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Small cell carcinoma of the ovary,
hypercalcemic type (SCCOHT), is a

rare and understudied cancer with a
dismal prognosis. SCCOHT’s infre-
quency has hindered empirical study of
its biology and clinical management.
However, we and others have recently
identified inactivating mutations in the
SWI/SNF chromatin remodeling gene
SMARCA4 with concomitant loss of
SMARCA4 protein in the majority of
SCCOHT tumors.1–4 Here we summa-
rize these findings and report SMARCA4
status by targeted sequencing and/or
immunohistochemistry (IHC) in an
additional 12 SCCOHT tumors, 3
matched germlines, and the cell line

SCCOHT-1. We also report the identifi-
cation of a homozygous inactivating
mutation in the gene SMARCB1 in
one SCCOHT tumor with wild-type
SMARCA4, suggesting that SMARCB1
inactivation may also play a role in the
pathogenesis of SCCOHT. To date,
SMARCA4 mutations and protein
loss have been reported in the majority of
69 SCCOHT cases (including 2 cell
lines). These data firmly establish
SMARCA4 as a tumor suppressor whose
loss promotes the development of
SCCOHT, setting the stage for rapid
advancement in the biological under-
standing, diagnosis, and treatment of this
rare tumor type.

SCCOHT: A Rare, Lethal, and
Complex Cancer

Small cell carcinoma of the ovary,
hypercalcemic type (SCCOHT), is a rare
and deadly ovarian cancer that predomi-
nantly affects young women. Fewer than
500 cases have been described in the litera-
ture since the disease was first characterized
and it accounts for less than 1% of all
ovarian cancer diagnoses.5-8 While the
average age of diagnosis for most ovarian
cancers is 63 years, SCCOHT primarily
arises in young women at an average age
of 24 years5,9 Histologically, SCCOHT is
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characterized by sheets of small rounded
cells with hyperchromatic nuclei, single
nucleoli, minimal cytoplasm and brisk
mitotic activity. Roughly half of tumors
contain variable numbers of larger cells
with a luteinized or rhabdoid appearance.
Though the presence of follicle-like spaces
is diagnostically informative, other nonspe-
cific morphologic and immunohistochemi-
cal features render the diagnosis
challenging to establish.5,6,10 Indeed,
until the discoveries outlined in this
addendum, no specific immunohisto-
chemical markers existed. Although
SCCOHT is often diagnosed at an early
stage, little evidence exists to support
treatment selection and the prognosis is
dismal with 2-year survival being less
than 35%.5,6 SCCOHT’s early age of
onset and aggressive clinical course
clearly establish a pressing need for
innovations in management of this
disease.

Inactivating SMARCA4
Mutations in SCCOHT

Prior to the discoveries described
below, SCCOHT’s molecular etiology
was understood primarily according to its
clinical pathology and expression profile.
No mutations had been identified by tar-
geted sequencing of candidate genes such
as KRAS, BRAF, BRCA1, BRCA2, and
TP53 and the genome was seen to be
predominantly diploid by comparative
genomic hybridization.11-13 Now, next-
generation sequencing analyses from inde-
pendent laboratories have reframed our
biological understanding of SCCOHT by
revealing that nearly all tumors harbor
inactivating, often bi-allelic, mutations in
the chromatin-remodeling tumor suppres-
sor gene SMARCA4.1–4 We previously
sequenced tumor or germline DNA from
12 SCCOHT cases and the patient-
derived BIN-67 cell line, identifying

inactivating mutations in 9 of these sam-
ples.1 We also found 15 of 18 cases with
loss of SMARCA4 protein expression by
immunohistochemistry. We now report
the SMARCA4 status of an additional 12
SCCOHT tumors, 3 matched germlines,
and the cell line SCCOHT-114, bringing
the total number of cases analyzed in our
hands to 24. This analysis was performed
by PCR amplification of all coding exons
of the SMARCA4 gene using DNA
extracted from formalin-fixed paraffin-
embedded (FFPE) blocks followed by
Sanger sequencing in addition to immu-
nohistochemistry against SMARCA4 and
SMARCB1 as previously described.1 In
total, we have now identified 19 of 24
sequenced tumors with SMARCA4 muta-
tions and 16 of 19 stained tumors with
loss of SMARCA4 protein (Table 1).

