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1 Introduction

A hidden sector is a well-motivated and phenomenologically rich extension of the Standard
Model (SM) with interesting implications for dark matter [1–6] and collider physics [7–11].
In one minimal construction, the SM is extended to include a complex scalar field S charged
under a U(1) gauge group with X̂µ as its vector potential. The only coupling to the SM is
through the Higgs field Φ and hypercharge gauge field Yµ, and the interaction is written as

Lint = −αΦ†ΦS∗S − sin ε

2
X̂µνY

µν (1.1)

where α is the Higgs portal coupling and sin ε is the gauge kinetic mixing parameter. If the
mass scale in the hidden sector is M . TeV, then α and sin ε are constrained by various
laboratory tests [12, 13], but these parameters are as yet unconstrained if the scale of new
physics is above TeV.

If the the U(1) of the hidden sector is spontaneously broken, then the model admits
cosmic string solutions [14] know as dark strings [15]. If the hidden sector is low scale, perhaps
M ∼ 10 TeV, then the standard gravitational probes of cosmic strings are ineffectual, and
one must turn to the particle physics interactions. In principle, the cosmic strings could
provide an indirect probe of interactions in eq. (1.1) even if the scale of the hidden sector is
well above TeV.1 This is because the strings would persist as relics today, and do not have

1See ref. [78] for a supersymmetric model motivated along these lines.
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to be produced in the lab. In this sense, these astrophysical probes of cosmic strings are the
same as those examined in the indirect detection of dark matter [16].

Although dark strings result from topology in the hidden sector, we found in ref. [17]
that they are dressed with condensates of SM fields, namely the Higgs field (previously noted
by ref. [18]) and the Z field. The couplings in eq. (1.1) and the dressing lead to effective
interactions between the dark string, at spacetime location Xµ, and the SM fields that are of
the form [17]2

Seff = ghhstr

∫
d2σ
√
−γ φ2

H(X) + ḡhstrM

∫
d2σ
√
−γ φH(X)

+ ḡzzstr

∫
d2σ
√
−γ Zµ(X)Zµ(X) +

ḡzstr
2

∫
dσµνZµν(X) . (1.2)

The quadratic Higgs interaction (first term) arises from the Higgs portal operator of eq. (1.1),
and so ghhstr ≈ α. The linear Higgs interaction (second term) arises from the Higgs condensate
on the string, 〈Φ0〉 = η0, and so ḡhstr ∝ (η0/M). The quadratic and linear Z-bosons interac-
tions (third and fourth terms) arise from the mixings in the scalar and gauge sectors, and so
ḡzzstr ∼ (ḡzstr)

2 ∼ (η0/M)4. The interactions in Seff allow the dark strings to radiate Higgs and
Z particles, which we studied in ref. [19] (see also section 2 and references therein).

In the present paper we derive cosmological and astrophysical signatures of dark strings
that arise from radiation of SM particles. In the literature, there has been extensive work on
non-gravitational probes of cosmic string networks (references provided in section 4). Unlike
the universal gravitational constraints, the probes that rely on particle emission from the
string are model-dependent. For instance, the particle emission rate depends on parameters
such as (i) the form of the coupling as in eq. (1.2), (ii) whether or not the string is supercon-
ducting, and (iii) the configuration of the string that is radiating, e.g., is it cuspy / kinky?
is it large / small compared to the de Broglie wavelength of the radiated particle? As such,
the predicted observables available in the literature do not necessarily carry over to the dark
string model. The present analysis builds upon and extends prior work in the following ways.

1. We use the particle radiation rates calculated recently in ref. [19], which rectified a
handful of errors in the literature.

2. We pay special attention to light strings, which are motivated by TeV scale extensions
of the SM. The general consensus in the literature is that such light strings are uncon-
strained,3 and our conclusions do not differ. In the course of the calculation, however,
we uncover a previously overlooked suppression in the abundance of small string loops
that decay non-gravitationally.

3. We generalize previous calculations by including both populations of kinky and cuspy
loops together.

The paper is organized as follows. We start in section 2 with a recap of previous results
obtained in refs. [17, 19]. The interactions of dark strings with SM particles affects their
dynamics and also the properties of the dark string network e.g. the number distribution of
loops. In section 3 we build the cosmological scenario of dark strings, and provide expressions

2We use a slightly different notation here than refs. [17, 19], and hence the “barred” coupling constant.
3Refs. [20, 21] do find lower bounds on the string tension, but these calculations overlook non-gravitational

radiation in the loop decay calculation, as pointed out by [22].
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for the number density of closed loops and the Higgs radiation we expect from them. Section 4
converts the flux of Higgs radiation into observable signatures and compares predictions with
current observations. The essential idea is that strings inject energy mainly in the form
of Higgs particles into the cosmological medium, the Higgses then decay to photons and
other particles which can be observed by experiments. In section 5 we apply the translate
the constraints onto the underlying Lagrangian parameters. We summarize our findings in
section 6. We calculate the loop length distribution in appendix A.

Symbols that appear frequently are defined as follows: µ = M2 is the string tension, M
is the scale of symmetry breaking in the hidden sector, L is the length of a string loop, and
G ≈ (1.22 × 1019 GeV)−2 is Newton’s constant. Radiation-matter equality occurs at time
teq ≈ 97 000 yr, redshift zeq ≈ 2800, and temperature Teq ≈ 0.66 eV.

2 Radiation and scattering from the dark string

Cosmic strings may radiate both gravity waves and particles. Gravitational radiation is
universal since the cosmic string’s stress-energy tensor sources the gravitational field, but
particle radiation is model-dependent since it requires a coupling of the radiated fields to
the string-forming fields. Here we discuss the particle radiation from the dark string, whose
couplings to the SM fields are known.

