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Abstract 

In this work, we numerically demonstrate an infrared frequency-tunable selective thermal emitter made of 

graphene-covered silicon carbide (SiC) gratings. Rigorous coupled-wave analysis shows temporally-

coherent emission peaks associated with magnetic polariton, whose resonance frequency can be dynami-

cally tuned within the phonon absorption band of SiC by varying graphene chemical potential. An analyt-

ical inductor-capacitor circuit model is introduced to quantitatively predict the resonance frequency and 

further elucidate the mechanism for the tunable emission peak. The effects of grating geometric parame-

ters, such as grating height, groove width and grating period, on the selective emission peak are explored. 

The direction-independent behavior of magnetic polariton and associated coherent emission are also 

demonstrated. Moreover, by depositing 4 layers of graphene sheets onto the SiC gratings, a large tunabil-

ity of 8.5% in peak frequency can be obtained to yield the coherent emission covering a broad frequency 

range from 820 cm−1 to 890 cm−1. The novel tunable metamaterial could pave the way to a new class of 

tunable thermal sources in the infrared region. 
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1. Introduction 

Infrared (IR) spectroscopy plays an important role in material analysis to provide information on chemical 

composition and bonds. IR sources with tunable frequencies are highly desired for IR spectroscopy, while 

tunable IR sources like Quantum Cascade Lasers [1-3] are expensive. As a pioneering work in coherent 

thermal sources, Greffet et al. demonstrated both temporal and spatial coherences of thermal emission 

from SiC gratings by exciting surface phonon polaritons (SPhP) [4]. Similarly, surface plasmon polaritons 

can be employed in metallic micro/nanostructures such as one-dimensional (1D) complex grating [5], 2D 

tungsten grating [6], and photonic crystals [7-9] for tailoring thermal emission. The cavity resonant mode 

excited in the so-called Salisbury screen [10] and Fabry-Perot cavity [11, 12] is another way to achieve 

coherent emission.  

Recently, metamaterials [13] with exotic optical and radiative properties that cannot be obtained in 

naturally-occurring materials have also been proposed for IR emitters. Liu et al. demonstrated single and 

dual-band IR emitters with metallic cross-bar resonators [14]. Wang and Zhang reported the direct meas-

urement of infrared coherent emission due to magnetic polaritons (MP) in film-coupled grating metamate-

rial microstructures under elevated temperatures up to 750 K [15]. Besides incandescent infrared sources 

[16], coherent emission has numerous promising applications in energy harvesting [17-19], chemical 

sensing [20], and radiative cooling [21]. Thermal emitters with tunable emitting frequencies in a broad 

spectral range are highly desired for IR spectroscopy and energy applications. 

By employing tunable or phase transition materials, optical and radiative properties of metamaterials 

can be actively controlled with chemical, thermal and electrical approaches. By use of InSb whose carrier 

density can be adjusted by utilizing optical pump or changing surrounding temperature, the resonant fre-

quency of split rings which was used  as a tunable selective absorber can  be varied [22]. Yttrium Hydride 

nanoantennas were proposed as switchable devices, in which the plasmonic resonance can be turned on 

and off upon phase change of YHx induced by hydrogen exposure [23]. The phase transition material va-

nadium oxide (VO2) has been employed in thermally induced switchable [24] and tunable [25-27] met-

amaterial structures. Tunable mid-infrared metamaterial using Y-shape plasmonic antenna array on a VO2 
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film was also demonstrated upon temperature variation [28]. Besides, Ben-Abdallah et al. [29] proposed a 

phase-change thermal antenna made of patterned VO2 gratings that exhibits switchable thermal emission. 

Liquid crystals were also introduced for electrically tunable metamaterials [30, 31].  

Graphene has been recently employed in the novel designs of switchable and tunable metamaterials, 

as its optical properties [32-34] vary with the chemical potential which can be tuned by chemical doping, 

voltage bias, external magnetic field, or optical excitation [35-37]. Tunable selective transmission has 

been investigated in patterned graphene ribbon arrays by actively exciting plasmonic resonances [38, 39]. 

