Drug Administration (FDA)
approved tests for clinical protein biomarkers in plasma or serum are designed for analysis of PTMs [12].

Numerous methods used in proteomics, from gel electrophoresis and affinity-based analytical
methods to structural interaction analyses and protein crystallography, can be applicable for analysis
of PTMs [13]. The main drawback for these methodologies is the complicated sample preparation
and processing, lack of high-throughput, and inability to unambiguously detect novel proteoforms.
Mass spectrometry (MS)-based protein assays hold great potential for in vitro detection of protein
biomarkers. MS-based methods measure the molecular mass of the protein target, which is a unique
property of each protein. The positive aspect of MS is that it is the only current detection method
that can unambiguously provide information about specific protein structural modifications, without
a priori knowledge of the modification. The protein mass of each fully expressed and functional protein
contains information about the gene that encodes the protein and the post-expression processing that
the protein undergoes. Hence, changes in the gene sequence and/or post-expression processing are
reflected in the mass of the whole protein, and can be detected via MS.

There are two main strategies to analyzing proteins using MS. In the bottom-up approach, proteins
present in biological samples are digested using proteolytic enzymes and their constituent peptide
fragments are detected via MS and more often tandem MS (MS/MS) [14–16]. Methods, such as stable
isotope standards and capture by anti-peptide antibodies (SISCAPA) [17,18] and stable isotope labels
with amino acids in cell culture (SILAC) [19] are geared towards detection of proteolytic peptides as
surrogate measures for protein quantification. The protein identification and/or quantification are
oftentimes based on the positive identification of selected peptides, leaving a large part of the protein
sequence un-assessed. A consequence of the limited sequence coverage in these bottom-up proteomics
approaches is possible loss of information about PTMs—(proteoforms without a priori knowledge of
their existence are not detected and analyzed). This major drawback has initialized development of
modified and improved bottom up strategies that are able to assess PTMs by implementing sample
pretreatment and/or specific peptide targeting [20]. Different labels have been used to mark the
peptide of interest, such as heavy isotope labels (in SILAC) [21], chemical labels (in isotope-coded
protein labeling—ICPL) [22], dimethyl labels, tandem mass tags (TMT) [23], and isobaric labels (in
isobaric tags for relative and absolute quantification—iTRAQ) [24]. Some of these labels are introduced
in the sample prior to digestion, while others are used to directly label the peptides following enzymatic
digestion. Due to the low abundance of PTMs in comparison to the originating proteins, multiple
approaches implement peptide enrichment to decrease the sample complexity and also to assist in
detection of the low abundance peptides [25,26]. Currently, more in-depth analysis of proteoforms,
as well as identification of novel PTMs is done by utilizing tandem mass spectrometry (MS/MS)
methods [27,28]. Tandem mass spectra are obtained by fragmentation of a precursor peptide ion
(chosen form a mass spectra obtained after enzymatic digestion on the protein target) into daughter
ions, utilizing either collision-induced dissociation (CID) or electron capture dissociation (ECD) [29–33].
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Tandem MS can provide two types of information; it can confirm the protein identification based on the
daughter ions and characteristics of the obtained peptide map and primary structure [34]. In addition,
the obtained information from the MS/MS allows for exact localization of posttranslational or other
modification sites, thus distinguishing between proteoforms that have the same mass shifts [28,35].
With the advanced data analysis programs, MS/MS can be used to confirm the PTM identification
and minimize the false positive proteoform identification [36]. In spite of the multiple processing and
analysis steps associated with tandem MS methods, they have been used in numerous studies for PTM
mapping and identification [37–40].

Top-down MS-based approaches analyze intact proteins, without previous fragmentation to
peptides [41,42]. These methods are better suited for proteoforms detection because they detect
the mass of the intact proteoforms, and cover the putative modifications in the entire protein
sequence. These methodologies can be suited to identify PTMs, gene variants as well as transcript
variations and the relative occupancy of the modification sites. The major advantage of the top-down
approaches is the simple sample preparation—when coupled with immunoaffinity capture of the
protein target, the specific MS detection enables for identification of all the present proteoforms
without complex sample pretreatment. Following isolation or extraction, intact proteins are ionized
(either by electrospray ionization—ESI, or matrix-assisted laser desorption ionization—MALDI) or
fragmented (in collision-induced dissociation—CID or infrared multiphoton dissociation—IRMPD),
and the resulting ions are analyzed using quadrupole time-of-flight (QTOF), fourier transform ion
cyclotron resonance (FT-ICR), TOF/TOF or orbitrap MS detectors [43].

