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Spherical catalytic micromotors fabricated as described in Wheat et al. [Langmuir 26, 13052 (2010)] show
fuel concentration dependent translational and rotational velocity. The motors possess short-time and long-time
diffusivities that scale with the translational and rotational velocity with respect to fuel concentration. The
short-time diffusivities are two to three orders of magnitude larger than the diffusivity of a Brownian sphere of
the same size, increase linearly with concentration, and scale as v2/2ω. The measured long-time diffusivities are
five times lower than the short-time diffusivities, scale as v2/{2Dr [1 + (ω/Dr )2]}, and exhibit a maximum as a
function of concentration. Maximums of effective diffusivity can be achieved when the rotational velocity has a
higher order of dependence on the controlling parameter(s), for example fuel concentration, than the translational
velocity. A maximum in diffusivity suggests that motors can be separated or concentrated using gradients in fuel
concentration. The decrease of diffusivity with time suggests that motors will have a high collision probability
in confined spaces and over short times; but will not disperse over relatively long distances and times. The
combination of concentration dependent diffusive time scales and nonmonotonic diffusivity of circle-swimming
motors suggests that we can expect complex particle responses in confined geometries and in spatially dependent
fuel concentration gradients.
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I. INTRODUCTION

Synthetic nanomotors are being developed to mimic
nanoscale biomotors present in biological systems. Efforts
in this area range from synthetic modifications on exist-
ing biomotors [1–5] to purely synthetic catalytic bimetallic
nanomotors [5–8]. Motion of the synthetic motors has been
achieved using a number of propulsion mechanisms including
autodiffusiophoresis [9–11], autoelectrophoresis [6,7,12–14],
and bubble generation [15,16]. There are numerous reviews
of motors and we point to Ebbens and Howse [17] for a
general review of motors and to Paxton, Sen, and Mallouk [7]
or Wang [18] for reviews of self-electrophoretic motors.

Bimetallic nanomotors have been engineered to swim at
100 body lengths per second as well as pick up, haul, and
release micrometer-scale cargo [19,20]. Their motion can be
controlled using external magnetic fields [19,21] as well as
chemical [22–24] and thermal [25] fields. Catalytic bimetallic
nanomotors propel themselves by electrocatalytically decom-
posing hydrogen peroxide (H2O2) [7,14,26,27] through a
mechanism we recently described as reaction induced charge
autoelectrophoresis (RICA) [26,27]. Bimetallic nanomotors
in an aqueous hydrogen peroxide solution catalyze peroxide
oxidation at one of the metal surfaces (anode), generating pro-
tons, electrons, and oxygen molecules. The electrons conduct
through the motor to the other metal surface (cathode) and
complete the reduction reaction by combining with protons,
peroxide, and oxygen to generate water. The asymmetric
reactions result in an excess and depletion of protons in
the surrounding electrolyte at the anode and cathode ends,
respectively. The proton imbalance results in asymmetric free
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charge density, which generates an electric dipole and field
pointing from the anode to the cathode. In addition, the
particle’s negative surface charge attracts cations from the bulk
solution which form a positively charged diffuse screening
layer surrounding the particle. The self-generated electric field
couples with the charge density induced by both the reactions
and the diffuse layer to produce an electrical body force that
drives fluid from the anode to the cathode. The fluid motion
results in locomotion of the motor in the direction of the anode.
Net motion of the nanomotor requires some native charge, or
zeta potential. The nanomotor velocity is linearly dependent on
the reaction flux density and the native surface charge [26,27].
Most synthetic motors are rotationally diffusive, which means
that although the motors have an advective velocity controlled
mainly by some chemical concentration, their orientation is
dictated by Brownian fluctuations.

Motors that are fabricated to swim with nonzero mean
rotational velocity ω, in addition to rotational Brownian
motion, are capable of more complex motion than rotationally
diffusive swimmers. We classify motors with nonzero mean
translational and rotational velocities as circle swimmers.
Circle swimming motors can be fabricated by combining two
individual motors [10] or by growing an additional segment
[28,29] on the motor such that an asymmetric force profile is
generated. Ebbens et al. studied the behavior of these diffu-
siophoretic Janus doublet particles and noted that the radius
of curvature of the circle-swimming doublets depends on the
respective orientations of the particles within the doublet [10].