Across all published studies to date and
including the new data reported here,
nearly 100 mutations have been identified

Table 1. SMARCA4 mutations identified in DNA from SCCOHT patients and cell lines

Sample ID Publication Age at diagnosis (years) SMARCA4 mutations IHC

Germline Tumor SMARCA4 SMARCB1
SCCO-001 New case 22 N/A p.Ala161Val Negative Positive

p.Ala532fs
SCCO-004 New case 32 None p.Val204fs Negative Positive
SCCO-005 New case 18 None p.Asp1299fs N/A N/A
SCCO-006 New case 32 None p.Trp764fs Negative Positive

p.Gly836*
SCCO-007 New case 25 N/A p.Gln331* Negative Positive

p.Ile542fs
SCCO-009 New case 27 N/A p.Tyr1050fs Negative Positive
SCCO-011 New case 30 N/A Homozygous p.Arg1189* Negative Positive
SCCO-016 New case 12 N/A Homozygous p.Arg1329fs Negative Positive
SCCO-018 New case 5 N/A None Positive NegativeC
SCCO-019 New case 27 N/A p.Phe844fs Negative PositiveC
SCCOHT-1 New case Tumor cell line N/A p.Pro1180fs

p.Arg1077*
NegativeC N/A

SCCO-002 Ramos et al. 26 None None Negative Positive
SCCO-008 Ramos et al. 9 p.Arg979* N/A N/A N/A
SCCO-010 Ramos et al. 6 None None2C Positive Negative
SCCO-012 Ramos et al. 21 N/A None Negative Positive
SCCO-014 Ramos et al. 33 N/A p.Glu667fs N/A N/A

p.Leu1161fs
SCCO-015 Ramos et al. 27 N/A p.Arg1189* N/A N/A
SCCO-017 Ramos et al. 10 p.Gly241fs Homozygous p.Gly241fs2C Negative Positive
DAH23 Ramos et al. 30 N/A c.2438C1_2438C2insTGA Negative N/A
DAH456 Ramos et al. 39 None None Positive Positive
DAH457 Ramos et al. 23 N/A p.Arg1093* N/A Positive
DG1006 Ramos et al. 34 None p.Glu952fs Negative N/A

p.Ser1591fs
DG1219 Ramos et al. 37 None c.3168C1>A Negative N/A
BIN-67 Ramos et al. Tumor cell line N/A c.2438C1G>A Negative Positive

c.2439–2A>T

CThis tumor was not previously stained for this marker
2CThe tumor for this case was not previously sequenced
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in SMARCA4 (Fig. 1) in 64 of 69
SCCOHT cases including 2 cell lines
(Table 1 and Supplementary Table 1).1–4

With the exception of 3 missense muta-
tions, all other SMARCA4 mutations
identified in SCCOHT are truncating,
frameshift, deletion, or splice-site muta-
tions. Two of the 3 missense mutations
were found in SMARCA4-negative
tumors bearing a second inactivating
SMARCA4 mutation, while in one case
the tumor harbored the missense mutation
p.Gly1080Asp and loss of heterozygosity
(LOH) alongside SMARCA4 protein
retention.3 Bi-allelic inactivation of
SMARCA4 in SCCOHT is common
either through the presence of 2 mutations
or a single mutation and LOH at the
SMARCA4 locus.3,4 In keeping with these
findings, immunohistochemistry has
revealed loss of SMARCA4 protein in 54
of 61 SCCOHT tumors and cell lines pre-
sumably due to nonsense-mediated decay
as has been shown in several cases.1–4

However, a number of SMARCA4 nega-
tive cases carry heterozygous nonsense
mutations and 2 cases have been shown to
lack SMARCA4 protein with no identi-
fied sequence, copy number, or methyla-
tion alterations in the SMARCA4 gene
(Table 1 and Supplementary Table 1).1-4

Mechanisms leading to gene inactivation
in SMARCA4-negative tumors with het-
erozygous or unidentified gene alterations
remain to be elucidated.