Implementation of MS as a detection method for intact protein biomarkers analyses provides
with the much needed information about the profile of posttranslationally modified proteins that is
lacking using conventional immunoassays (Figure 1). As opposed to the sole comparison of the total
protein concentration between samples (as in conventional immunoassays) (Figure 1a), MS-based
methods have the ability to perform extensive analysis of the protein profile, including the distribution
of existing proteoforms (Figure 1b). The proteoform distribution represents a fingerprint of the
present physiological state related to the protein target, as well as an insight into the intrinsic protein
characteristics. In a single analysis MS enables for quantification of the protein of interest, but also
determines the presence and concentration of additional proteoforms. This added benefit of the
top-down MS to perform both qualitative profiling and quantitative analysis of multiple proteoforms
is a step forward in the protein biomarker assaying.
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Figure 1. Schematic representation of the differences between single protein biomarker analysis using
(a) conventional immunoassays (total protein concentration is measured); and (b) top-down MS-based
immunoassays (protein profile and all proteoform concentrations are measured).

Today, several top-down MS-based technologies are used for identification and quantification
of proteoforms in clinical diagnostic laboratories. Analysis of carbohydrate deficient transferrin
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(CDT) is performed for chronic alcohol abuse and, in combination with apolipoprotein C-III (apoC-III)
proteoforms, for congenital disorders of glucosylation (CDG) [44]. These assays utilize immunoaffinity
capture of transferrin (in CDT) and transferrin and apolipoprotein C-III (in CDG) with antibodies,
followed by electron spray ionization mass spectrometric (ESI-MS) detection. Results are presented as
different ratios between the glycosylated transferrin and apoC-III. Single reaction monitoring (SRM)
LC-MS methods have been developed for clinical analysis of intact insulin-like growth factors 1 (IGF1)
and 2 (IGF2) [45,46], and insulin [37] and their proteoforms. These assays show the benefit of top-down
MS-based approaches and are great examples of their potential and applicability for clinical assaying.

In the past 20 years, our group has been exploring the potential of proteoforms analyses for
different protein targets using immunoaffinity MS-based methodologies. As a result, a top-down
approach named mass spectrometric immunoassay (MSIA) has been developed and utilized in analysis
of numerous proteins and proteoforms.

2. Mass Spectrometric Immunoassay Principle

Mass spectrometric immunoassay (MSIA) was first conceptualized by Nelson et al. [47,48]. It is
a top-down approach for intact protein analysis where a micro-scale immunoaffinity capture is
combined with either ESI or MALDI-TOF mass spectrometric detection (Figure 2). Single or multiple
antibodies towards the targeted protein(s) are surface-immobilized in small, porous columns that are
fitted at the entrance of a pipettor tip, forming an affinity pipette (Figure 2a).
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Figure 2. Mass spectrometric immunoassay (MSIA) workflow (a) affinity pipettes derivatization with
antibody(ies); (b) introducing affinity pipette in biological sample; (c) protein(s) extraction; (d) rinsing
non-specifically bounded substances from the affinity pipette; (e) protein(s) elution with matrix;
(f) protein detection using MALDI-TOF MS or ESI MS

By sample aspiration and dispense through the tip, a close contact between the immobilized
antibody and the protein present in the biological sample is obtained (Figure 2b). This cycle of
aspirations/dispenses is repeated until enough protein is bound to the antibody (Figure 2c). Once the
protein is captured, the affinity pipette is washed to remove any loosely associated sample components
and non-specifically bounded proteins (Figure 2d). A small volume of MALDI matrix is then aspirated
into the affinity pipette (Figure 2e) and used to quickly deposit the protein-containing eluate directly
onto a MALDI target for subsequent MALDI TOF MS analysis (Figure 2f). If the sample is analyzed
using ESI MS, than the protein elution is done with 0.4% TFA.
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The dual specificity character of the mass spectrometric immunoassays offers a unique advantage
over conventional enzymatic immunoassays. The primary antibody utilized for the protein affinity
capture provides the first level of specificity. In addition, while sandwich ELISAs rely on binding of
a secondary antibody for protein detection, MSIA offers direct readout of the protein molecular mass,
which is an intrinsic characteristic of each protein. A signal in the mass spectrum at an m/z value that
corresponds to the protein theoretical molecular mass is a clear indication of the successful protein
extraction from the sample.

MSIA has potential to overcome several of the drawbacks associated with MS-based protein
assays—the simple sample preparation, the specific detection and high throughput. Because of the
“gentle” sample pretreatment (no digestion, or use of potent solvents and harsh chemicals), MSIA
analyzes of intact proteins hold a great potential for preserving the protein amino acid sequence for
further exploring its intrinsic properties. The detection and identification of the protein is based solely
on the molecular mass, which adds the necessary specificity. Additionally, MSIA can be executed
on an automated robotic platform, which makes it possible for parallel analyses of multiple samples.
Provided below are details about the method development and validation protocol used in MSIA,
which will further outline its potential for analysis of clinically significant proteins.