In this work, we study the diffusivity of 3-μm spherical
catalytic bimetallic circle swimmers over short and long time
scales as a function of hydrogen peroxide concentration.
We fabricate the motors using the multistep metal deposi-
tion process on polystyrene microspheres that we reported
earlier [30]. We compare the behavior of these motors to
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Brownian dynamics simulations, simple analytical theory, and
to previously published work by Ebbens et al. [10]. The motors
exhibit both translational and mean rotational velocities that
depend on H2O2 concentration. We show that generic circle-
swimmer motors (not necessarily catalytic motors) exhibit
short-time and long-time diffusivities that scale as v2/2ω

and v2/{2Dr [1 + (ω/Dr )2]} respectively. The experimental
long-time diffusivities exhibit a maximum diffusivity as a
function of concentration because the translational and angular
velocities deviate from the linear trend as shown in Fig. 2. The
deviations are not systematic (i.e., not because the velocity as
a function of concentration exhibit some significant nonlinear-
ity). The deviation from the fit is due to natural variation of
the swimmer’s velocity. We expect that with a larger sample
volume or more uniform motors, we may not observe the
asystematic variation in velocity that yields the maximum in
effective diffusivity, however we provide some simple exam-
ples of the conditions under which maximums in effective dif-
fusivities may be observed. Generally, we find that a maximum
in long-time effective diffusivity can be achieved in a system
where either v and ω exhibit some nonlinear dependence on
concentration (or any other driving potential). Another method
by which a maximum in diffusivity could be achieved is
through the modulation of the rotational diffusivity. It is possi-
ble to modulate the rotational diffusivity through an unsteady
swimming mechanism, as we show in this work, or through the
curvature of a swimming rod as is shown in Takagi et al. [31].

II. THEORY

The time averaged displacement of particles with an advec-
tive component, such as swimming organisms and the motors
described here, can be described by their effective diffusivity.
The effective diffusivity combines the effects of rotational
diffusion, translational diffusion, and advective motion of
the motors. Experimentally, the effective diffusivity can be
determined by assembling the mean squared displacement
(MSD) of a set of particles and finding the slope. The MSD is
determined by taking the ensemble average (to minimize errors
due to variability between particles and of individual particles
in time) of the squared displacement (SD) of individual
particles. The shape of the MSD determines what region the
slope is taken for the diffusivity. The MSD is always initially
quadratic since the particle must initially move directly away
from its origin. Typically the quadratic region transitions into
a linear long-time region where the classical diffusivity is the
slope divided by 2n, where n is the number of dimensions over
which the displacement is tracked.

The long-time behavior of rotationally diffusive motors
was studied by Howse et al. for platinum Janus particles
that swim by autodiffusiophoresis in hydrogen peroxide [9].
By calculating the MSD of the motors they were able to
determine the effective diffusivity of the motors as a function
of concentration and show that for rotationally diffusive
swimmers the long-time effective diffusivity is [9]

DL = Do + v2

4Dr

, (1)

where Do is the Brownian translational diffusivity, v is the
velocity of the motor, and Dr is the Brownian rotational

diffusivity. From Stokes-Einstein, the Brownian translational
diffusivity of a sphere is Do = kBT /6πμa and the Brownian
rotational diffusivity is Dr = kBT /8πμa3, where kBT is the
thermal energy, μ is the dynamic viscosity of water, and a

is the radius of the sphere [32]. This means that rotationally
diffusive swimmers, like catalytic bimetallic nanorods, with
considerable advective velocities are capable of achieving
effective diffusivities approximately four orders of magnitude
larger than that of a Brownian particle of the same size [33].

For circle swimmers the shape of the MSD can be deter-
mined by solving the appropriate Langevin equations. The
standard Langevin equations are reduced to two dimensions
because the motors settle near the surface and are modified
such that the displacement of the motors is the sum of its
advective and Brownian components as shown in Eqs. (2)–(4)
[10,34],

dx(t)

dt
= v cos θ (t) + ξ1(t), (2)

dy(t)

dt
= v sin θ (t) + ξ2(t), (3)

dθ (t)

dt
= ω + ζ (t), (4)

where ω is the rotational velocity, x and y are the location of
the center of mass, and θ is the orientation of the motors.
The Brownian fluctuations terms, ξ and ζ , are Gaussian
random variables with zero mean and whose magnitudes are
determined from theoretical isotropic Brownian diffusivities.
In Ebbens et al. [10] and van Teeffelen and Löwen [34]
Eqs. (2)–(4) are solved to determine the MSD,

�L2(t) = 4Dt + 2v2Drt

D2
r + ω2

+ 2v2
(
ω2 − D2

r

)

(
D2

r + ω2
)2

+ 2v2e−Dr t

(D2
r + ω2)2

[(
D2

r − ω2
)

cos ωt − 2ωDr sin ωt
]
.

(5)

The MSD switches from a sinusoidal short-time region to a
long-time region when t > π/ω. We term the sinusoidal region
the short-time region and we define the short-time diffusivity
DS from the slope of the linear region of the first rising wave.
Everything that follows the first rising wave is considered the
long-time region with a long-time diffusivity DL. As is shown
in Ebbens et al. [10], Eq. (5) can be used to solve for the
long-time diffusivity of a circle swimmer [10],

DL = Do + v2

2Dr

[
1 + (

ω
Dr

)2] . (6)