Conversely, all but 4 SMARCA4-
mutant SCCOHTs for which IHC has
been performed also lack expression
of SMARCA4 protein.1-4 These 4
SMARCA4-mutant, positive-staining
tumors harbored either splice site or mis-
sense mutations or, in one case, an in-
frame homozygous deletion of exons 25
and 26 that resulted in expression of an

inactive protein product.3, 4 In our cohort,
we also found 3 tumors that had no
SMARCA4 mutations and showed reten-
tion of protein expression by IHC. Two of
these cases, both associated with paraneo-
plastic hypercalcemia, lacked the protein
SMARCB1, a SWI/SNF-associated tumor
suppressor gene known to be frequently
mutated in rhabdoid tumors (Supplemen-
tary Fig. 1). Targeted Sanger sequencing
of the coding exons of SMARCB1 in these
tumors revealed a novel homozygous
frameshift mutation, p.Asn34fs, resulting
from the deletion of 14 base pairs in exon 2
of SMARCB1 in SCCO-010, a large cell
variant SCCOHT. This finding supports
the hypothesis that SCCOHT may
share an etiological link with rhabdoid
tumors and that SMARCB1 inactivation
can also promote the development of
SCCOHT.1,15 The third case retained
both SMARCA4 and SMARCB1 protein
expression and may bear an as-yet uniden-
tified SCCOHT driver gene mutation or
may simply be a misdiagnosis.1 Overall,
SMARCA4 is clearly a tumor suppressor
inactivated by 2 hits in the majority of
SCCOHTs, but several of the above excep-
tional cases provide clues to a more com-
plex disease etiology.

Further supporting the prominence of
SMARCA4’s tumor suppressor role in
SCCOHT, germline mutations have been
identified in 17 SCCOHT cases, predom-
inantly in younger patients.1,3,4 Such
mutations have been found to segregate in
4 families in which all affected members
whose tumors could be tested developed
either a second inactivating mutation or
LOH in the remaining wild-type allele.3

Alongside previous clinical descriptions of
SCCOHT families, these mutations eluci-
date a heritable component to the disease
and suggest that the broad age distribution

of SCCOHT could reflect inherited versus
acquired SMARCA4 mutations.11,16–21

SMARCA4 mutation also occurs in the
absence of recurrent secondary genomic
alterations and amidst relative karyotypic
stability and, therefore, appears to be the
primary driving event in SCCOHT
tumorigenesis. The total number of
somatic non-silent mutations detected by
paired exome or whole-genome sequenc-
ing analysis in SCCOHT tumors and
matched normal DNAs ranges from 2 to
12, reflecting a low mutation rate, similar
to other pediatric tumors and tumors of
non-self-renewing tissues.1,3,4,22 Among
paired tumor and normal samples eva-
luated by exome, whole-genome, or
panel-based sequencing, few secondary
mutations in cancer genes were discovered
and each such mutation (those in ASXL1,
JAK3, NOTCH2, and WT1) occurred in
only a single case.1,3,4 Overall, the low
SCCOHT mutation rate, the nearly uni-
versal presence of inactivating SMARCA4
mutations in SCCOHT, the presence of
these mutations in patient germlines and
families, and the lack of recurrent second-
ary alterations in these tumors strongly
suggest that loss of SMARCA4 is suffi-
cient for SCCOHT initiation.

Biological, Diagnostic, and
Therapeutic Implications of
SMARCA4 Loss in SCCOHT

SMARCA4 is one of 2 mutually-exclu-
sive ATPases of the SWItch/Sucrose
NonFermentable (SWI/SNF) chromatin-
remodeling complex which was originally
discovered to modulate mating type-
switching and sucrose fermentation in
yeast.23–25 This complex uses the energy
of ATP hydrolysis to destabilize histone-
DNA interactions and move, eject, or
restructure nucleosomes, thereby regulat-
ing access to DNA of transcription, repli-
cation, and repair machinery.23,26 SWI/
SNF subunits such as SMARCA4 have
also been shown to interact with tumor
suppressors such as p15INK4b, p16INK4a,
p21CIP/WAF1, and hypophosphorylated
RB to modulate cell cycle progression.27,28

Broadly, mutations in epigenetic regula-
tors such as SWI/SNF members are
enriched in many cancer types,