Radiation requires an accelerated (or curved) segment of string. As such, radiation is
most efficient from cusps and kinks on string loops where the curvature is high [23]. A cusp is
a point on the string where the local velocity momentarily approaches the speed of light [24].
Roughly 30 − 50% of stable string loops are expected to possess cusps [25]. A kink forms
when two string segments pass through one another and reconnect such that the tangent
vector to the sting is discontinuous. Since string loops form from such reconnections, all
string loops are expected to possess kinks [26]. Radiation is emitted from individual kinks
and well as the collisions of two kinks [26].

The couplings of the dark string [17] allow it to radiate gravity waves, SM Higgs bosons,
Z-bosons, and SM fermions [19]. We quantify the radiation into each channel using a power
P (t, L), which is the rate of energy loss of a loop of length L at time t, i.e. the integral
of the radiation spectrum averaged over one loop oscillation period ∆t = L/2. Provided
that the loop is oscillating periodically (transient behavior has died away and backreaction
is neglected), the power is independent of t. In general, the power depends on the shape of
the loop, not just its length. However, the shape dependence does not affect the parametric
relationship between P and L at leading order, but it simply affects the overall prefactor
(see below).

The rate of energy loss into gravity waves from a cusp or a kink is given by the standard
expression [24, 27]

Pgrav = Γg GM
4 (2.1)

where µ = M2 is the string tension. The dimensionless coefficient Γg encodes our ignorance
of the shape of the loop, and for typical loops it is 50 . Γg . 100.

Particle emission from cosmic strings has been studied extensively, and the calculation
has been revisited intermittently over the years [19, 21, 28–34]. This continuing interest is
most likely because the radiation spectrum differs from model to model depending on the
form of the coupling and additionally, unlike gravitational radiation, the particle radiation
power is different for cusp, kinks, and kink-kink collisions. Ref. [19] found that when fields
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are coupled to the string as in eq. (1.2), it is generally true that the radiation from cusps and
kink-kink collisions has an average power that scales with loop length L as

P (cusp) ∼ 1/
√
L and P (k−k) ∼ 1/L . (2.2)

Additionally, the radiation from individual kinks is only nonzero for small loops L < M2/m3

with m the mass of the particle being radiated. This result reconciled a number of conflicting
claims in the literature, and it holds true for any light field coupled to a cosmic string as in
eq. (1.2).

The magnitudes of the dimensionful coefficients in eq. (2.2), however, are not so uni-
versal. In the limit where the radiated particle’s mass is small compared to the string
scale, m � M , one might naively estimate the power using dimensional analysis to be
P (cusp) ≈ g2M2/

√
ML where g2 ≤ O(1) is a coefficient that depends on the coupling con-

stants. A careful calculation reveals that P (cusp) can be larger by as much as
√
M/m, or

it can be smaller by as much as m2/M2. As explained in ref. [19], the failure of the naive
calculation is in the hierarchal nature of the problem: L−1 � m�M .

In order to keep our calculation general at the outset, we will parametrize the average
radiation power by cusps and kink collisions as

P (cusp) = Γ(cusp) M2

√
mL

(2.3)

P (k−k) = Γ(k−k)M
2

mL
(2.4)

where Γ(cusp) and Γ(k−k) are dimensionless coefficients. We will focus on Higgs boson radiation
for which the mass of the particle being radiated is m = mH ≈ 125 GeV. Since M is the
largest mass scale in the problem and m is the smallest mass scale, we expect Γ(cusp),Γ(k−k) <
O(1) in general. However, it is important to emphasize that Γ(cusp) and Γ(k−k) may themselves
scale like some power of (m/M) (see below), and thus, the explicit dependence on M and m
shown in eqs. (2.3) and (2.4) is not always indicative of the actual parametric dependence.

The model-dependence is contained within the coefficients Γ(cusp) and Γ(k−k). The
radiation of Z-bosons is typically subdominant owing to the factors of ḡzstr ∼ (η0/M)2 and
ḡzzstr ∼ (η0/M)4 in Seff , eq. (1.2). For Higgs radiation arising from the quadratic coupling in
Seff we have [19]

Γ
(cusp)
hh = (10−5 − 10−2)(ghhstr)

2

√
m

M
and Γ

(k−k)
hh = (10−4 − 10−1)(ghhstr)

2 m

M
(2.5)

where the ranges quantify our ignorance of the string loop shape, and ghhstr ≈ α is the Higgs
portal coupling. For Higgs radiation arising from the linear coupling in Seff we have instead4

Γ
(cusp)
h = (10−4 − 10−1)(ghstr)

2 η
2
0

M2
and Γ

(k−k)
h = (10−2 − 101)(ghstr)

2 η
2
0

M2
(2.6)

where we have written ḡhstr = ghstr(η0/M), and ref. [17] found ghstr ≈ 10α/κ with κ the self-
coupling of the string-forming scalar S(x). There is unfortunately no general analytic expres-
sion for the value of the Higgs condensate at the string core, η0, in terms of the model param-
eters. Ref. [17] numerically investigated a region of parameter space with κ ≈ λ ≈ 10α ≈ 0.1

4In this case, P (cusp) and P (k−k) diverge as m→ 0, but the derivation of eqs. (2.3) and (2.4) breaks down
for mL < 1. Although this regime is not relevant to the case of Higgs boson radiation, we note that the
powers will go as P (cusp) ∼ P (k−k) ∼ η20 [23].
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finding η0 ≈ η; see their Fig 5b. In this regime, the Higgs radiation via quadratic coupling,
eq. (2.5), dominates over the Higgs radiation via linear coupling, eq. (2.6). Building on earlier
work [35], ref. [36] recently argued that the parameter regime κ � α <

√
λκ yields a solu-

tion with a large condensate, η0 ≈
√
α/λM . In this regime, the linear coupling dominates

over the quadratic coupling. Additionally, ref. [36] estimated the Higgs radiation power due
to non-perturbative cusp evaporation [29]. They found the power takes the same form as
P (cusp) in eq. (2.3) when Γ(cusp) is identified as a cusp evaporation “efficiency factor,” but
this parameter is treated as free variable and not expressed in terms of the couplings of the
underlying Lagrangian. For the time being, we will use eqs. (2.3) and (2.4) assuming only
that Γ(cusp),Γ(k−k) < 1. Then we will return to the issue of model dependence in section 5.