2.1. Method Development with Mass Spectrometric Immunoassay

Mass spectrometric immunoassay can be suited for both qualitative and quantitative analysis of
single and multiple proteins, thus, the method development will be highly dependent of the purpose
of the analysis. There are, however, general steps in the MSIA protocol, and those can be used as
guidelines for method development and validation (Figure 3).
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In the pre-analytical optimization when developing a qualitative MSIA, the initial step is the choice
of antibody(ies) towards the targeted protein (for a single protein assay) or proteins (for multiplexed
assays). Depending on the availability, this step usually requires testing of several commercially
available antibodies, or use of custom-made antibodies. For known proteins that are tested regularly
in clinics using immunoassays, the primary antibody from ELISA can be used for MSIA. For proteins
that are known to have posttranslational modifications, polyclonal antibodies should be used, due
to the broad specificity. Each antibody molecule has two binding sites, but the polyclonal antibody
contains multiple antibodies—each potentially targeting different epitope of the protein. Monoclonal
antibodies, on the other hand, are more selective, and evaluation of their efficiency needs to be proven
prior to their utilization in MSIA. Selected antibodies are then used to derivatize the immunoaffinity
pipettes. The amount of antibody in each pipette depends on the properties of the antibody and the
targeted protein, its binding kinetics, as well as the estimated protein abundance in the biological
specimen. The quantity of antibody needs to be sufficient to capture the targeted protein from the
analyzed sample. This amount can be optimized experimentally. The selection and optimization of the
antibody is one of the crucial steps for developing a successful MSIA.

The next step in the MSIA method development includes analyzing the antibody selectivity.
The antibody of choice needs to be able to capture only the targeted protein from the sample, but
not other biomolecules. To ensure the least interferences, multiple antibodies for the protein target
should be compared for their selectivity of protein capture. To analyze the affinity towards the targeted
protein, antibodies need to be tested with different dilutions of protein target standard (synthetized
with high purity or purchased). If available, protein depleted plasma (plasma without the targeted
protein) may be used to check for cross-reactivity of the antibody.

The derivatized affinity pipettes are next introduced to the biological sample. This step differs
significantly depending on the type of analysis. In qualitative MSIA, optimization of the sample
preparation is performed. For quantitative MSIA, there are several pre-preparation steps before
subjecting to the sample preparation (method optimization phase, Figure 3). This includes choosing
a protein standard, as well as an internal reference standard (IRS) for quantification. In quantitative
MSIA the choice on an IRS is one of the crucial steps in the method development. A single protein may
serve as an IRS if an antibody toward that protein is co-immobilized with the antibody toward the
targeted protein, and the analytical samples are spiked with constant amounts of that IRS. An important
prerequisite for the IRS is that it cannot be endogenous to human plasma or serum—its spiked
concentration in the analytical samples should always be constant and not influenced by the human
serum components. The IRS should also produce signals in the mass spectra that are in close proximity
of the targeted protein signal, so that the same MS acquisition parameters can be used for both proteins.
Another approach is to use homologous proteins from other animal species (such as equine protein) [49],
or protein derivatives (His-tag modified proteins, or methionine (Met) modified proteins) [50,51] as
IRS. These homologs are recognized by the anti-human protein antibody and are spiked into the
analytical sample. The single antibody then retrieves both, the target protein and the IRS, and they
register in the same region of the mass spectra, but at a slightly different m/z value.

When using exogenous IRS, the general rule for affinity pipettes derivatization is that they
should have higher affinity for the targeted protein than the IRS because the targeted protein varies in
concentration across the samples, while the IRS can be spiked and kept constant at levels sufficient to
saturate the anti-IRS antibody and produce constant signal in the mass spectra.

Protein standards (native and/or recombinant) can be utilized for generation of standard curve
for quantification. Standard curves are generated with serial dilution of a protein standard, in
a concentration range that is experimentally optimized. Linear standard curve should be fitted
in a wide or narrow concentration range, depending on the possible fluctuations of the targeted
protein in the biological specimen. The range of the standard curve should be sufficient to analyze
the protein from biological samples prepared in corresponding dilution. A common approach is to
optimize the concentration of the IRS and the protein standards in parallel, using empirical iterations.
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In a two-step approach, initially the concentration of the protein standard is kept constant, while the
IRS concentration is varied, until the anti-IRS antibody is completely saturated (resulting in constant
signal in the mass spectra). Next, keeping the IRS concentration constant, the protein standard
concentration is varied, and a standard curve range is established.