One step further, Chu et al. introduced an active plasmonic switch with dynamically controlled transmis-

sion in both single and multi-layer graphene ribbon arrays [40]. In addition, tunable perfect absorbers 

were investigated with graphene ribbon array on dielectric spacer and metallic substrate [41, 42]. Fang et 

al. demonstrated tunable selective absorption in graphene disk arrays [43]. Enhanced light absorption was 

also observed in graphene layer integrated with a metamaterial perfect absorber [44].  However, graphene-

based tunable coherent thermal emission has not been demonstrated yet. 

In this work, we numerically design an infrared frequency-tunable thermal emitter whose spectrally-

selective emission peak can be shifted by varying graphene chemical potential. Figure 1 schematizes the 

proposed tunable metamaterial structure, which is made of a graphene-covered 1D SiC grating array with 

period Λ = 5 µm, groove width b = 0.5 µm, and grating height h = 1 µm. SiC is chosen as the thermal 

emitter material due to its excellent high temperature stability. The SiC grating with submicron feature 

sizes considered here can be practically realized with advanced nanofabrication techniques such as elec-

tron-beam lithography or high-throughput low-cost nanoimprint, deep-UV, or laser interference lithogra-

phy. The graphene layers can be deposited onto the grating layer from chemical vapor deposition. The 

tunable coherent emission in this study is achieved via the modulation of phonon-mediated MP condition 

by tuning the optical properties of graphene. 

2. Theoretical Background 

2.1. Optical Properties of Materials 



4 

 

Electrical permittivity of monolayer graphene at optical frequencies can be described by [32-34] 
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where Gσ  is the conductivity of graphene, Gt  is the thickness of a single graphene layer, ω  is the angu-
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, τ is the relaxation time chosen as 10−13 s [45], e is 

the elementary charge, Bk  is the Boltzmann’s constant, h  is the reduced Planck’s constant, temperature T 

is taken as 300 K, and µ is chemical potential of graphene.  

On the other hand, dielectric functions of SiC are given by a Lorentz oscillator model as [46]: 
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where ν is the frequency in wavenumber, 6.7ε∞ =  is the high-frequency constant, 1
LO 969 cmν −=  is the 

longitudinal optical-phonon frequency, 1
TO 793cmν −= is the transverse optical-phonon frequency, and the 

scattering rate γ equals 4.76 cm−1 at room temperature.  

2.2. Numerical Method 

Spectral-directional emittance of the graphene-covered SiC grating is obtained indirectly as 1 Rνε ′ = − , 

where R is the spectral-directional reflectance of the opaque metamaterial structure within the phonon 

absorption band of SiC. The radiative properties were numerically calculated with the rigorous coupled-
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wave analysis (RCWA), whose convergence was ensured with a sufficient total of 81 diffraction orders. 

The thickness of monolayer graphene is considered as Gt = 0.5 nm in the calculation, which was verified 

to be sufficiently small from careful convergence check. 

3. Results and Discussion 

3.1. Tunable Spectral Normal Emittance with Varying Graphene Chemical Potential 

The spectral emittance at normal direction for transverse-magnetic (TM) polarized wave (i.e., magnetic 

field is along the grating groove) is plotted in Fig. 2 with varying graphene chemical potential µ. For the 

bare SiC grating without graphene layer on top, there exists a temporally-coherent emission peak at νres = 

853 cm−1 with an peak emittance of 0.73. As studied by Ref. [47], this coherent emission peak is caused 

by the excitation of phonon-mediated MP inside the SiC grating structure, realized by the collective oscil-

lation of optical phonons or bound charges at the magnetic resonance that form resonant inductor-

capacitor (LC) circuitry. The physical mechanism of MP and resulting coherent emission behaviors in the 

bare SiC gratings have been thoroughly discussed in Ref. [47].  

When a graphene sheet with a chemical potential µ = 0 eV is coated onto the SiC grating, the emis-

sion peak location barely shifts, but peak emittance increases to 0.96, close to the blackbody emission. 

When the graphene chemical potential µ increases from 0 to 1 eV, the emission peak frequency νres mono-

tonically shifts from 853 cm−1 to 887 cm−1, resulting in a relative tunability of 4% in peak frequency. As 

summarized in Table 1, the quality factor res /Q ν ν= Δ  for the emission peaks varies from 31.6 to 42.2 with 

different µ values, where νΔ  is the peak full width at half maximum.  