In deriving the particle radiation powers represented by eqs. (2.5) and (2.6), it was
assumed in ref. [19] that the string can be approximated using the zero thickness Nambu-Goto
string model. It has been argued by refs. [37, 38] that this approximation does not capture
a non-perturbative radiation channel, which can be seen when using the finite thickness
Abelian-Higgs string model. However, the Abelian-Higgs results have been criticized, e.g.
by refs. [39, 40] where it is claimed that the Abelian-Higgs string network simulations lack
dynamic range to reliably assess the particle production. Here we choose to focus on the
Nambu-Goto case; for a discussion of constraints in the Abelian-Higgs case, see ref. [36].

In ref. [19] we also studied the scattering of SM fermions from the dark string. Provided
that the gauge kinetic mixing parameter sin ε is not too small, the scattering proceeds pri-
marily through the Aharonov-Bohm (AB) interaction [41]. The transport cross section takes
the form [42]

σt(k) =
2

k⊥
sin2(πφab) (2.7)

where k⊥ is the magnitude of the momentum in the plane transverse to the string and 2πφab
is the phase that a particle acquires upon circling the string. For the dark string, the AB
phases of the SM fermions were found to be [17]

φab = qΘ with Θ = −2
cos θw sin ε

gx
(2.8)

where q is the electromagnetic charge, gx is the gauge coupling of the new U(1) force, and
θw is the weak mixing angle.

3 Evolution of the dark string network

In this section we discuss the evolution of the string network from formation until today, and
we calculate the properties of the network that are relevant for the calculation of observables
in the following section.

3.1 Friction

The evolution of a cosmic string network is typically friction dominated at formation due to
the large elastic scattering cross section between the strings and the ambient plasma [43].
If a string moves at velocity v through a plasma of temperature T then elastic scatterings
induce a drag force per unit length fdrag, which takes the form [44]

fdrag = −βT 3γv (3.1)

– 5 –
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in the rest frame of the string. Here β is the dimensionless drag coefficient and γ = (1 −
|v|2)−1/2 is the local Lorentz factor. The drag force smooths out features on the string,
such as cusps and kinks, which prohibits radiation during the friction dominated era. In the
presence of a friction force and an expanding background with Hubble parameter H, the
string experiences an effective drag of 2H + βT 3/M2. Eventually the friction force becomes
negligible below a temperature of [43, 44]

T∗ ≈
2M2

βM0
≈ 1 eV

(
M

10 TeV

)2( β

0.1

)−1

(3.2)

where M0 = T 2/H ≈ 1018 GeV during the radiation dominated epoch. For a light string
network with a sizable drag coefficient, the friction dominated phase can last until recom-
bination (Trec ≈ 0.1 eV). If the drag coefficient is small, however, friction domination may
terminate much earlier.

To determine if β is large or small, we calculate it explicitly for the dark string interacting
with the SM plasma. The drag coefficient is given by [44]

β =
∑
a

na(T )

T 3
sin2(πφab a) , (3.3)

where the sum is over species in the plasma, na(T ) is the abundance of species a, and φab a
is the corresponding AB phase. If a species is thermalized and relativistic, then na(T ) ≈ T 3

and β ≈ sin2(πφab i). Although φab a is model-dependent, see eq. (2.8), it is not unreasonable
to expect β = O(0.1) as in the estimate of eq. (3.2). However, as species go out of equilibrium
na drops below T 3, and there is a corresponding decrease in β.

Let us estimate β before and after the era of electron-positron annihilation, which
occurred at Tann ≈ 0.1 MeV. For T > Tann the dominant contribution to β comes from
electrons and positrons, which are relativistic and have an abundance ne±(T > Tann) ≈ T 3.
Then eq. (3.3) gives the drag coefficient to be

β(T > Tann) ≈ ne−(T ) + ne+(T )

T 3
sin2(φab,e) ≈ sin2(φab,e) . (3.4)

Assuming that annihilation is totally efficient, then for T < Tann the positron abundance
is ne+ ≈ 0 and the electron abundance is ne− ≈ ηBT

3 where ηB ≈ 10−10 is the baryon
asymmetry of the universe. At this time,

β(T < Tann) ≈ 10−10 sin2(φab,e) . (3.5)

With such a small drag coefficient, one can verify that |fdrag| is much less than the Hubble
drag, for all values of the string mass scale in the range of interest, M > TeV. Therefore we
conclude that the dark string network remains friction dominated (by virtue of Aharonov-
Bohm scattering) until such a time that the temperature is equal to

T∗ = Max

[
M

M0 sin2(πφab e)
, Tann

]
(3.6)

where M0 ≈ 1018 GeV. That is, friction domination must end at or before the era of electron-
positron annihilation (Tann ≈ 0.1 MeV).

– 6 –
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3.2 Loop decay

After the friction force becomes negligible, the string network begins to evolve freely. Long
strings reconnect to form loops, and these loops shrink as they lose energy in the form of
gravity waves and particle emission. A loop with energy E (center of mass frame) has a
length L = E/M2 that evolves subject to the loop decay equation

M2dL

dt
= −P (t, L) (3.7)

where P (t, L) is the average rate of energy loss from a loop of length L at time t. This
radiation arises dominantly from cusps and kinks, as we discussed in section 2, and where all
loops have kinks but only an O(1) fraction are expected to possess cusps. It is convenient,
then, to consider two populations of loops in the system: those that have cusps and kinks
(cuspy loops) and those that have only kinks (kinky loops).