Equation (6) shows that the rotational thermal motion mod-
ulates the effective long-time diffusivity through the transla-
tional and angular velocities. The translational thermal motion
Do on the other hand is only additive. A circle swimmer with
no rotational Brownian motion swims in a perfect circle with
an origin that drifts with Do and thus will have a long-time
effective diffusivity equal to the Brownian translational diffu-
sivity. For a detailed discussion of the interaction between the
advective motion and Brownian motion, see the Supplemental
Material (SM1-3) [35], and for a detailed discussion of variable
rotational diffusivity see Fig. 7(b).
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In order to find the short-time diffusivity we solve Eqs. (2)–
(4) assuming that the rotational diffusivity is small compared
to the rotational velocity over short times, given as

DS = Do + v2

2ω
. (7)

This equation is similar to what we observe for the long-time
behavior of rotationally diffusive swimmers [Eq. (1)] except
that the rotational diffusivity is replaced by the rotational
velocity. Equation (7) is also similar to Eq. (6) except that
it scales as v2/ω instead of v2/ω2 because we assumed the
rotational diffusivity to be small in the short-time region.
Equation (7) is applicable when the motor has completed
less than one-half of a rotation or t < π/ω. For the range of
rotational velocities in this paper the short-time region ranges
from 2 to 120 s.

For particles where the translational and rotational veloci-
ties both depend on a third parameter, here fuel concentration,
we can rewrite the velocities in terms of that parameter,

v(C) = ACa, (8a)

ω(C) = BCb, (8b)

where C is concentration, A (μm/s/Ma), B (rad/s/Mb), and
a, b are constants. In this case the short-time diffusivity and
long-time diffusivity scale as

DS ∝ C2a−b, (9a)

DL ∝ C2a

1 + C2b
. (9b)

Equation (9) predicts that if both the translational and rota-
tional velocities depend linearly on fuel concentration then the
short-time diffusivity scales linearly with fuel concentration
while the long-time diffusivity increases with concentration
and then asymptotes at higher concentrations.

III. EXPERIMENTAL METHODOLOGY

We fabricate 3-μm bimetallic gold and platinum spherical
micromotors using a multistep metal deposition process on
polystyrene microspheres that we reported earlier [30]. In
brief, a 1% volume fraction aqueous dispersion of 3-μm
fluorescent polystyrene spheres (ρ = 1.05 g/cm3, Duke Sci-
entific Inc, Fremont, CA, USA) are deposited onto a
2.5 × 2.5-cm2 square glass substrate. The solvent evaporates
at room temperature, forming a monolayer of spheres. The
upper hemispheres are coated with 20 nm of gold using a
sputter coater (Cressington 108 auto, Cressington Scientific
Instruments, Watford WD19 4BX, England, UK). The half
coated spheres are resuspended in an aqueous solution and
then deposited in random orientations into a monolayer on a
clean glass slide. This process is repeated until the spheres are
fully coated. The fully Au coated spheres are redeposited on a
clean substrate and coated with 20-nm platinum resulting in a
Janus sphere that is half coated with gold and half platinum.

Transmission optical microscopy is used to observe the
swimming nanomotors. We use an inverted microscope (Nikon
TE2000, Japan) with a 20x objective (NA = 0.6) and 100-W
halogen illumination (Nikon TE2 PS 100W, Japan). The
images are captured using a cooled charge-coupled device

camera (Cascade IIb, Photometrics, Tucson, AZ). Hydrogen
peroxide (Sigma-Aldrich, St. Louis, MO) is used at concen-
trations of 0.063%, 0.135%, 0.253%, 0.5%, 0.75%, 1.0%,
and 1.25% (vol). Experiments are performed in chambered
glass wells with an area of 0.4 cm2 (cat. no. 12-565-110N,
Thermo Fisher Scientific Inc., Waltham, MA). During the
experiments, the chambers are sealed to prevent evaporation-
induced convection. Each motor is tracked for between 100
and 10 000 frames, and between 20 and 80 different motors
are tracked at each concentration. The motors swim only in
the x-y plane because they settle near the surface and are only
tracked when they are far from the sides of the glass well.
The positions of the sphere centers are calculated in MATLAB

from the intensity weighted centers of the spheres in each
frame. Particle centers at each time are paired using an optical
flow algorithm. Individual particle squared displacements are
oversampled before they are averaged into a single mean
square displacement. The time averaged velocity and the
motor orientation are calculated from the sphere trajectory.
The rotational velocity of the motors is calculated from the
time averaged displacement of the motors orientation.

We compare the experiments with Brownian dynamics
(BD) simulations of spherical circle swimmers in uniform
fuel concentration. The simulations are carried out with
the modified Langevin equations for two dimensions shown
in Equations (2)–(4) and assume that the standard two-
dimensinoal (2D) Langevin equations are modified such that
the displacement of the motors is the sum of its advective and
Brownian components [10,34]. The advective velocity of the
motors is only in the direction of orientation of the motors and
the orientation is governed by a sum of the Brownian and time
averaged rotational velocity. The translational and rotational
velocities used in the simulations are from linear fits of the
experimental data and the Brownian diffusivities are set to
match their theoretical values.