Figure 1. Schematic of SMARCA4 mutations in SCCOHT. SMARCA4 mutations identified in germline
and tumor DNA from 62 SCCOHT patients, and in 2 SCCOHT cell lines (Case 103 from Jelinic et al.
with exon deletion is not shown).1–4 QLQ, Gln, Leu, Gln motif; HSA, helicase/SANT-associated
domain; BRK, brahma and kismet domain; DEXDc, DEAD-like helicase superfamily domain; HELICc,
helicase superfamily C-terminal domain; Bromo, bromodomain.

www.landesbioscience.com e967148-3Rare Diseases



particularly pediatric cancers in which as
many as 30% of brain tumors and leuke-
mias and 17% of solid tumors bear such
mutations.29 This enrichment may be due
to the pleiotropic effects these mutations
exert on gene expression and cell differen-
tiation programs. Many SWI/SNF subu-
nits such as SMARCA4 have also been
shown to interact with, or regulate, tumor
suppressors with approximately 20% of
cancers bearing mutations in these
genes.30,31 SMARCA4 is one of the most
commonly mutated subunits across cancer
types, occurring at a frequency of about
4% in all cancers and arising regularly in
non-small cell lung cancer, Burkitt’s lym-
phoma, and medulloblastoma while also
occurring occasionally in melanoma, pan-
creatic adenocarcinoma, ovarian clear cell
carcinoma, and other tumor types.31 Loss
of SMARCA4 is thought to lead to depen-
dence on SMARCA2-bearing SWI/SNF
complexes that induce gene expression
changes driving oncogenic pro-survival
and/or anti-apoptotic signaling.32,33 Elu-
cidation of the impact of such mutations
on SWI/SNF composition and down-
stream effects on expression programs and
pathway regulation will shape future study
of SCCOHT tumorigenesis and therapeu-
tic vulnerability.

Given SCCOHT’s complex histologi-
cal appearance and the absence of known
precursor lesions, the cellular origin of
SCCOHT and its relationship to other
tumor types remains unclear. SCCOHTs
are characterized by poorly differentiated
small tumor cells with scant cytoplasm
and hyperchromatic nuclei, and the pres-
ence of follicle-like structures contained
within sheets of cells.5 Despite
SCCOHT’s name, about half of tumors
have populations of large cells with rhab-
doid features.5 Indeed, there are many
similarities between SCCOHT and atypi-
cal teratoid/rhabdoid tumors of the brain
(AT/RTs) and malignant rhabdoid
tumors (MRTs) of the kidney (MRTK).
All 3 tumor types are linked to mutations
in the SWI/SNF genes SMARCB1 (AT/
RT, MRT, and now SCCOHT) or
SMARCA4 (SCCOHT and AT/RT), all
have diploid genomes and all occur in
young or pediatric patients.5,34,35 Shared
morphology and mutational spectra make
a compelling case that SCCOHT may be

a type of MRT.15 The strikingly similar
morphology and genetics of rhabdoid
tumors in 3 very different organs suggests
either a common cell of origin or conver-
gent morphologic evolution upon
SMARCA4 or SMARCB1 loss (or both)
although no MRT cell of origin has yet
been identified.2,3,15,16 On the other hand,
there is some histological evidence for a
germ cell etiology for SCCOHT. In par-
ticular, a recent report identified immature
teratoma in 2 SCCOHTs, one of which
also contained foci of yolk-sac tumor.2

This finding agrees with Ulbright et al.
who, in one of the earliest publications on
SCCOHT in 1987,16 also suggested that
SCCOHTs might be related to yolk-sac
tumors based on presence of shared histo-
pathological and ultrastructural features.
Unfortunately, no clear origin has been
indicated by mouse models of SMARCA4
mutation. The homozygous Smarca4 null
genotype is embryonic lethal and, while
10% of heterozygotes spontaneously
develop mammary tumors at 1 year, these
tumors are molecularly heterogeneous,
genomically unstable, and lack LOH at
the Smarca4 locus and therefore do not
contain a genomic landscape resembling
that of SCCOHTs.36,37 Engineered
SMARCA4 knockouts in putative precur-
sor cells in vitro and in vivo are needed to
shed light on SCCOHT histogenesis.