3.2. Electromagnetic Field Distribution with and without Monolayer Graphene at MP Resonances 

To explain underlying mechanism responsible for the effect of graphene layer on the coherent emission 

peak, the electromagnetic (EM) field distributions are plotted for SiC grating structures without and with 

graphene (µ = 0 eV) respectively in Figs. 3(a) and 3(b) at the same MP resonance frequency νres = 853 

cm−1. In the EM field plots, arrows indicate strength and direction for electric field vectors, while contour 
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represents the intensity of magnetic field normalized to the incident wave as 
2

10 olog /H H . Note that the 

EM field distributions are presented at the cross section of the 1D SiC grating, i.e., the x-z plane.  

Figure 3(a) illustrates the EM field distribution for SiC grating without the graphene sheet at reso-

nance frequency νres = 853 cm−1.  It is observed that the electric current oscillates near the surface of SiC 

around the grating groove, forming a resonant current loop. The magnetic field is significantly enhanced 

within the groove, with a magnitude of 2 orders stronger than incidence. The EM field pattern presented 

in Fig. 3(a) distinctly shows the behavior of phonon-mediated MP [47], at which vibration of optical pho-

nons or bound charges in SiC resonates with incident EM field. The resonance induces an oscillating cur-

rent with significantly enhanced magnetic field inside, and the emission peak arises as a consequence of 

this diamagnetic response.  

Figure 3(b) shows the EM field in the SiC grating structure coated by a monolayer graphene sheet 

with µ = 0 eV at same resonance frequency. It can be found that the resonant current loop is also excited, 

within which the magnetic field is still confined but a little bit weaker inside the grating groove in com-

parison to that in Fig. 3(a) without graphene monolayer. This is because the graphene sheet is lossy and 

more optical energy is absorbed by graphene at magnetic resonance. Although a free-standing graphene 

monolayer has little absorption of 3% or so in the infrared, it could absorb much more when strongly en-

hanced EM field more than the incidence impinges on the graphene due to the strong localization of elec-

tromagnetic energy at magnetic resonance. As absorption is enhanced with graphene-covered SiC grating 

at the MP resonance, the thermal emission is equivalently strengthened according to the Kirchhoff’s law 

under local thermal equilibrium than the case without graphene. This observation and explanation is also 

consistent with the study by Zhao et al [48] on the enhanced absorption of a graphene monolayer in the 

near-infrared due to the magnetic resonance excited inside the cavity of metallic gratings. 

3.3. LC Circuit Model  

As observed in Fig. 3, when MP resonance is excited in the graphene-covered grating, a resonant current 

is induced at the surfaces around the groove, which can be symbolized by an LC circuit, as shown in Fig. 
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4(a). The inductance of SiC is determined by SiC k m ,L L L= +  where kL and mL are respectively the kinet-

ic and mutual parts with expressions as: [47]  

 SiC
k 2 2 2

0 SiC SiC

'
( )

hL ε
ε ω δ ε ε

′
= −

′ ′′+
                     (5) 

 m 0 ( )L h bµ δ= − +                        (6) 

Note that / 4 kδ λ π= is the penetration depth of SiC, where λ is the wavelength in vacuum and k  is the 

extinction coefficient of SiC. h′  is the effective path length that the current flows at the SiC surface. SiCε ′  

and SiCε ′′  are real and imaginary parts of permittivity of bulk SiC. 0µ is the vacuum permeability. It 

should be mentioned that the resonant current is not only oscillating at the very surface of SiC but within 

a depth of δ. Therefore, we consider that the current oscillates in the central plane with a distance of /2δ  

away from SiC surface, which yields 2 2 .h h b δ′ = + +  The vacuum gap in the groove forms a capacitor 

with capacitance gap 1 0 /C c h bε= , where 1c  is the coefficient responsible for the non-uniform charge dis-

tribution inside the capacitor [47]. Note that, both the effective path length h′ and the factor 1c  might 

vary with different geometric parameters and numbers of graphene layers, and thus their expression and 

values are approximations. 1 0.5c =  is taken as a nominal value considering that the bound charges are 

linearly distributed at the SiC surfaces and thus treated constant in the present study. 