IV. RESULTS AND DISCUSSION

We previously reported that spherical bimetallic motors
swim in H2O2 in the same manner as bimetallic nanorods [30].
In addition to the translational velocities typical of bimetallic
nanomotors, the spherical motors are also observed to possess
a rotational velocity. Figure 1 shows representative traces of
the 3-μm bimetallic nanomotors at H2O2 concentrations of
0.063%, 0.135%, 0.253%, 0.391%, 0.5%, 0.75%, 1.0%, and
1.25% (vol). Each trajectory shows the particle motion for
75 s. These plots show that the motors swim in circular patterns
with an advective velocity that increases with the peroxide
concentration. The orientation of a motors circular pattern is
consistent in time, i.e., a motor that has a clockwise rotational
velocity will always trace a clockwise circular pattern. As
we increase concentration [from (a) to (h)] we see that the
length of the path increases, denoting an increase in transla-
tional velocity, and the radius of curvature of the trajectory
decreases, denoting an increase in rotational velocity. The
motor translational swimming velocities are shown in Fig. 2(a)
as a function of the H2O2 concentration along with a linear
fit of the translational velocity. The translational velocity
increases linearly with concentration, which is consistent
with previously published data for bimetallic nanomotors
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FIG. 1. Representative traces of the 3-μm spherical bimetallic motor’s path over 75 s at each concentration. The hydrogen peroxide
concentration increases from (a) to (h) (0.063, 0.135, 0.253, 0.391, 0.5, 0.75, 1.0, 1.25 vol %).

in hydrogen peroxide [6,26,27,30,36]. The motor angular
velocities are shown in Fig. 2(b) as a function of the H2O2

concentration along with a linear fit of the angular velocity. The
rotational velocity varies linearly with concentration, which is
what we would expect if the rotational component was a result
of the asymmetric drag profile of the surface of the sphere.
As seen in Fig. 2 of Wheat et al. [30] the fabrication method
results in uneven distribution of mass on the surface of the
motors and the extra mass on one side of the sphere results
in an asymmetric drag profile of the sphere. The swimming
motor would experience a slight spin towards the region of
higher drag (the area with extra mass) and the magnitude of the
spin would scale linearly with the translational velocity since
the drag force scales linearly with translational velocity at low

Reynolds number [32]. In Fig. 2 each error bar represents
a single standard deviation. The large standard deviation for
both the translational and rotational velocities is high due to
the variability between motors.

While the translational velocity and rotational velocity
describe the motion of the motor at any instant, the effective
diffusivity can be used to describe the time averaged behavior.
In Fig. 3 we show the SDs of three individual motors at
H2O2 concentrations of 0.135%, 0.253%, and 0.5%. The
circle swimmers’ SDs exhibit different behavior in short- and
long-time scales [10,34,37]. For t < π/ω the SD increases
from zero to a local maximum of approximately v2/ω2. At
long times, t > π/ω, the amplitude of the SD exhibits damped
oscillations with a frequency that is roughly ω/2π . The
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FIG. 2. (a) Average bimetallic spherical micromotor velocity versus hydrogen peroxide concentration. The error bars represent one standard
deviation of the ensemble of time averaged velocities. (b) Average bimetallic spherical micromotor rotational velocity versus hydrogen peroxide
concentration. Each individual motor velocity (•) is plotted along with the mean value (�), and a linear fit of the velocity. The error bars
represent one standard deviation of the ensemble of time averaged velocities.
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FIG. 3. Squared displacement of individual bimetallic spherical
micromotors versus time for hydrogen peroxide concentrations of
0.135% (�), 0.253% (◦), and 0.5% (�). For each concentration
there is a short-time (open symbols) and a long-time (filled symbols)
diffusivity region. The short-time region is marked by the sharp
increase of the SD and corresponds to the motor completing half
of a rotation. The second region is marked by dampened oscillations
that correspond to displacement of the circular motor trajectories.

oscillations at long times are due to the motors swimming in a
circular pattern as the center of the circle drifts away from the
origin. The oscillations are damped because the displacement
due to advection from the origin becomes large compared to
the swimming radius. Each SD in Fig. 3 has a different initial
local maximum value and occurs at a different time. When the
SD is scaled by v2/ω2 and time is scaled by π/ω the SD for
each concentration will collapse onto a single line for t < π/ω

before diverging to their long-time behavior (shown in SM4 of
the Supplemental Material [35]). We can only draw qualitative
insights from the SD due to the variability between different
motors and the variability of a single motor over a period of

time. In order to determine the time averaged motion of these
motors as a function of time we can examine the MSD of the
ensemble of particles as a function of H2O2 concentration.