(i) Cuspy loops. For the case of cuspy loops, the loop decay equation becomes [21]

M2dL

dt
= −ΓgGM

4 − Γ(cusp) M2

(mL)1/2
, L(ti) = Li (3.8)

where the two terms on the right-hand side are the rates of energy loss into gravity waves and
particles, see eqs. (2.1) and (2.3). The kinks on these cuspy loops also radiate, see eq. (2.4),
but their contribution to the total power is suppressed since ML� 1. This system has the
characteristic length and time scales [21]

Lcuspy ≡
[Γ(cusp)]2

(ΓgG)2

1

M4m
(3.9)

tcuspy ≡
[Γ(cusp)]2

(ΓgG)3

1

M6m
. (3.10)

Comparing the terms in eq. (3.8), one can see that gravitational radiation is dominant for
large loops (L > Lcuspy) and particle radiation is dominant for small loops (L < Lcuspy) [21,
22]. For the well-studied GUT-scale string, M is sufficiently big that almost all sub-horizon
scale loops today are considered large, and the particle radiation can be neglected. For the
models that we are interested in, however, M may be as low as TeV, and in this regime
particle radiation can be the dominant mode of energy loss.

Integrating eq. (3.8) gives

y − 2
√
y + 2 ln(1 +

√
y) = yi − 2

√
yi + 2 ln(1 +

√
yi)− (x− xi) (3.11)

where y = L/Lcuspy and x = t/tcuspy are dimensionless length and time coordinates. An
exact solution of eq. (3.11) is not available, but it can be solved in the three limiting cases:

Case Ia: large loops that were large at formation (Lcuspy � L ≤ Li)
Case Ib: small loops that were large at formation (L� Lcuspy � Li)
Case II: small loops that were small at formation (L ≤ Li � Lcuspy)

(3.12)

The solutions are

L ≈



Li − Lcuspy

tcuspy
(t− ti) Lcuspy � L < Li(

3
2

)2/3 [
Li L

1/2
cuspy − L

3/2
cuspy

tcuspy
(t− ti)

]2/3

L� Lcuspy � Li[
L

3/2
i − 3

2
L
3/2
cuspy

tcuspy
(t− ti)

]2/3

L < Li � Lcuspy

. (3.13)
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In Case Ia gravitational radiation controls the loop decay (dL/dt ≈ −ΓgGM
2), in Case

II particle radiation controls the loop decay (dL/dt ≈ −Γ(cusp)/(mL)1/2), and in Case Ib
gravitational radiation controls the decay while the loop is large (L � Lcuspy) and particle
radiation controls the decay once the loop becomes small (L � Lcuspy). We determine the
loop lifetime, τ , by solving L(τ + ti) = 0 to obtain

τ ≈


Li

Lcuspy
tcuspy Lcuspy � Li

2
3

(
Li

Lcuspy

)3/2
tcuspy Li � Lcuspy

(3.14)

where the upper expression is for both Cases Ia and Ib.

We study loop decay here so that we may calculate the distribution of loop lengths for
the entire string network in section 3.3. In the literature one often assumes an instantaneous
decay approximation, that is L ≈ Li for t < τ and L = 0 afterward. In this approximation,
the network is devoid of loops smaller than a minimum length determined by solving t = τ
for Li. Observables associated with the string network are calculated by integrating over
loop length. The approximation proves to be a very good one provided that the integral is
not sensitive to small L as in the case of radiation from cusps where the power goes as 1/

√
L.

Since the particle radiation power output from kinky loops grows like 1/L with decreasing
L, it is not a priori clear that the instantaneous decay approximation is sufficient for us.

We will generalize the instantaneous decay approximation in the following way. We
saw in eq. (3.13) that the loop decay is controlled by particle radiation if Li � Lcuspy. We
will suppose that gravitational radiation is responsible for loop decay if Li � Lcuspy, even if
L < Lcuspy. Then we can take Cases Ia and II from eq. (3.13) and insert Lcuspy and tcuspy

from eqs. (3.9) and (3.10) to write the loop length as

L(t) ≈
[
Li − ΓgGM

2(t− ti)
]

Θ(Li − Lcuspy) +

[
L

3/2
i − 3

2
Γ(cusp) t− ti√

m

]2/3

Θ(Lcuspy − Li) .

(3.15)

where Θ is the Heaviside step function. Here we are really making two approximations: we
neglect the solutions that fall into the category of Case Ib (L < Lcuspy < Li), and we assume
that the transition between the asymptotic behaviors is abrupt. Both approximations are
justified because we are ultimately interested in integrated quantities. Upon integrating over
L and t, the contributions from L � Lcuspy � Li and Li ≈ Lcuspy are not significant. We
further clarify these points in section 3.3. In figure 1 we show the exact solution of eq. (3.11)
(determined numerically) and the approximate solutions in eq. (3.15). The approximation
works very well except when Li ≈ Lcuspy (yi ≈ 1).