Among ovarian tumors, the loss of
SMARCA4 protein appears to be highly
specific for SCCOHT. Our assessment of
485 primary ovarian epithelial, sex cord-
stromal, and germ cell tumors showed only
2 tumors (0.4%), both clear cell carcino-
mas, with negative SMARCA4 staining.1

Other ovarian tumors in the differential
diagnosis of SCCOHT – undifferentiated
carcinomas, adult and juvenile granulosa
cell tumor, and germ cell tumors – all
expressed SMARCA4 protein or were wild-
type for the SMARCA4 gene.1,38 The
expression status of SMARCA4 remains to
be determined in several other primary and
metastatic ovarian tumors in the differential
diagnosis of SCCOHT including endome-
trioid stromal sarcoma, desmoplastic small
round cell tumor, primitive neuroectoder-
mal tumor, neuroblastoma, and others.
However to date, the absence of
SMARCA4 protein is highly sensitive and
specific for SCCOHT and can be used to

distinguish it from other ovarian tumors
with similar histology to facilitate diagnosis.

SCCOHTs are extremely aggressive
and refractory to treatment that most
commonly includes surgical debulking
followed by high-dose chemotherapy and/
or radiation.5,9,20 Some evidence suggests
that chemotherapeutic combinations
including cisplatin or carboplatin, etopo-
side and vinca alkaloids may be associated
with improved survival, yet patient out-
comes are abysmal in most cases with a
65% recurrence rate and 2-year survival
less than 35%.5,9,39 SCCOHT rarity lim-
its the implementation of prospective clin-
ical trials to guide effective treatment and
its infrequency has also limited the study
of its pathogenesis to uncover potential
therapeutic vulnerabilities. Our finding
that the majority of SCCOHTs contain
SMARCA4 mutations amidst otherwise
simple genomic backgrounds provides an
opportunity to empirically develop effec-
tive treatment strategies with a high proba-
bility of impact for many of these patients.
Given that this disease derives in virtually
all cases from the loss of a tumor suppres-
sor, the path to an effective small molecule
may hinge on identification of a synthetic
lethal target. To this end, a synthetic lethal
dependence of SMARCA4-deficient can-
cers cells on SMARCA2 has recently been
described in non-small cell lung cancer,
ovarian and liver cancer cell lines.32,33 This
dependence is likely due to SMARCA2’s
status as the only known alternative
ATPase subunit of the SWI/SNF complex.
However, preliminary SMARCA2 staining
in 2 SCCOHT cell lines showed lack of
protein in both cases (data not shown),
suggesting that SCCOHT may lack the
expression of both SMARCA2 and
SMARCA4 and that investigation of other
synthetic lethal partners is therefore war-
ranted. Although it has been shown in
other cancers such as non-small cell lung
adenocarcinoma cell lines that the SWI/
SNF core complex still forms in the
absence of both SMARCA4 and
SMARCA2,40 it remains to be determined
whether this complex retains chromatin
remodeling activity and whether targeting
the residual complex can selectively kill
SCCOHT cells. Of further importance
will be identification of the mechanism
inactivating the second SMARCA4 allele
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in cases in which only monoallelic muta-
tions have been identified. Epigenetic
lesions may present compelling targets for
re-expression of SMARCA4 and/or
SMARCA2. Ultimately, future progress in
SCCOHT treatment will depend on
expansion of the currently limited number
of in vitro and in vivo model systems. The
BIN-67 and SCCOHT-1 cell lines are the
only such models to have yet been
described and they have been implemented
in few studies in vivo.13,14

The breakthrough identification of
inactivating SMARCA4 mutations in
almost all cases of SCCOHT is the first sig-
nificant insight into the pathogenesis of the
disease and offers the opportunity for
genetic testing of family members at risk.
The loss of the SMARCA4 protein is a
highly sensitive and specific marker of the
disease, highlighting its potential role as a
diagnostic marker. Studies are currently in
progress at our institutions to elucidate the
cell of origin in hopes of better understand-
ing the pathogenesis of this disease and to
identify therapeutic vulnerabilities guiding
clinical trials to further advance treatment
options for patients with SCCOHT.