The MSDs are shown in Figs. 4(a) and 4(b) at H2O2

concentrations of 0.063%, 0.135%, 0.253%, 0.5%, 0.75%,
1.0%, and 1.25%. Each MSD represents an average of between
20 and 80 SDs at each concentration. Figure 4(a) shows
the short-time region, t < π/ω, of the MSD and Fig. 4(b)
shows the MSD at each concentration for approximately
150 s capturing both the short-time and long-time regions.
In the short-time region shown in Fig. 4(a), the MSD increases
as the swimmers complete half a rotation, consistent with the
first phase of a sinusoid. The slope of the linear portion of
the short-time region is given by Eq. (7) and, as we predict,
the slope increases with concentration. The short-time behav-
ior of a circle swimmer is driven by the translational velocity
of the swimmer and dampened by the rotational velocity. The
long-time behavior of a circle swimmer is shown in Fig. 4(b).
The slope of the long-time region in Fig. 4(b) is described
by Eq. (6) and has a smaller slope than the short-time region
because at long times both the rotational velocity and rotational
diffusivity serve to limit net displacement from the origin. The
distinct split between short- and long-time behavior is not
observed at lower fuel concentrations because ω ∼ Dr (for a
3-μm sphere in water Dr = 0.048 rad2/s). The experimental
MSDs can be compared to theory [using Eq. (5) or the BD
simulations with the mean experimental velocities]. We find
that the shape of the MSDs qualitatively agree with Eq. (5) in
that they both exhibit a short-time behavior that transitions into
a long-time region with a lower slope. The magnitude of the
MSD slope at short times (the short-time diffusivity) agrees
well with Eq. (7) as is shown in Fig. 5. At longer times, the
experimentally measured slope is higher than predicted. The
reason for the larger long-time slopes is discussed in detail
during the presentation of Fig. 6.

The largest discrepancy between Eq. (5) and the measured
MSD is the MSD magnitude and the time at which the
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FIG. 4. (a) MSD of bimetallic spherical micromotors versus time for all concentrations of hydrogen peroxide at short times (t < π/ω).
(b) MSD versus time at all times. The hydrogen peroxide concentrations shown are 0.063% (♦), 0.135% (�), 0.253% (◦), 0.5% (�), 0.756%
( × ), 1.0% (∗), and 1.25% (•). The slope of the MSD gives the effective diffusivity. The slope of the MSD at short times (t < π/ω) is the
short-time effective diffusivity. The slope of the MSD at long times (t > π/ω) is the long-time effective diffusivity.
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FIG. 5. (a) Short-time effective diffusivity of bimetallic spherical micromotors scaled by Brownian diffusivity versus the controlling
parameter, v2/2ω, scaled by the Brownian diffusivity. (b) Short-time effective diffusivity of bimetallic spherical micromotors scaled by the
Brownian diffusivity versus hydrogen peroxide concentration. The experimental data (◦) are plotted along with steady Brownian dynamics
simulations with exact experimental velocities (�), steady Brownian dynamics simulations with velocities determined from fits of experimental
values (•), unsteady Brownian dynamics simulations with velocities determined from fits of experimental values (�), and the fit of Eq. (7)
(solid line). The short-time effective diffusivity is the slope of the MSD at times less than π/ω shown in Fig. 4(a).

transition between the short- and long-time behaviors. The
theory predicts that this transition should occur at t = π/ω,
and have a magnitude of v2/ω2, where v and ω are the
mean translational and rotational velocities from the average
over all of the different motors at a given concentration.
The theory and experiments differ in the transition stage of
the MSD because the theory assumes all spheres have the
mean translational and rotational velocities reported. In the
experiments, motors, at any given concentration, exhibit large
variations in the ratio of translational to rotational velocity

(as revealed large error bars in Fig. 2). These variations in
individually measured translational and rotational velocities
combined with the relatively small sample size (20–80 separate
motors at any given concentration) lead to the discrepancy in
height and location of the transition.

From the MSDs shown in Fig. 4, we can quantify the short-,
DS , and long-time, DL, diffusivities for circle swimmers.
In Fig. 5 the experimental DS is plotted along with steady
Brownian dynamics simulations with exact experimental ve-
locities, steady Brownian dynamics simulations with velocities
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FIG. 6. (a) Long-time effective diffusivity of bimetallic spherical micromotors scaled by the Brownian diffusivity versus the controlling
parameter, v2/{2Dr [1 + (ω/Dr )2]}, scaled by the Brownian diffusivity. (b) Long-time effective diffusivity of bimetallic spherical micromotors
scaled by the Brownian diffusivity versus hydrogen peroxide concentration. The experimental data (◦) are plotted along with steady Brownian
dynamics simulations with exact experimental velocities (�), steady Brownian dynamics simulations with velocities determined from fits of
experimental values (•), unsteady Brownian dynamics simulations with velocities determined from fits of experimental values (�), and the
scaling shown in Eq. (6) (solid line). The long-time effective diffusivity is the slope of the MSD at times longer than π/ω shown in Fig. 4(b).
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determined from linear fits of experimental values, Brownian
dynamics simulations with amplified Brownian rotational
diffusivities and velocities determined from linear fits of
experimental values, and Eq. (7) evaluated using fits of the
experimentally measured translational and rotational motor
velocities. The BD simulations with amplified Brownian
rotational diffusivities are BD simulations where the effective
rotational diffusivities are increased to 4.5Dr . All of the plotted
diffusivities are scaled by the theoretical Brownian diffusivity
of a 3-μm sphere in water (Do = 0.145 μm2/s).