The loop lifetime is obtained from eq. (3.14):

τ ≈ Li
ΓgGM2

Θ(Li − Lcuspy) +
2

3

L
3/2
i

√
m

Γ(cusp)
Θ(Lcuspy − Li) . (3.16)

The loop oscillates with a frequency f ∼ 1/L, and therefore it experiences N ≈ τ/Li oscilla-
tions before it decays. For a wide range of parameters, TeV < M < 1018 GeV and Li & 1/M ,
we have N � 1, and the loop oscillates many times. This estimate is a self-consistency
check: the radiation powers presented in section 2 are derived assuming that the loop is
oscillating periodically, and that any transient behavior has died away. Eq. (3.16) can also

– 8 –



J
C
A
P
1
2
(
2
0
1
4
)
0
4
0

10-8 10-5 0.01 10 104

10-5

0.001

0.1

10

1000

105

Dimensionless time: x = t � tcuspy

D
im

en
si

on
le

ss
lo

op
le

ng
th

:
y

=
L

�L
cu

sp
y

Cuspy Loops

yi = 10^H-4L

yi = 10^H-3L

yi = 10^H-2L

yi = 10^H-1L

yi = 10^H0L

yi = 10^H1L

yi = 10^H2L

yi = 10^H3L

yi = 10^H4L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H4L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H3L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H2L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H1L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H0L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H-1L

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H-2L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H-3L
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

x � xdecay

y
�y

i

Cuspy Loops

yi = 10^H-4L

Figure 1. Left: the solution of eq. (3.11) determined numerically (solid) and the approximate solution
(dotted) in eq. (3.15). There are two dashed lines for yi = 1 where we show both terms in eq. (3.15). In
the instantaneous decay approximation, these curves would be replaced with a step function. Right:
same analysis presented on a linear scale where y/yi is the fraction of the initial loop length and
x/xdecay is the fraction of the total loop lifetime (xdecay = tdecay/tcuspy).

be written as

τ ≈ tcuspy
Li

Lcuspy
Θ(Li − Lcuspy) + tcuspy

2

3

L
3/2
i

L
3/2
cuspy

Θ(Lcuspy − Li) , (3.17)

which illustrates that tcuspy is the lifetime of a loop of initial length Li ≈ Lcuspy; larger loops
are longer lived τ � tcuspy and smaller loops decay more quickly τ � tcuspy.

(ii) Kinky loops. We can perform a similar analysis for the case of kinky loops. The loop
decay equation takes the form5

M2dL

dt
= −ΓgGM

4 −M2 Γ(k−k)

mL
, L(ti) = Li (3.18)

where we sum the powers due to gravitational radiation and particle emission from kink
collisions, eqs. (2.1) and (2.4), on the right hand side. The characteristic length and time
scale are

Lkinky ≡
Γ(k−k)

ΓgG

1

M2m
(3.19)

tkinky ≡
Γ(k−k)

(ΓgG)2M4m
. (3.20)

5To our knowledge, ref. [34] contains the only study of kinky loops decaying both gravitationally and by
particle emission. However, they take the particle radiation power to scale as P ∼ L0 whereas we have argued
P ∼ L−1 in ref. [19], and consequently our loop decay equation is of a different form.
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Since GM2 � 1, we have Lkinky � Lcuspy and tkinky � tcuspy. The approximate solution is

L(t) ≈
[
Li − ΓgGM

2(t− ti)
]

Θ(Li − Lkinky) +

[
L2
i − 2

Γ(k−k)

m
(t− ti)

]1/2

Θ(Lkinky − Li) .

(3.21)

The loop lifetime is given by

τ ≈ Li
ΓgGM2

Θ(Li − Lkinky) +
1

2

L2
im

Γ(k−k)
Θ(Lkinky − Li) . (3.22)

3.3 Loop density function

At any given time, the string network will be populated by loops of different sizes as new
loops form and existing loops decay. Let

dnL = ν(t, L)dL (3.23)

be the number density of loops (per unit physical volume) with length between L and L+dL
at time t. We calculate ν(t, L) using empirical input from string network simulations. One
might expect that the simulations would tell us ν(t, L) directly, but this is not the case.
Nambu-Goto string simulations neglect the radiative processes responsible for loop decay,
and this affects ν(t, L) since a small loop at time t was formed as a larger loop at an earlier
time. Instead, the simulations provide us with the empirical loop formation rate as a function
of length.

To calculate ν(t, L) we must also know the loop length flow Li(ti;L, t), i.e. the length of
a loop at time ti that later has a smaller length L at time t. As we saw in section 3.2, it is not
always possible to obtain an exact expression for the loop length flow. Specifically, one cannot
solve eq. (3.11) for yi = Li/Lcuspy in closed form. The difficulty is that radiation is being
emitted in two different channels (gravitational and particle emission) at rates that depend
on the loop length in different ways. However, in the approximations leading to eqs. (3.15)
and (3.21) we saw that we can consider separately the cases in which either gravitational or
particle radiation is dominant. In these two regimes, the loop length flow is found by solving
the loop decay equation, eq. (3.7), with a power of the form P = M2Γ/(mL)p. If gravitational
radiation dominates then Γ = ΓgGM

2 and p = 0, and if particle radiation dominates then
Γ = Γ(cusp) and p = 1/2 for cuspy loops or Γ = Γ(k−k) and p = 1 for kinky loops.

In appendix A we calculate ν(t, L) as described above. The results are given by
eq. (A.22) and reproduced here:

ν(t, L) =


0.2 1

t3/2
Lp

L0(t,L)5/2+p
Θ(1− L

0.1t) t < teq

0.2
t
1/2
eq

t2
Lp

L0(t,L)5/2+p
Θ(1− Leq(t,L)

0.1teq
) t > teq

+ 0.3
[
1−

(
L

0.18t

)0.31
]

1
t2

Lp

L0(t,L)2+p

(3.24)

where Θ(x) is the Heaviside step function. The loop formation rate differs in the radiation
(t < teq) and matter eras (t > teq) leading to the two cases. The functions

Leq(t, L) =

[
Lp+1 + (1 + p)

Γ

mp
(t− teq)

]1/(p+1)

, (3.25)

L0(t, L) =

[
Lp+1 + (1 + p)

Γ

mp
t

]1/(p+1)

(3.26)
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are the lengths of a loop at RM equality and at t = 0, respectively, that later has length L
at time t.