When a graphene layer is attached to the SiC grating, an inductor GL  associated with the graphene 

sheet should be considered due to the kinetic energy of graphene plasmon. Following the kinetic induct-

ance of SiC in Eq. (5), the inductance of monolayer graphene can be modelled as: 

 G
G 2 2

G G( )
bL σδ
ω σ σ

′′+=
′ ′′+

                      (7) 

where Gσ ′  and Gσ ′′  are respectively real and imaginary parts of the graphene conductivity. As shown in 

Fig. 4(a), the graphene inductor GL  is in parallel with gapC . Therefore, the total impedance of the LC cir-

cuit becomes: 
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The phonon-mediated MP is excited when Total 0Z = , which leads to maximum resonance strength. All the 

inductance, capacitance, and impedance are defined on the per unit length basis along the groove direc-

tion. Note that when µ = 0 eV, the graphene has positive real part of permittivity at frequencies larger than 

898 cm−1 . In this case, the graphene sheet cannot be considered as an inductor but a capacitor instead [49]. 

The resonance frequency νLC predicted by the LC model is calculated for graphene-covered SiC grat-

ing structures with µ varying from 0 to 1 eV. The comparison to the numerical results from the RCWA 

calculation shows reasonable prediction by the analytical LC model on the MP resonance frequency with 

a relative difference less than 1.5%. The good agreement on the resonance frequencies of the tunable co-

herent emission peak between the LC model and RCWA calculation is summarized in Table 1, which un-

doubtedly confirms the excitation of MP and the dependence of MP frequency on the graphene chemical 

potential for the novel graphene-covered tunable coherent thermal source.  

The tuning effect of graphene chemical potential on the coherent emission frequency associated with 

MP can be further understood from the LC model. The graphene inductance GL  is strongly dependent on 

µ, which would ultimately modulate the MP resonance frequency at zero total impedance with 

G SiC/ 1Z Z = −  indicated by Eq. (8). To quantitatively explain the increase in resonance frequency with 

larger graphene chemical potentials, the value of G SiC/Z Z  is plotted in Fig. 4(b) with different µ values. 

Note that only GZ changes with graphene chemical potential, while SiCZ  is independent on µ.  It is ob-

served that since GZ  and SiCZ  are comparable, the change of GZ  induced by varying µ will greatly shift 

the MP resonance frequency. It is also found that G SiC/Z Z decreases with increased µ. Therefore, the res-

onance frequency of coherent emission peak at which G SiC/ 1Z Z = −  increases with larger µ values. 

3.4. Geometrical Dependence of Coherent Emission from Graphene-covered SiC Gratings 

In the light of structural design for practical applications with specific requirement on the coherent emis-
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sion peak location and strength, the effect of geometric parameters on the coherent emission of the gra-

phene-covered SiC grating is investigated. Figures 5(a), 5(b) and 5(c) are respectively the contour plots of 

spectral normal emittance as a function of grating height (h), groove width (b), and grating period (Λ) at 

TM waves obtained from RCWA calculation. The graphene chemical potential is fixed at µ = 0.5 eV, and 

the geometric parameters of the SiC grating are kept at the base values (i.e., Λ = 5 µm, b = 0.5 µm, and h = 

1 µm). As shown in Fig. 5(a), when grating height h increases from 0.5 µm to 1.5 µm, the MP resonance 

peak frequency decreases from νres = 910 cm−1 to 834 cm−1. This is because that, deeper grating grooves 

with larger h values yield increased Cgap and |LSiC|, which results in increased ZG / ZSiC values according to 

the LC model. Different from the effect of grating height, the MP resonance frequency monotonically in-

creases from νres = 820 cm−1 to 891 cm−1 when the groove width b increases from 0.1 µm to 1 µm as pre-

sented in Fig. 5(b). The effect of groove width b on the MP resonance frequency can be explained by the 

decrease of ZG / ZSiC values as Cgap decreases with b. However, the variation of grating period almost does 

not affect the resonance frequency as shown in Fig. 5(c), simply because grating period has no effect on 

the MP resonance frequency according to the LC circuit model. The resonance frequencies predicted by 

LC circuit model for different grating geometries are also plotted as the green triangles, and the good 

agreement between LC circuit model prediction and RCWA simulation clearly confirms the geometric 

effects on the MP resonance condition and underlying physical mechanisms. The geometric dependence 

of the coherent emission from the graphene-covered SiC gratings would also provide guidelines for bal-

ancing optimal performance from materials design and manufacturing tolerance in fabrication processes.  