The biological specimen is prepared depending on the estimated physiological concentration
of the targeted protein. For high abundance proteins, samples require higher order dilutions (100ˆ,
1000ˆ) and lower initial sample volume, whereas low abundance protein targets require higher
volumes of undiluted sample. The sample preparation before the affinity capture usually requires only
simple dilution in sample buffer, just prior to analysis and does not involve digestion and/or extensive
sample preparation.

MSIA is suited to analyze sample volumes as little as few microliters (µL) to up to a few milliliters
(mL). The affinity pipettes are introduced in the samples, and affinity capture of the targeted protein
is achieved by keeping the antibodies on the pipettes in continuous contact with the proteins in the
biological sample. This is accomplished by repeated cycles of aspiration and dispense of a small
sample volume through the pipettes (typically, 50–100 µL). The continuous flow of sample through
the pipette enables for direct contact and capture of the targeted protein to the antibody. The cycle
counts can easily be adjusted on an automated platform enabling for sufficient interaction between the
protein and the antibody for prolonged times.

All analyses can be executed manually on a single-channel or 8- and 12-channels pipettors, or
on a 96-channel automatic pipettor, for additional high-throughput capacity. The samples, solvents
and buffers, as well as the MALDI matrix, are placed on the automated pipettor platform, and with
a computer-controlled program, all MSIA steps can be executed automatically. The entire process from
derivatized affinity pipettes, to mass spectra analysis takes approximately 1 hour for 96 samples in
parallel, making the full capacity of around 1000 samples per day [52].

Depending on the mass detection method, captured proteins are eluted from the bounded
antibody in the affinity pipette with MALDI matrix (for MALDI TOF MS) or trifluoroacetic acid—TFA
(for ESI MS). In the case of MALDI-TOF MS, the MALDI matrix (state what is the chemical compound
most commonly used) is aspirated several times through the pipette. The acidic base of the matrix
solvent disrupts the antibody-protein bond, releasing the protein from the affinity pipette to the target
plate, in preparation for the MS analysis.

Mass spectra are next acquired using either MALDI TOF or ESI MS. The choice and optimization
of MS detection method depends on several factors: (1) the characteristics of the protein target (MW,
known modifications, etc.); (2) type of analysis (qualitative, quantitative); and (3) availability. Usually
MALDI TOF (or TOF/TOF) MS is used for analysis of peptides and proteins with MW < 30 kDa.
ESI QTOF MS has been applied to high molecular weight proteins as well as peptides and/or proteins
that are known to be carboxylated (contain carboxylation sites in their sequence) [53,54]. In some cases,
both MALDI and ESI MS may be used as complement ionization methods for addressing protein
heterogeneity [53,55]. Following mass spectra acquisition (in MALDI) and after deconvolution (in
ESI), signals from the targeted protein from each biological sample are evaluated. The signal from
the targeted protein must be present at the exact m/z value as the theoretically expected, and with
signal-to-noise (S/N) > 5 when using corresponding antibody.

In the method development phase, the antibody selectivity is examined by analyzing the binding
between the antibody and the protein form the samples. The optimized MSIA is expected to result
in signal(s) in the mass spectra originating from the targeted protein that appear when the sample is
analyzed using the derivatized affinity pipettes with the corresponding anti-target antibody, but must
not be present when no antibody is present, or when affinity pipettes derivatized with other antibodies
are used. In addition, the background dependent of the assay execution must be maintained to <50%.

To account for possible physiological differences in the specimen, prior to application onto clinical
samples, the targeted MSIA can be evaluated in fresh, pooled, hemolyzed and lipemic plasma samples.
Also, the effect of anticoagulants can be examined by analyzing Na-EDTA, K-EDTA, Na-citrate, and
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heparin plasma, as well as serum samples. Freeze and thaw stability are examined by analyzing
the protein in single sample after multiple freeze-thaw cycles. Bench-top stability is further used to
evaluate the stability of the protein target during the sample preparation and assaying.

Following method optimization, MSIA is applied in screening of the targeted protein(s) in healthy
population, as well as in clinical cohorts. By performing cross-sectional and/or longitudinal screenings,
potential protein biomarkers can be assessed in both physiological and pathological context.