In deriving eq. (3.24) we assumed that loop creation was continuous since the formation
of the string network. As we discussed in section 3.1, however, loops that formed during the
friction-dominated epoch (t < t∗) were over-damped and decayed away quickly. Then one
should only integrate back to the end of the friction era in calculating ν(t, L), and doing so
leaves a deficit of loops smaller than L ∼ 0.1t∗. In writing eq. (3.24) we implicitly assume
that friction domination ends sufficiently early such that t∗ is much smaller than the loop
length scales of interest. If friction domination lasts all the way until the epoch of e+e−

annihilations then t∗ ∼ 102 sec, and the abundance of loops smaller than L ∼ 106 km is
suppressed.

During the matter era (t > teq), the cosmic string network consists of two populations:
the relic loops that survived from the radiation era and the loops that were newly formed in
the matter era. These populations correspond respectively to the two terms in ν(t > teq, L)
above, and they have the ratio

R-era relic loops

new M-era loops
≈ t

1/2
eq

L0(t, L)1/2
� 1 (3.27)

for Leq(t, L) < 0.1teq ≈ 1017 km. For the calculation of observables in section 4 we will
primarily be interested in much smaller loops, since the particle radiation power grows with
decreasing loop size (see eqs. (2.3) and (2.4)). Therefore we are well-justified in keeping only
the R-era relic loops (first term of ν(t > teq, L)). However, to keep the expressions general,
we retain both terms in this section.

Note the factor of (L/L0)p ≤ 1 in eq. (3.24), and recall that the index p controls the
loop’s rate of energy loss via P ∝ L−p. For gravitational radiation (p = 0) the factor reduces
to unity, but for a loop that decays predominately by particle emission (p 6= 0) the factor
suppresses the abundance of small loops (L � L0). Large loops (L . L0) are unaffected
as they have not yet had time to decay. This factor has not been included in previous
calculations of the loop distribution, even in the regime where particle emission is dominant
(p 6= 0). As discussed in appendix A, the factor arises from the radiation power’s dependence
on the loop length: loops with length between L and L+dL at time t arose from a population
of loops in a narrower band of lengths at an earlier time: dLi = (∂Li/∂L)dL = (L/Li)

pdL
with (L/Li)

p ≤ 1.
Using eq. (3.24) we can find the loop distribution that results from different radiation

processes: gravitational radiation (p = 0, Γ = ΓgGM
2),

νg(t, L) =


0.2 1

t3/2
1

[L+ΓgGM2t]5/2
Θ(1− L

0.1t) t < teq

0.2
t
1/2
eq

t2
1

[L+ΓgGM2t]5/2
Θ(1− L+ΓgGM2(t−teq)

0.1teq
) t > teq

+ 0.3
[
1−

(
L

0.18t

)0.31
]

1
t2

1
[L+ΓgGM2t]2

, (3.28)

Particle radiation from cusps (p = 1/2, Γ = Γ(cusp)),

νc(t, L) =



0.2 1
t3/2

L1/2[
L3/2+ 3

2
Γ(cusp) t

m1/2

]2 Θ(1− L
0.1t) t < teq

0.2
t
1/2
eq

t2
L1/2[

L3/2+ 3
2

Γ(cusp) t

m1/2

]2 Θ(1−
L3/2+ 3

2
Γ(cusp) t−teq

m1/2

0.03 t
3/2
eq

) t > teq

+ 0.3
[
1−

(
L

0.18t

)0.31
]

1
t2

L1/2[
L3/2+ 3

2
Γ(cusp) t

m1/2

]5/3
, (3.29)
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and particle radiation from kink collisions (p = 1, Γ = Γ(k−k)),

νkk(t, L) =


0.2 1

t3/2
L

[L2+2Γ(k−k) t
m ]

7/4 Θ(1− L
0.1t) t < teq

0.2
t
1/2
eq

t2
L

[L2+2Γ(k−k) t
m ]

7/4 Θ(1− L2+2Γ(k−k) t−teq
m

0.01 t2eq
) t > teq

+ 0.3
[
1−

(
L

0.18t

)0.31
]

1
t2

L

[L2+2Γ(k−k) t
m ]

3/2

. (3.30)

As discussed in section 3.2, the rate of energy loss from a loop of length L is not generally
of the form P = ΓM2/(mL)p, as we assumed in the derivation of eq. (3.24). Loops that are
large decay predominantly via gravity wave emission (p = 0), and those that are small decay
primarily through particle emission (p 6= 0). However, we saw that the solution L(t) can
be approximated as in eqs. (3.15) and (3.21), that is, particle emission can be neglected if
the loop was large at formation (L0 > Lcuspy or Lkinky) and gravitational emission can be
neglected if the loop was small at formation (L0 < Lcuspy or Lkinky). The total loop length
distribution is obtained by summing these two contributions. For cuspy loops we have

νcuspy(t, L) = fc
[
νg(t, L) Θ

(
L+ ΓgGM

2t− Lcuspy

)
+ νc(t, L) Θ

(
Lcuspy − L− ΓgGM

2t
)]

(3.31)

and for kinky loops we obtain

νkinky(t, L)=(1−fc)
[
νg(t, L) Θ

(
L+ΓgGM

2t−Lkinky

)
+νkk(t, L) Θ

(
Lkinky−L−ΓgGM

2t
)]
.

(3.32)

Here fc ≤ 1 is the fraction of loops that have cusps. When backreaction is neglected,
numerical study suggest that fc ≈ 0.4 [25]; the effects of backreaction on fc are not known.