3.5. Angular Dependence of Coherent Emission from Graphene-covered SiC Gratings 

As studied previously, coherent emission due to MP resonance in bare 1D SiC grating structures exhibit 

directional independence [47]. Therefore, it is worthwhile to investigate the angular behavior and possibly 

confirm the unique omni-directional thermal emission associated with MP resonance when graphene 

monolayer is coated onto bare SiC gratings. Figure 6 plots the spectral emittance of graphene-covered SiC 

gratings as a function of wavenumber ν and in-plane wavevector kx0 = (ω/c0)sinθ, where θ is the angle of 
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incidence. The graphene chemical potential is µ = 0.5 eV, and the grating geometry is set as h = 1 µm, b = 

0.5 µm, and Λ = 5 µm. TM-wave polarization is considered here, only in which the MP could be excited 

in 1D gratings [47]. A flat selective emission band around νres = 873 cm−1 is observed in the contour plot, 

whose physical mechanism is verified as MP resonance by excellent match with the LC model prediction 

in green triangles (i.e., νLC = 868 cm−1 for selected angles from 0° to 80°. Therefore, it is confirmed from 

both numerical simulation and analytical model that, the tunable spectrally-selective thermal emission 

from the graphene-covered SiC grating also exhibit strong directional independence, which is highly fa-

vorable for some applications that require diffuse-like infrared thermal sources. 

Besides, there exists a relatively weaker resonance band at higher frequencies, which is associated 

with the surface modes excited at the vacuum-graphene-SiC grating interface. The dispersion relation of 

the surface modes can be solved via zeroing the reflection coefficient at the interface given by [33, 45]  

 G

G

1 0 1 0 1 00

1 0 1 0 1 00

/ ( )
/ ( )

pr ε γ γ σ γ γ ωε
ε γ γ σ γ γ ωε

− +=
+ +

 (9) 

where the subscripts “0” and “1” represent vacuum and SiC medium, respectively. Gσ  is the graphene 

conductivity described above. Here, graphene is treated as a sheet current added to the vacuum-SiC inter-

face. 00ε  is the absolute dielectric function of vacuum. 2 2 2
0/j j xic kγ ε ω= −  is the wavevector compo-

nent vertical to the interface in medium j = 0 or 1. According to the grating function, 0 2 /xi xk k i π= + Λ , 

where i is the diffraction order. By folding at 0 1/2xk = Λ , i.e., 1000 cm−1 for Λ = 5 µm, the dispersion 

curve of the surface modes is plotted in Fig. 6,  which shows good agreement with the RCWA calcula-

tion. Note that the resonance frequencies of the surface modes are highly dependent on kx0 or incidence 

angle θ, which exhibits different behaviors from the direction-independent MP resonance mode. 

3.6. Multilayer Graphene Effect on Tunable Coherent Emission 

In order to possibly achieve a larger tunability on resonance frequency, radiative properties of SiC 

gratings covered by multiple graphene sheets are further explored. The geometric parameters of SiC grat-

ings are Λ = 5 µm and b = 0.5 µm, while grating height h is changed from 1 µm to 1.5 µm in order to shift 
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the MP resonance frequency at µ = 0 eV to the lower phonon band edge of SiC. In this way, it is attempt-

ed to further tune the emission peak to cover most of the phonon absorption band of SiC. The contour 

plots in Fig. 7 display the calculated spectral normal emittance as a function of µ from RCWA for the SiC  

gratings covered with 1, 2, 3 and 4 layers of graphene sheets. 