2.2. Method Validation for Quantitative Mass Spectrometric Immunoassay

Assay validation is a crucial step to verify the consistency, reproducibility, and high-throughput
of the developed MSIA, as well as to confirm the feasibility for further application in analysis
of clinically significant targets. There are numerous protocols that focus on addressing the
benefits and standardizing the criteria for application of MS-based methodologies for clinical
assays [56–58]. Carr et al. present a detailed review of a validation platform according to the established
“fit-for-purpose” approach [59]. Initially, the reproducibility of the response of the calibration curves
for each of the proteins needs to be addressed by inter- and intra-day precision experiments, performed
by analyzing a minimum of 20 human plasma samples in relevant matrices (e.g., biological replicates,
and pooled samples). All experiments are performed in a minimum of triplicate measurement (up
to five replicates in a single run) to address reproducibility. The analytical validation also includes
measurement of assay precision, definition of the linear range and determination of the limit of
detection (LOD) and lower limit of quantification (LLOQ) using standardized protocols [60]. Linearity
experiments are done by serially diluting samples with known protein concentration, analyzing them
with MSIA, and comparing the results with those expected. Spiking recovery experiments are further
performed by spiking the protein target standard into biological sample and retrieving the expected
standard concentration with the sample protein in a single run. Coefficients of variation (CV) levels of
<10%, and linearity and recovery between 85% and 115% are accepted when comparing the obtained
measurements with the theoretically expected in the MSIA platform.

As a final step of the method validation, each developed MSIA is benchmarked against
commercially available ELISA (or other immunoassay) for the protein target. Method comparison is
done by analyzing a minimum of 20 plasma samples (in duplicates) with MSIA and commercially
available ELISA in parallel. Obtained results are then compared using Bland-Altman [61] and
Passing-Bablook [62] method comparison tests.

2.3. Challenges and Limitations of Mass Spectrometric Immunoassay

There are several limitations that make method development in MSIA challenging. Majority of
concerns are associated with all MS-based methodologies, since most top-down and some bottom-up
approaches utilize either MALDI or ESI MS. Optimizations are required regarding the ionization
efficiency, reproducibility and high-molecular weight (HMW) protein detection using MALDI and
ESI MS. In practice, the ionization is highly dependent on the protein target and its composition.
For example, MALDI is more suitable for protein targets with more basic and aromatic amino
acids in the sequence, whereas ESI can more efficiently be applied for ionization of hydrophobic
proteins [26,63,64]. Regarding the molecular weight, MALDI is more suitable for small and medium
size proteins (up to 30 kDa), but does not have the required resolution that ESI has for HMW proteins.
For quantitative measures, the major concerns are regarding the reproducibility of the analyses [65].
Controls in every step of the method development need to be used. Additionally, the addition of the
IRS is beneficial to account for the between and within run variability.

As an immunoaffinity capture-based methodology, the primary limitation of MSIA, is the
availability of high quality antibodies. The selected antibodies must be with high purity; for example,
polyclonal antibodies need to be subjected to immunogen-based affinity purification and, monoclonal
antibodies should be affinity purified at least by protein A or protein G-based affinity purification.
The low performance of the antibody is addressed early in the method development and can be
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overcome by testing other sources, or use mixture of antibodies towards the same target. Additionally,
formulation buffers must not contain functional groups that might affect the covalent binding of
antibodies to the immobilization surface so, for example, TRIS or carrier proteins cannot be used
when coupling antibodies to carboxyl-functionalized tips using carbonyldiimidazole during the
derivatization [66].

Other limitations associated with the experimental design and the sample preparation, such as
storage, absence of signals in the mass spectra, poor quality metrics may be addressed by carefully
choosing the analytes (buffers, standards, and samples) and controlling every step during the
method development.

3. Identification and Analysis of Proteoforms with Mass Spectrometric Immunoassay

Mass spectrometric immunoassay has a great advantage over the conventional immunoassays
because of the way it looks at proteins. The soft MALDI ionization preserves the protein in its native
form, and produces signals in the mass spectra originating from the full-length form of the targeted
protein, as well as different proteoforms in a present state. MSIA has the potential to identify known,
as well as novel PTMs by analyzing the signals that appear in the mass spectra. The PTM signal
can be initially assigned by accurate measurement of the mass shift and knowledge of the protein
sequence. After identification, further quantification of the proteoforms is enabled with the use of the
internal reference standard and standard curves, and is calculated as a percentage of the total protein
concentration. Mapping the detected and quantified novel proteoforms aids the general knowledge
about the analyzed proteins.

This approach is useful because a clinical condition, or an exogenous factor, such as introducing
some medication, may trigger changes in the metabolic processes in the cells, inducing more or less
specific enzymes secretion. The enzymes may induce cleavages in protein targets, resulting in changes
in the distribution and abundance of different proteoforms.