The loop length distribution in the present era (ttoday ≈ 13.7 Gyr) is plotted in figure 2
using eqs. (3.31) and (3.32). The dimensionless coefficients are written in terms of ghhstr using
eq. (2.5) where we take the upper range of the coefficient; we take ghhstr = 1, and we show
various models with different string tensions µ = M2. The line color and labels are intended
to highlight the non-monotonic behavior of the loop abundance with varying M , which was
first observed in ref. [22]. For large M the gravitational radiation is so efficient that all of the
loops today were large at formation (L+ΓgGM

2ttoday > Lcuspy or Lkinky); the loops that were
small at formation have decayed away entirely. In the notation of section 3.2 this translates
into ttoday > tcuspy or tkinky. Using eqs. (3.10) and (3.20) this implies M > Mcuspy(ttoday) or
Mkinky(ttoday) where Mcuspy(t) and Mkinky(t) are the solutions to the equations

Mcuspy =

[
[Γ(cusp)]2

Γ3
gG

3mt

]1/6

and Mkinky =

[
Γ(k−k)

Γ2
gG

2mt

]1/4

. (3.33)

Note that Γ(cusp) and Γ(k−k) may also depend on M as in eqs. (2.5) and (2.6). For the
parameters used in figure 2 we have Mcuspy(ttoday) ≈ 9 × 108 GeV and Mkinky(ttoday) ≈
5 × 105 GeV. For M ≈ Mcuspy(ttoday) or Mkinky(ttoday) the total loop abundance

∫
dnL

is maximal.
In the regime of large M > Mcuspy(ttoday) or Mkinky(ttoday), we have νcuspy/fc ≈

νkinky/(1 − fc) ≈ νg ∝ L
−5/2
0 = (L + ΓgGM

2t)−5/2 over the entire range of loop lengths
shown. For large loops, the distribution falls like L−5/2, since these loops have not yet had
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Figure 2. The number of loops per unit length that are within the observable universe today
(dh = 46.5 × 109 ly; ttoday = 13.7 × 109 yr) for models with different values of the string tension
(M =

√
µ). The left panel is for cuspy loops, and the right panel for kinky loops. To make these

figures, we have expressed the effective couplings Γ(cusp) and Γ(k−k) in terms of ghhstr using eq. (2.5),
and we have fixed ghhstr = 1.

sufficient time to decay appreciably and L0 ≈ L. For small loops, the length distribution
function is suppressed due to decay and becomes independent of L. Below L = Lcuspy or
Lkinky, denoted by a black dot, the assumptions that go into eqs. (3.31) and (3.32) break
down; this is discussed further below. The most abundant loops are those that are just
beginning to decay today. These loops have a length Lpeak ≈ ΓgGM

2ttoday, and on figure 2
this corresponds to the point of transition between the L−5/2 and L0 scaling.

In the regime of small M we have ttoday < tcuspy or tkinky. Here the gravitational radia-
tion is so inefficient that loops which were large at formation (L0 = L+ΓgGM

2ttoday > Lcuspy)
are still large (L ≈ L0) today; all of the loops that are small today (L < Lcuspy) were also small
at formation (L0 < Lcuspy). At large L where L ≈ L0 we have ν ∼ L−5/2, just as in the large
M case discussed above. At small L, the length distribution is suppressed by loop decay. The
scaling would go as ν ∼ L0, but the additional Jacobian factor, which was discussed above
eq. (3.28), further suppresses the loop abundance and leads to the scalings νcuspy ∼ L1/2 and

νkinky ∼ L1. The most abundant loops have a length Lpeak ≈
[

3
2Γ(cusp) ttoday

m1/2

]2/3
(cuspy) or

Lpeak ≈
[
2Γ(k−k) ttoday

m

]1/2
(kinky) such that they are just decaying today.

In the region where the curves are dashed, the assumptions that go into the derivation
of eqs. (3.31) and (3.32) have broken down. Specifically, the derivation assumes that the loop
decay is dominated by gravitational radiation at all length scales provided that the initial
length is large, L0 = L + ΓgGM

2t > Lcuspy or Lkinky. (In the notation of eq. (3.12), we
subsumed Case IIb into Case Ia.) More realistically, particle radiation dominates once the
large loops become small. In this regime, the Jacobian factor ∂Li/∂L will further suppress
the loop abundance, as discussed above. The appropriate factor is obtained from the middle
case of eq. (3.13) to be ∂Li/∂L = (L/Lcuspy)1/2 for cuspy loops and (L/Lkinky)1 for kinky
loops. The dashed curves in figure 2 have been scaled by these factors.
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Figure 3. The loop length distribution for the case where Γ(cusp) and Γ(k−k) are given by eq. (2.6).
We have fixed ghstr = 1 and η0 = 0.1M .

Whereas figure 2 shows the loop length distribution when Γ(cusp) and Γ(k−k) are given
by eq. (2.5), we also show in figure 3 the length distribution for Γ(cusp) and Γ(k−k) given by
eq. (2.6). By imposing η0 ∝ M , the couplings Γ(cusp) ≈ Γ(k−k) ≈ (ghstr)

2(η0/M)2 become
independent of M . In this case the loop length distributions also become independent of M
when particle emission is dominant, and ν = νc or νkk as in eqs. (3.29) and (3.30).

3.4 Higgs injection function

Particle emission from string loops, which is dominantly in the form of Higgs bosons, plays a
central role in the various astrophysical and cosmological probes of the string network. The
quantity of interest is PH(t)dt, that is, the energy that is ejected from the string network
in the form of Higgs bosons between time t and t + dt and per unit physical volume. By
summing the populations of cuspy and kinky loops and integrating over loop length we have
the Higgs injection function [21]

PH(t) =

∫ ∞
0

(
νcuspy(t, L)P (cusp)(L) + νkinky(t, L)P (k−k)(L)

)
dL (3.34)

where the Higgs emission powers are given by eqs. (2.3) and (2.4) and the loop length distri-
butions are given by eqs. (3.31) and (3.32).

One calculates PH(t) by performing the integral over loop length L. Since the loop
length distributions are given by piecewise functions, eqs. (3.31) and (3.32), we break up the
integration domain into small loops and large loops. For the large loops we use νcuspy ≈
νkinky ≈ νg and for the small loops it is νcuspy ≈ νc or νkinky ≈ νkk. The demarcation
point between large and small is determined by L + ΓgGM

2t ≷ Lcuspy or Lkinky, which is a
function of time t. The time variable also must be integrated to obtain the various observables
of interest. Although this calculation is straightforward, it is tedious to keep track of the
limits of integration and ultimately unnecessarily.