Figures 5(a) and 5(b) show plots of the short-time normal-
ized effective diffusivity as a function of the controlling pa-
rameter v2/2ω and the H2O2 concentration. Figure 5(a) shows
that the short-time effective diffusivity increases linearly with
a slope and intercept of unity with the controlling relationship
given in Eq. (7). In Fig. 5(a) all of the simulations and the
experiments agree very well together. The experimental data
do show some variation from the theory due to uncertainty in
the translational and rotational velocities as well as uncertainty
in DS (due to the relatively small sample size of 20–80 motors
at each concentration). From Fig. 5(a) we also see that the
theory presented in Eq. (7) tends to slightly overpredict the
short-time diffusivity because Eq. (7) assumes that the effect
of the rotational diffusivity is negligible over short times when
the rotational diffusivity actually serves to slightly limit DS .

Figure 5(b) shows that the short-time effective diffusivity
also varies linearly with concentration as predicted by Eq. (9a)
since both v and ω vary linearly with H2O2 concentration. DS

measured in the experiments and BD simulations with exact
experimental velocities fluctuate about the theoretical solution,
while the BD simulations with fits of the velocities agree
well with the theory. Figure 5(a) suggests that the DS of the
experiments and the BD simulations with exact experimental
velocities fluctuate about the theoretical solution in Fig. 5(b)
due to the deviation of experimental velocity values from the
linear dependence. The swimming motion of the motors results
in short-time diffusivities that are between 200 and 1000 times
greater than the Brownian diffusivity. However, due to the
circle-swimming behavior of motors, the short-time diffusivity
is smaller than the long-time diffusivity of a rotationally
diffusive swimmer like a bimetallic nanorod or a platinum
coated Janus particle in H2O2 with the same velocity.

Figures 6(a) and 6(b) respectively show the long-time dif-
fusivity scaled by Do as a function of v2/{2Dr [1 + (ω/Dr )2]}
[from Eq. (6)] and the fuel concentration for the experimental
data, Brownian dynamics simulations with exact experimental
velocities, Brownian dynamics simulations with velocities
determined from linear fits of experimental values, Brownian
dynamics simulations with amplified Brownian rotational
diffusivities and velocities determined from linear fits of
experimental values, and the theoretical long-time diffusivity
given by Eq. (6). In Fig. 6(a) the DL from Eq. (6) shows
up as a line with a slope and a y intercept of unity. The
DL from all of the BD simulations follow the theory, while
the experimental DL shows some scatter. The deviations
of the experimentally determined DL originate from the
uncertainty of the translational and rotational velocities. A
sensitivity analysis of Eq. (6) shows that an uncertainty in the
measurement of the translational and rotational velocities of
10% can account for this deviation. It is important to note that

in order to collapse all on the diffusivities onto the theory
that the appropriate rotational diffusivities of the systems,
i.e., for the experiments and for the unsteady BD simulations
a rotational diffusivity of 4.5Dr was used. Another source
for the deviation is the fact that DL is determined from a
heterogeneous population of motors each with their own v and
ω that are aggregated into a single DL value.

In Fig. 6(b) the theoretical solution given by Eq. (6) and
the steady BD simulations with velocities determined from
linear fits of experimental values are in good agreement and
suggest that DL should increase at low concentration before
they asymptote to a DL of roughly a third of the measured DL at
high H2O2 concentrations. The measured DL increases from
0.063% to a local maximum at 0.135% H2O2 concentration
and then decreases and is relatively constant at high H2O2

concentrations, where ω is large compared to Dr . At high
H2O2 concentrations, ω/Dr >10, DL is approximately 100
times higher than Do but only an eighth of the short-time
diffusivity because the long-time diffusivity scales roughly as
v2/(1 +ω2) instead of v2/ω. The measured DL dips at a H2O2

concentration of 1.25% due to the trends of the velocities
shown in Fig. 2, the variability of the motors over a relatively
small sample size (47 individual motors at 1.25% compared
to thousands for the simulations), and a selection bias in the
experimental data. The rotational velocity is 27% higher than
expected at a H2O2 concentration of 1.25% based on the
trend of the rotational velocity at the first six concentrations
without a corresponding higher than expected translational
velocity. From Eq. (6) we can see that this results in a DL

that is 50% lower than expected. The MSD is made up of the
average of a group of motors SDs. The shape of the individual
SDs is determined by its rotational and translational velocity
pair. At 1.25% there is a higher percentage of motors with
higher rotational velocities and lower translational velocities
(compared to the mean values) than at the other concentrations
(look at SM 5 in the Supplemental Material for individual SDs
at 0.5% and 1.25% [35]). This issue is in part due to the
relatively small sample size of our data and a small selection
bias that is most prevalent at this concentration. The selection
bias is due to the fact that motors with a high rotational velocity
and low translational velocity tend to stay in the field of view of
the microscope (and thus be tracked longer) than motors with
high translational velocities and low rotational velocities. This
bias becomes more prevalent when the motors, on average,
have a high translational velocity. The steady BD simulations
with exact experimental values predict a trend similar to that
of the experimental data, except that the DL asymptotes to a
value that is roughly a third of the experimentally measured
DL at high H2O2 concentrations. The fact that the steady BD
simulations and theory all agree on the asymptotic value of
DL at high H2O2 concentrations but the experimental DL is
three times higher suggests that there is an underlying physical
mechanism influencing the experiments that is not captured by
the steady BD simulations or Eq. (6).