It can be observed that, as the number of graphene layer increases, the tunable spectral range of selec-

tive emission peaks increases. Specifically, compared to a monolayer graphene sheet with a tunable range 

from 820 cm−1 to 850 cm−1 in Fig. 7(a), double, triple, and quadruple layers of graphene sheets lead to a 

higher upper limit of the resonance frequencies associated with MP at µ = 1 eV (i.e.,  870 cm−1, 884 cm−1, 

and 890 cm−1, respectively). The lower limit of resonance frequency at µ = 0 eV barely changes with more 

graphene sheets. As a result, the tunability on the peak emission frequency is improved from 3.7% to 

6.1 %, 7.8 %, and 8.5% when the number of graphene sheets on top of the SiC grating is increased from 

1 to 4. Besides, the resonance emission band tends to slightly broaden due to the increased loss with the 

additional graphene sheets.    

The effect of multilayer graphene in further tuning the emission frequency could be understood with 

the help of the LC model. To account for the effect of multiple graphene sheets coated on top of the SiC 

gratings, the inductance for multilayer graphene sheets with a total of m layers becomes G, GmL L m= , 

where LG is the inductance of monolayer graphene given by Eq. (7). Here we neglect the inter-coupling 

between graphene monolayers for simplicity. The impedance of the multiple graphene sheets is then: 

 G
G, 2

G gap
m

i LZ
m L C

ω
ω

=
−

                       (10) 

It can be inferred from Eq. (10) that G,mZ  increases with larger m, given the fact that 2
G gapm L Cω−  is 

negative in the considered spectral range. When larger G,mZ  becomes more dominant over SiCZ  in the 

total impedance as Total SiC G,mZ Z Z= + , the larger variation of G,mZ  with multiple graphene sheets will 

consequently lead to a larger shift of resonance frequency than that with a single layer graphene. The pre-

dicted MP resonance frequencies from the LC circuit model at different chemical potentials are presented 
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in Fig. 7 for graphene sheets with different layers. Excellent agreement on the tunable MP resonance fre-

quencies between the RCWA calculations and the analytical LC prediction can be clearly observed. How-

ever, when the number of graphene layer further increases, the resonance frequency at large graphene 

chemical potentials from the RCWA calculation tends to saturate around ν = 900 cm−1, which deviates 

from the LC prediction at higher resonance frequencies. This is because in graphene-covered SiC grating 

microstructures, grating-coupled surface modes existing at the air-graphene-SiC interface are mediated by 

both the graphene plasmon and optical phonons of SiC at high frequencies from ν = 925 cm−1 to 1000 

cm−1. Therefore, the graphene-tuned MP resonance frequency is suppressed when it approaches the strong 

surface modes at higher frequencies with larger µ, resulting in altered MP resonance frequencies away 

from the prediction by the LC model. Note that the simple LC model could not consider the interaction 

effect between the surface modes and MP resonances.  

To further understand the multilayer graphene effect on the MP resonance inside the SiC grating, EM 

fields are calculated for graphene sheets with different layer numbers at respective MP resonance fre-

quencies, as presented in Fig. 8. The geometric parameters of the SiC grating are the same with those for 

Fig. 7, while the graphene chemical potential is fixed at µ = 0.5 eV, for which the MP is excited respec-

tively at ν = 835 cm−1, 850 cm−1, 862 cm−1, or 871 cm−1 for 1, 2, 3 or 4 layers of graphene sheets, as indi-

cated in Fig. 7. When graphene layer number increases, it can be observed that the H field strength 

(shown as contour) around the graphene sheets becomes stronger and decays further into the SiC groove. 

This is because at the chemical potential µ = 0.5 eV, graphene acts as an inductor with negative ε within 

the phonon absorption band of SiC. As the number of graphene layers increases, larger electrical conduct-

ance will result in stronger electrical currents, which leads to stronger H field strength decaying further 

away from the graphene sheets. On the other hand, the strength of H field confined inside the groove be-

comes weaker with more graphene layers, due to the fact that less energy can penetrate into the groove 

with thicker conductive, i.e., more lossy, graphene sheets. Figure 8 clearly illustrates the electromagnetic 

interaction between multiple graphene layers and the MP excited inside the grooves of SiC gratings. The 
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EM field obtained from the RCWA simulation shows consistency with the LC circuit model depicted in 

Fig. 4(a) with graphene sheets as an inductor.    