Materials and Methods

Samples
At TGen, all patients and their relatives

signed consent forms according to IRB-
approved and Health Insurance Portabil-
ity and Accountability Act–compliant
protocols. At the University of British
Columbia, biospecimens were obtained
from the Ovarian Cancer Research Pro-
gram (OvCaRe) tissue bank in Vancouver,
British Columbia, Canada; the University
of Toronto in Toronto, Ontario, Canada;
the Children’s Oncology Group at
Nationwide Children’s Hospital in
Columbus, Ohio, USA; and the Hospital
de la Santa Creu i Sant Pau at the Autono-
mous University of Barcelona in Barce-
lona, Spain, using an IRB-approved
protocol. All of the specimens were
SCCOHT, with 4 cases (SCCO-009,
SCCO-010, SCCO-017 and SCCO-019)
classified as large cell variants of
SCCOHT in their pathology reports.
Cases of small cell carcinoma of pulmo-
nary type were excluded from the study.

DNA extraction
FFPE DNA was extracted using

Qiagen’s All Prep DNA/RNA FFPE kit
(Qiagen; Valencia, CA). Blood leukocytes
(buffy coat) were isolated from whole blood
by centrifugation at room temperature and
resuspended in Buffer RLT plus. Samples
were then processed for DNA isolation
using the AllPrep kit (Qiagen). DNA was
quantified using the Nanodrop spectropho-
tometer (Nanodrop; Wilmington, DE) on
the basis of 260 nm/280 nm and 260 nm/
230 nm absorbance ratios.

PCR amplification and Sanger
sequencing analysis
PCR amplification of SMARCA4 was

performed using previously published pri-
mers3 targeting 34 coding exons (the alter-
native exon 29 was not sequenced).
Amplification of all SMARCB1 coding
exons was performed using the following
primers, some of which have been previ-
ously published41:

Primer Name Forward Sequence Reverse Sequence

Exon 1 CTTCCGGCTTCGGTTTCCCT GATGAATGGAGACGCGCGCT
Exon 2 GTTGCTTGATGCAGTCTGCG TTCATGACATAAGCGAGTGG
Exon 3 GATGTGCTGCATCCACTTGG TTCAGAAAAGACCCCACAGG
Exon 4 TTAGTTGATTCCTGGTGGGC GAACTAAGGCGGAATCAGCA
Exon 5 TGTGCAGAGAGAGAGGCTGA CACGTAACACACAGGGGTTG
Exon 6 CAATCTCTTGGCATCCCTTC CAGTGCTCCATGATGACACC
Exon 7 TGGGCTGCAAAAGCTCTAAC AGTTTTGCAGGGAGATGAGG
Exon 8 GGCCAAAGCTTTCTGAGGAT CATGGGAGACTGGGAAAGGC
Exon 9 CCCTGTAGAGCCTTGGGAAG GTCCTTGCCAGAAGATGGAG

Universal M13 tails were added to all pri-
mers. Each primer pair was mixed with
10 ng of genomic DNA and subjected to
the following cycling parameters: 94�C
for 2 min., 3 cycles at each temperature:
30 sec. at 94�C, 30 sec. at 60–57�C, 45
sec. at 72�C; 25 cycles: 30 sec. at 94�C,
30 sec. at 62�C, 45 sec. at 72�C; final
extension of 5 min. at 72�C. All amplifi-
cation reactions were performed using
Platinum Taq DNA Polymerase #10966–
034 (Life Technologies; Carlsbad, CA).
PCR amplicons were sequenced using
M13 forward and reverse primers at the
Arizona State University’s DNA Labora-
tory (Tempe, AZ).

Immunohistochemistry
Whole slide sections were prepared

from paraffin blocks of formalin-fixed

SCCOHT tumor cases and SCCOHT-
1 cells. Unstained slides were processed
using the Ventana Discovery Ultra sys-
tem (Ventana Medical Systems), using a
rabbit monoclonal antibody to
SMARCA4 (BRG1; Abcam, ab110641;
1:25 dilution) and mouse monoclonal
antibody to SMARCB1 (INI1; BD
Transduction Laboratories, 612110;
1:50 dilution). The antibody to
SMARCB1 was used to confirm the
antigenic reactivity of the tumor cells
and cell lines that were negative for
SMARCA4 expression. Tumors were
scored positive if any tumor cell nuclei
showed moderate to strong (definite)
positive nuclear staining. Tumors were
scored negative when tumor cells
showed no nuclear staining only if there
was adequate nuclear staining of an
internal positive control (endothelial
cells, fibroblasts or lymphocytes). No
cytoplasmic staining was seen for
SMARCA4.
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