In order to understand the discrepancy between the mea-
sured and theoretical predictions of the long-time diffusivity in
Fig. 6(b) it is useful to examine what parameters contribute to
the shape of the MSD [35]. For a perfect circle swimmer, i.e., a
particle with constant translational and rotational velocity (no
Brownian motion or other perturbations to particle motion or
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orientations), the average slope of the long-time region would
be zero and the MSD would be a perfect sinusoid. If the circle
swimmer were to experience Brownian translational motion
but not Brownian rotational motion, i.e., the angular velocity
is constant, then the average slope of the long-time region
would be the Brownian translational diffusivity Do. This
holds regardless of the translational and rotational velocity
supplied by the motors. If the circle swimmer experiences
Brownian rotational and translational motion then the slope
of the diffusive region is given by Eq. (6). For the range
of experimental translational and rotational velocities in this
paper the addition of rotational Brownian motion results in
long-time diffusivities between 50 and 150 times greater than
Do. The reason why the long-time diffusivity that we measure
increases one to two orders of magnitude upon the addition
of randomness to the orientation of the motors, in this case
due to Brownian motion, is because the unsteadiness of the
orientation allows for the translational and rotational velocities
to take the motor further, on average, from its origin. Therefore,
we see that the long-time diffusivity of circle swimmers is
strongly modulated by the unsteady orientation of the motors.

We believe that the measured long-time effective dif-
fusivity is greater than the BD simulations and analytical
predictions because the unsteadiness of the motor’s orien-
tation is greater than predicted by the theoretical Brownian
rotational diffusivity. This is significant because it illustrates
that motors fabricated with unsteady swimming mechanisms
will have higher long-time diffusivities than steady motors.
For circle swimmers the experimental rotational diffusivity
can be calculated from a quadratic fit of the experimental
mean squared angular displacement [10]. We observe a weak
linear dependence of the measured rotational diffusivity with
concentration with a maximum measured rotational diffusivity
of six times what is expected due to Brownian motion at
a H2O2 concentration of 1.25%. We hypothesize that the
increased long-time diffusivity measured in the experiments,
as compared to the Brownian dynamics simulations and
Eq. (6), is due to some additional unsteadiness in the ori-
entation of the motor above what is expected due to Brownian
rotational motion. This unsteadiness is potentially driven by
fluctuations in the RICA force experienced by the motors.
The fluctuations may be due to nonuniform adsorption of
anions or other species, intermittent occurrences of the O2

reduction reactions, or inhomogeneity of H2O2 concentration.
Regardless of their source, any perturbation to the RICA force
(especially the rotational component) causes an increase in the
long-time diffusivity. The unsteady perturbations of the RICA
mechanism enhance the effective diffusivity in the same way
that Brownian rotational diffusivity increases the long-time
diffusivity of a perfect circle swimmer. The validity of this
assertion can be seen in Fig. 6(a) where we have collapsed
the experimental long-time diffusivities around the theory
by using an amplified rotational diffusivity. In Fig. 6(b) we
include the results of the unsteady simulations (the velocities
are based on linear fits of the experimental data) to show
that effectively increasing the rotational Brownian diffusivity
causes an increase in the motor’s long-time diffusivity. We
make the motor motion unsteady by increasing the magnitude
of the Brownian rotational diffusivity to 4.5Dr based on our
findings from the mean squared angular displacement and from

Fig. 6(a). If the average fluctuation magnitude is held constant
with H2O2 concentration we observe reasonable agreement
of the long-time unsteady BD simulation’s diffusivity to the
experimentally measured long-time diffusivity at high H2O2

concentrations.
Figure 6(b) shows a local maximum as a function of

the concentration in the long-time effective diffusivity for
the experiments as well as the BD simulations with exact
experimental velocities. This maximum is not predicted from
Eq. (9b) nor observed in the BD simulations with linear fits
of the experimental velocities. The observed maximums that
occur around peroxide concentrations of 0.135% in Fig. 6
are due to a high translational velocity and small angular
velocity compared to linear behavior of the translational and
rotational velocities at those concentrations. The translational
and angular velocities deviate from the linear trend as shown in
Fig. 2. The deviations are not systematic (i.e., not because the
velocity as a function of concentration exhibit some significant
nonlinearity). The deviation from the fit is due to natural
variation of the swimmer’s velocity. We expect that with a
larger sample volume or more uniform motors, we may not
observe the asystematic variation in velocity that yields the
maximum in effective diffusivity. We examine the conditions
under which we expect to observe maximums in the long-time
effective diffusivity in the next section.