Some of the widely utilized biomarkers of disease, such as cystatin C [67,68], prostate-specific
antigen [69] or cardiac troponin I [70,71], are known to exist as several forms in vivo. Other proteins,
such as hemoglobin, serum amyloid A and numerous membrane proteins and enzymes, have genetic
polymorphisms that induce expression of variable proteoforms, each unique for an individual. MSIA
has the ability to identify and further quantify such heterogeneity, which is presented further through
the following example.

Serum amyloid A protein (SAA) is coded by 4 genes (SAA1, SAA2, SAA3 and SAA4), 3 of which
are expressed in humans (SAA1, SAA2 and SAA4), and 2 of which direct synthesis of 5 (SAA 1.1,
SAA 1.2, SAA 1.3, SAA 1.4 and SAA 1.5) and 2 (SAA 2.1 and SAA 2.2) SAA proteins [72,73]. Moreover,
truncated proteoforms of SAA have been known [74–76].

Immunoassays that are commonly used in clinics for assessment of SAA protein, provide with
quantitative readout that equals the total SAA concentration. However, they do not possess the
capability to distinguish between different SAA polymorphic variants and truncated proteoforms
in a single analysis. MSIA can be successfully used in such cases. SAA is a crucial inflammation
biomarker related to numerous clinical conditions [73,77–80]. In addition, expression of certain SAA
polymorphic variants has been associated with differences in the basal SAA concentration [81,82].
Therefore, it is justified to develop an assay for analysis of SAA proteoforms. In our previous work,
we have developed MSIA for analysis of SAA in human plasma samples (Figure 4) [83]. Presented in
Figure 4a is a typical mass spectra obtained with MSIA for SAA. Present in the mass spectrum are:
BL signal at m/z = 18,281 Da, originating from beta lactoblobulin (an exogenous protein standard
that was used as an IRS), as well as multiple signals in the m/z range between 11.2 and 11.8 kDa,
representing various proteoforms of SAA. Shown in Figure 4b–e are MALDI-TOF mass spectra in
a narrower m/z range, showing SAA from four different human plasma samples. Note that multiple
signals originating from SAA1 and SAA2 gene products are present. The sample in Figure 4b contains
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only the SAA 1.1 proteoform, a product of SAA1 gene, whereas Figure 4e contains a single SAA 1.3
protein. Samples in Figure 4c,d contain multiple SAA polymorphic variants as shown.Proteomes 2016, 4, 13 10 of 19 
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Figure 4. Example mass spectra obtained using MSIA, from different individuals expressing single
and multiple SAA polymorphic variants. (a). MALDI-TOF mass spectra obtained from analysis of
SAA in human plasma sample, using beta lactoglobulin (BL) as an internal reference standard; (b)–(e).
Close-up of SAA from 4 different human plasma samples; (b) SAA 1.1 polymorphic variant (expressed
are signals from the native SAA 1.1, as well as two SAA 1.1 proteoforms lacking one (des-R) and
two (des-RS) N-terminal amino acids); (c) SAA 1.1/1.2 polymorphic variant (two SAA polymorphic
variants are expressed, together with the corresponding truncated proteoforms); (d) SAA 1.1/1.3/2.1
polymorphic variant (three SAA polymorphic variants are expressed) and (e) SAA 1.3 polymorphic
variant. Note that beside the originating full-length SAA protein, all samples present with truncated
proteoforms; SAA proteoforms in the figure are labeled according to the revised nomenclature for
serum amyloid A by the nomenclature committee of the international society of amyloidosis [84].

In addition to the genetic variations that were found to be different among the samples, SAA
presented with additional proteoforms. Using MSIA, truncated SAA proteoforms, lacking one, (des-R
SAA), two (des-RS SAA) or more amino acids from the N-terminal of the native protein sequence
were identified and analyzed (Supplementary Table S1). Truncated proteoforms were confirmed for all
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identified SAA proteins, regardless of the polymorphic variant, as presented in the mass spectra in
Figure 4.

Quantification of all identified SAA proteoforms (native and truncated) was performed using
a generated standard curve. Each standard curve was constructed from the ratio between the intensities
of the SAA standard signal and the BL signal (SAAstd/BL, y-axis) against the concentration of the
SAA standard (c(SAA)std, x-axis). Linear fitted curve was constructed and the generated equation
was used to calculate the total SAA concentration in the plasma samples. The concentration of each
separate SAA proteoform was calculated as a percentage from the total SAA, as calculated from the
signal intensity of each PTM peak vs. the sum of all peak intensities in the sample. An example of
a SAA standard curve together with the corresponding mass spectra from the standards is presented
in Figure 5.
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Figure 5. (a) Mass spectra from serum amyloid A (SAA) standard in different dilutions, and beta
lactoglobulin (BL) as an internal reference standard (IRS), obtained using MSIA; (b) generated standard
curve from SAA and BL as an IRS.