4. Conclusions 

In summary, we have numerically demonstrated a graphene-based spectrally-selective thermal source 

with tunable emission frequency by modulating graphene chemical potential. The electromagnetic field 

distribution revealed the MP or magnetic resonance as the physical mechanism that is responsible for the 

coherent emission. An LC circuit model based on the charge distributions upon magnetic resonance suc-

cessfully elucidated the mechanism for the modulation effect of graphene chemical potential on the tuna-

ble coherent emission. It is shown that the grating height and groove width significantly affect the MP 

resonance frequency, while the grating period does not. Moreover, the angular independence of the tuna-

ble coherent emission from graphene-covered 1D SiC gratings due to MP resonance at TM waves was 

also demonstrated. By covering the SiC grating with multilayer graphene sheet, the tunable spectral range 

for the coherent thermal emission can be further broadened to cover most of the phonon absorption band 

of SiC, demonstrating larger tunabilities on the coherent emission from this novel frequency-tunable in-

frared thermal source. Insights gained from this work will facilitate the innovative design and wide appli-

cation of smart IR coherent thermal sources with dynamic spectral tunability.   
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Table 1 . Quality factor for coherent emission peaks with different graphene chemical potential. Resonance fre-

quency obtained from RCWA calculation and LC model are also presented. 

Chemical 
 potential (eV) 0 0.2 0.4 0.6 0.8 1 

Quality  
factor 31.6 39.1 36.1 39.8 40.1 42.2 

Peak frequency from 
RCWA, ν res (cm−1) 853 861 868 875 882 887 

MP frequency from LC 
model, νLC (cm−1) 841 850 862 874 886 897 
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Figure Captions: 

Figure 1 . Schematic of the proposed tunable IR coherent emitter made of graphene-covered SiC gratings.  

 

Figure 2 . Spectral normal emittance of the tunable coherent emitter at different graphene chemical potential for 

TM polarized wave. The geometric parameters for the SiC grating are Λ = 5 µm, b = 0.5 µm, and h = 1 µm.  

 

Figure 3 . Electromagnetic fields at MP resonance frequency of νres = 853 cm-1 for SiC grating (a) without gra-

phene and (b) with monolayer graphene at chemical potential µ = 0 eV. The geometric parameters for the SiC 

grating are Λ = 5 µm, b = 0.5 µm, and h = 1 µm.  

 

Figure 4 .  (a) Schematic for the LC circuit model that predicts MP resonance frequency. (b) Value of G SiC/Z Z in 

the LC circuit with different graphene chemical potentials.  

 

Figure 5. Geometric effects of (a) grating height h, (b) groove width b, and (c) grating period Λ on the spectral 

normal emittance of graphene-covered SiC gratings at TM waves. The graphene chemical potential is fixed at µ = 

0.5 eV. The predicted MP resonance frequencies from the LC circuit model are also plotted as green triangles for 

comparison with RCWA simulation. 

 

Figure 6. Contour plot of the spectral-directional emittance of graphene-covered SiC gratings as a function of 

wavenumber ν and in-pane wavevector kx0. The parameters are set as h = 1 µm, b = 0.5 µm, Λ = 5 µm, and µ = 0.5 

eV. The MP resonance frequency is also predicted by the LC circuit model (denoted by green triangles), and the 

dispersion curve of the surface modes at the vacuum-graphene-SiC interface is also plotted (as blue curves). 

 

Figure 7 .  Spectral normal emittance at TM waves as a function of graphene chemical potential µ for SiC gratings 

covered by (a) a single graphene sheet, (b) 2 layers, (c) 3 layers, and (d) 4 layers of graphene sheets. The geomet-

ric parameters for the SiC grating are Λ = 5 µm, b = 0.5 µm, and h = 1.5 µm. 

 

Figure 8.   Electromagnetic fields at respective MP resonance frequency for SiC gratings coated by multiple gra-

phene layers with (a) a single graphene sheet at νres = 835 cm-1, (b) 2 layers at νres = 850 cm-1, (c) 3 layers at νres = 

862 cm-1, and (d) 4 layers at νres = 871 cm-1. The geometric parameters for the SiC grating are Λ = 5 µm, b = 

0.5 µm, and h = 1.5 µm. The graphene chemical potential is µ = 0.5 eV. 
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