V. MAXIMUM OF EFFECTIVE DIFFUSIVITY

The maximum in effective diffusivity observed in the ex-
periments and simulations is a result of asystematic variations
in the translational and angular velocity, but we provide some
discussion of the conditions under which we might expect
to observe a local maximum in effective diffusivity due to
systematic velocity dependence on a physical controlling
parameter, in this case concentration.

It is instructive to consider a general case, Eq. (8), for the
dependence of the velocity on a physical controlling parameter,
such as concentration, since nonlinear dependencies have
been measured [9,28,38–40] and predicted [9,26–28] for a
variety of motor propulsion mechanisms. Figure 7(a) shows the
contour map of the normalized long-time effective diffusivity
calculated from Eq. (6) as a function of H2O2 concentration,
and order of power dependence of the rotational velocity
on H2O2 concentration b, where the motor’s translational
and angular velocities can have a nonlinear dependence on
the fuel concentration (v ∝ Ca and ω ∝ Cb respectively). In
Fig. 7(a), the translational velocity is held linearly dependent
on H2O2 concentration, a = 1, for all values of b. As is
predicted by the scaling in Eq. (9b), when b � a Fig. 7(a)
shows that DL increases monotonically and asymptotes at
high H2O2 concentrations. When b > a, DL increases with
concentration to a maximum and decays to an asymptote
at high H2O2 concentrations. The magnitude of the peak
diffusivity increases as the nonlinearity of the rotational
velocity b increases. The maximum occurs when ω increases
at a faster rate than v and the rotational velocity dampens the
long-time diffusivity at high translational velocities.

Another mechanism by which a maximum in DL could
be achieved is by modulation of the rotational diffusivity.
Figure 7(b) shows the long-time diffusivity as calculated from
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FIG. 7. (a) Space-field map of the normalized long-time effective diffusivity calculated from Eq. (6) as a function of hydrogen peroxide
concentration, and order of power dependence of the rotational velocity on concentration (ω = K1C

b). The long-time diffusivity is normalized
by the maximum diffusivity within the sample space. The translational velocity is linearly dependent on concentration for all values of b.
(b) The long-time diffusivity calculated from Eq. (6) vs rotational diffusivity. The diffusivity is scaled by the maximum diffusivity within the
sample space and the rotational diffusivity is scaled by the rotational velocity.

Eq. (6), plotted against the rotational diffusivity scaled by the
mean rotational velocity. Modulation of rotational diffusivity
has been shown in this work [Fig. 6(a)] and by Takagi
et al. [31]. A maximum in DL is predicted by Eq. (6) when
the rotational diffusivity equals the rotational velocity. This
suggests that there is an optimal amount of randomness in
a circle–swimmer’s motion that can maximize its effective
diffusivity. Just enough randomness in the orientation allows
the motor to break its circular trajectory, while too much makes
it so that the motor is not able to advect away before reorienting
and traveling in a different direction.

VI. SUMMARY

Spherical catalytic bimetallic micromotors fabricated as
described in Wheat et al. [30] have both translational and
rotational velocity that vary with H2O2 concentration. The
rotational velocity is likely due to asymmetry of the drag profile
of the sphere caused by uneven metal coatings in the motor
fabrication steps. We show that generic circle swimmer motors
(not necessarily catalytic motors) exhibit short and long-time
diffusivities that scale as v2/2ω and v2/{2Dr [1 + (ω/Dr )2]}
respectively. The short-time diffusivity is larger than the
long-time diffusivity because the long-time diffusivity is
proportional to v2/(1 +ω2) instead of v2/ω. DS > DL

suggests that although a circle-swimming motor has a reduced
diffusivity at long times compared to a rotationally diffusive
swimmer it samples a much larger region of the space over
which it diffuses. The motors transition from short-time to
long-time behavior at a time of π/ω(C). Therefore, the

governing diffusive time scale varies as a function of hydrogen
peroxide concentration. This means that when observed over
short times, or when the motors are confined to small spaces,
the motors will appear to have a different diffusivity than
at long times or in large spaces. This effect could result in
interesting behavior when a large number of these motors
are placed in close proximity because their swimming pattern
would lead to a high collision probability.

We also show that artificial swimmers can exhibit maxima
in long-time effective diffusivities if the motors have nonlinear
translational or rotational velocities, or if the rotational
diffusivity is a function the physical controlling parameter,
in this work fuel concentration. Here, we do not observe
significant nonlinear dependencies of v or ω, and owe the
measured maximum in long-time diffusivity to measured
translational and rotational velocities that deviate from the
expected linear trend at low H2O2 concentrations. The combi-
nation of diffusive time scales and nonmonotonic diffusivity
of circle-swimming catalytic motors as a function of fuel
concentration suggests that we can expect complex particle
responses in confined geometries and in spatially dependent
fuel concentration gradients.
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