Additionally, for calculation of the concentration of SAA proteoforms in the samples, every
generated standard curve (with each run) is used to address the within-assay variability. A control
sample is analyzed in triplicates with each sample set and the same standard set, and the CV
is calculated from the mean and standard deviation between the retrieved SAA concentrations.
Coefficient of variation lower than 10% must be obtained in order to accept the results from the samples.

4. Mass Spectrometry Immunoassay for Clinically Significant Proteoforms

Since 1995, our group has published extensively on MSIA including core technology conception
and development [47], assay development for dozens of human proteins [85–88], novel data modeling
approaches [89], and also demonstrated ultra-high throughput application for >1000 samples per
day intended for clinical use [52]. Listed in Table 1 are mass spectrometric immunoassays for human
proteins expressing various proteoforms.
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Table 1. Mass spectrometric immunoassays for analysis of human proteins exhibiting various
proteoforms. The listing order is: single protein targets, multiplexed assays (with simultaneous
analysis of two or more proteins) and multiple target analyses (population proteomics studies of
multiple protein biomarkers).

Protein Target(s) * MSIA Approach Study Reference

Single protein assays

Apolipoprotein A-I Qualitative Clinical application [90]

Apolipoprotein C-III Quantitative Clinical application [91]

Beta 2-microglobulin Qualitative
Quantitative

Method development and application
Method development

[92]
[85]

Brain natriuretic peptide Quantitative Method development and application [93]

C-peptide Qualitative Method development and application [94]

C-reactive protein Quantitative Method development and application [95]

Cystatin C Qualitative
Quantitative

Population proteomics
Method development and application

[96]
[97]

Vitamin D-binding protein Qualitative Clinical proteomics [54,55,98]

Haptoglobin Qualitative Method development and application [99]

Insulin-like growth factor 1 Quantitative Method development
Population proteomics

[88]
[52]

Insulin Qualitative
Quantitative Method development and application [100]

Macrophage migration inhibitory factor Quantitative Method development [50]

Osteocalcin Qualitative Method development and application [53]

Parathyroid hormone-related protein Qualitative Method development and application [101]

Regulated on activation, normal T cell
expressed and secreted

Qualitative
Quantitative

Clinical proteomics
Method development

[102]
[51]

Retinol-binding protein Qualitative
Quantitative

Method development and application
Method development

[103]
[86]

Serum amyloid A Qualitative
Quantitative

Method development and application
Clinical application

[83]
[104]

Serum amyloid P Qualitative Method development [105]

Transthyretin Quantitative Method development [106]

Multiplexed assays **

Apolipoprotein C-I
Apolipoprotein C-II
Apolipoprotein C-III

Qualitative
Quantitative

Method development
Method development [107]

Apolipoprotein A-I,
Apolipoprotein A-II,
Apolipoprotein E

Qualitative Method development and application [108]

Insulin-like growth factor 1,
Insulin-like growth factor 2 Qualitative Method development [88,109]

Serum amyloid A,
Transthyretin,
Myoglobin

Qualitative Method development and application [110]

Multiple protein targets ***

Transthyretin,
Transferrin Qualitative Method application, population proteomics [111]

Transthyretin,
Retinol-binding protein Qualitative Method development and application [87]

Multiple targets Quantitative Population proteomics [112–117]

Multiple targets Qualitative Clinical proteomics [89]

* Note that references in the table are presented alphabetically. The protein targets are labeled using full names;
** Multiplexed assays provide simultaneous analysis of several proteins in single run; *** Multiple protein
target assays are applied in screening proteoforms from several proteins in separate assays.
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MSIA qualitative assays have identified novel proteoforms originating from several human
plasma proteins, annotated entries in the Uniprot database for apolipoprotein A-I (P02647),
apolipoprotein A-II (P02652), C-reactive protein (P02741), insulin-like growth factor II (P01344), retinol
binding protein (P02753), serum amyloid A (P02735), and serum amyloid P (P02743).

Protein heterogeneity and distribution has been analyzed in wide-range proteoforms-discovery
studies, in order to explore the high throughput potential of MSIA [115,116]. The range of proteoforms
concentrations in large cohorts (more than 500 samples) was analyzed in healthy population [112], in
an endeavor termed population proteomics [117,118]. Population proteomics studies have provided
information about the distribution and frequency of abundance of proteoforms originating from
proteins such as cystatin C, transthyretin, beta 2-microglobulin and retinol binding protein [114,115].
In addition, changes in protein profiles in time have been monitored, by performing a longitudinal
study of the proteoform distribution [112].

More recently, our research has been focused on clinical biomarker discovery/rediscovery. MSIA
has been applied to few well-characterized clinical cohorts in order to identify specific proteins and
novel proteoforms relevant to lipid metabolism, type 2 diabetes (T2D), and cardiovascular diseases
(CVD). Using statistical methods, several clinically relevant correlations were identified, such as greater
apolipoprotein A-I oxidation in patients with T2D and CVD compared to participants with diabetes
but without CVD, or controls without diabetes [90]. Additionally, a unique truncation proteoform of
SAA missing one N-terminal arginine (R) residue (des-R SAA) was lower in T2D [104].

Most significant were the findings related to apolipoproteins (apo) C-I, C-II and C-III analysis.
ApoC-I, C-II and C-III are major apolipoproteins within triglyceride (TG)-rich particles that regulate
multiple functions, and are linked to many lipid disorders [119]. ApoCs are known to exist in several
proteoforms in vivo [120], but their influence on triglycerides and lipid metabolism are not well known.
Quantitative MSIA was recently developed that enabled for simultaneous analysis of apoC-I, C-II and
C-III, utilizing chicken egg lysozyme (Lys) as an IRS for quantification [107]. This single assay enabled
for detection and analysis of total of 13 apoCs proteoforms (Supplementary Figure S1, Supplementary
Table S2). The multiplexed MSIA for apoCs was applied in analysis of 204 samples from obese
adolescent individuals. The results indicated that specific proteoforms of apoC-III, are associated
with fasting plasma TG [91]. In the same samples, other proteoforms, or total apoC measures, did
not present with such relationships. Measurement of apoC-III proteoforms can, therefore, be used to
provide important insights into the biology of TG metabolism and in conditions such as obesity and
metabolic syndrome.

These data are powerful examples of how MSIA can be applied for clinical assessment of protein
biomarkers. Measuring proteoforms of candidate biomarkers and looking at the complete protein
profile as a complement to the quantitative measure, can yield valuable new insight into disease risk
assessment and therapeutic management.

5. Conclusions

Mass spectrometry-based assays have come a long way in the past few decades, and slowly
but surely are finding their place in clinical laboratories. Efforts are being made in both bottom-up
and top-down MS in order enable a productive biomarker profiling. Reliable protein profiling is
of particular importance in the area of biomarker research where not only proteins, but different
proteoforms need to be consistently identified and quantified across large patient cohorts. Advantages
of current MS-based methodologies include improvements on the technological side in terms of low
acquisition and operating costs, ease of use, ruggedness, and high throughput ability. When coupled
with innovative sample preparation strategies and applied to important clinical problems, they have
the potential to deliver rapid, sensitive, and cost-effective assays [121].

MSIA and similar affinity-based MS methodologies are paving their way into the clinical world.
With proper clinical designs in place, MSIA undoubtedly has the potential to be emerged for analysis
of more and more candidate protein biomarkers. The simple and streamlined workflow gives MSIA
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and similar MS-based methodologies a great advantage for clinical biomarker assaying. These assays
provide the solid foundation for the future, which will aim to implement a novel perspective of the
protein biomarker world, introducing simplicity for complex protein profiling.

Supplementary Materials: The following are available online at www.mdpi.com/2227-7382/4/1/13/s1,
Table S1: Serum Amyloid A (SAA) proteoforms identified using mass spectrometric immunoassay; Table S2:
Apolipoproteins C-I (apoC-I), C-II (apoC-II) and C-III (apoC-III) proteoforms identified using mass spectrometric
immunoassay; Figure S1. Liner mass spectra obtained apolipoproteins C-I, C-II and C-III proteoforms in human
plasma sample using MSIA with checken-egg lysozyme as an IRS.
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apoA-I Apolipoprotein A-I
apoA-II Apolipoprotein A-II
apoE Apolipoprotein E
apoC-I Apolipoprotein C-I
apoC-II Apolipoprotein C-II
apoC-III Apolipoprotein C-III
B2m Beta 2-microglobulin
BNP Brain natriuretic peptide
C-peptide C-peptide
CRP C-reactive protein
cysC Cystatin C
GcG Vitamin D-binding protein
IGF1 Insulin-like growth factor 1
IGF2 Insulin-like growth factor 2
MIF Macrophage migration inhibitory factor
MYO Myoglobin
PTH Parathyroid hormone-related protein
RANTES Regulated on Activation, Normal T Cell Expressed and Secreted
RBP Retinol-binding protein
SAA Serum amyloid A
TRFE Transferrin
TTR Transthyretin
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