In an alternative approach, one performs two separate calculations: first assuming that
gravitational radiation has the dominant influence on the loop decay rate at all length scales
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(νcuspy ≈ νkinky ≈ νg), then assuming that particle radiation dominates at all length scales
(νcuspy ≈ νc or νkinky ≈ νkk), and finally PH is estimated as the smaller of two outcomes [33].
This approximation is written as

PH(t) = fc ×Min

{∫∞
0 dL νg(t, L)P (cusp)(L)∫∞
0 dL νc(t, L)P (cusp)(L)

+ (1− fc)×Min

{∫∞
0 dL νg(t, L)P (k−k)(L)∫∞
0 dL νkk(t, L)P (k−k)(L)

(3.35)

where Min
{
a, b = a if a < b and b if b ≤ a. Relaxing the limits of integration necessarily

overestimates the integral (the integrand is always positive), and this is why we must take
the smaller of the two expressions. We can evaluate eq. (3.35) separately in the radiation
and matter eras to find:

PH(t < teq) ≈ t1/2

t
1/2
eq

PH(t > teq)

≈ fc ×Min

 0.2 Γ(cusp)

Γ2
gG

2M2m1/2
1
t7/2

0.1 M2m1/6

[Γ(cusp)]1/3
1

t17/6

+ (1− fc)×Min

 0.2 Γ(k−k)

Γ
5/2
g G5/2M3m

log(ΓgGM2t/Lmin)
t4

0.1 M2m1/4

[Γ(k−k)]1/4
1

t11/4

.

(3.36)

The integral
∫∞

0 dL νg(t, L)P
(k−k)
hh (L) is logarithmically sensitive to its lower limit. The

divergence is artificial: we should not be using νg as the distribution function for small loops
with L < Lmin ≈ Lkinky, which decay predominantly by particle emission. In other words,
the loop abundance is suppressed left of the black dots in figure 2, but this suppression is not
included in eq. (3.35). For numerical estimates, we will take the logarithmical factor to be a
constant O(10) number. By explicitly calculating eq. (3.34), we have verified that eq. (3.36) is
an excellent approximation. Note also that the expressions in eq. (3.36) become comparable
in magnitude when t ≈ tcuspy or tkinky. As such, the minimization could be replaced with a
step function on t as in refs. [32, 36].

4 Astrophysical and cosmological observables

In this section we investigate how the string network may leave its imprint on astrophysical
and cosmological observables. Since constraints associated with gravitational effects are
universal (see, e.g., ref. [45] and references therein), we focus on constraints arising from the
particle emission by the sting network.

4.1 Big bang nucleosynthesis

In the standard cosmological model, the abundances of the light elements were established
by the process of Big Bang Nucleosynthesis (BBN) during the epoch Tbbn ≈ (10− 0.1) MeV
or tbbn ≈ (0.1 − 100) sec (for a review see ref. [46]). An injection of electromagnetic energy
during this time can disrupt the remarkable agreement between the observed abundances and
BBN’s predictions, and therefore new physics can be highly constrained [47]. The emission
of Higgs bosons from cusps and kinks on the dark string could be a potentially dangerous
source of electromagnetic radiation. However, as we saw in section 3.1 the network of dark
strings remains friction dominated as long the the elastic Aharonov-Bohm scattering with
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the plasma is efficient, and during this time string loops are unable to radiate particles
since cusps and kinks are smoothed by the friction. Friction domination terminates at a
temperature T∗ given by eq. (3.6), which could be as late as the era of electron-positron
annihilation at Tann ≈ 0.1 MeV. One can consider two scenarios. In the first, the string
tension is sufficiently low and the AB phase is sufficiently large that friction domination lasts
all the way until Tann ≈ 0.1 MeV. In this case, one does not expect the dark string model to
be constrained at all from BBN since 0.1 MeV corresponds to the end of BBN, and a particle
production does not begin in earnest for a few Hubble times longer. In the second scenario,
either the string tension is high or the AB phase is sufficiently small that friction domination
ends well before the onset of BBN. It is this second case that we will focus on here.

BBN constrains a network of cosmic strings [30, 31, 48] in much the same way that it
constrains the late decay of a long-lived particle [49]. If a particle X with number density
nX(t) decays at time 10−1 sec < t < 100 sec and injects an energy Evis in the form of
(“visible”) electromagnetic radiation, then BBN constrains [see figure 38 of ref. [50]]

EvisYX(t ≈ 1 sec) . (3− 80)× 10−12 GeV (4.1)

where YX = nX/s is the dimensionless yield and s(T ) = (2π2g∗S/45)T 3 is the entropy density
with g∗S ≈ 10 during BBN. During the radiation era we have T = Teq(teq/t)

1/2. The range
in eq. (4.1) corresponds to different measurements of the primordial hydrogen abundance,
and we refer to these as the “low” and “high” bounds in our analysis. The bound depends on
the nature of the decay products, which are primarily hadronic in the case of Higgs decays.
This corresponds to a more stringent bound than leptonic decays.

For the dark string network, we calculate the energy injection as

EvisYX = t
PH
s

(4.2)

where PH is given by eq. (3.34). Making use of the approximation in eq. (3.36) we find

EvisYX ≈
fc

t
3/2
eq T 3

eq

×Min

 0.06 Γ(cusp)

Γ2
gG

2M2m1/2
1
t

0.02 M2m1/6

[Γ(cusp)]1/3
1
t1/3

+
(1− fc)
t
3/2
eq T 3

eq

×Min

 0.4 Γ(k−k)

Γ
5/2
g G5/2M3m

1
t3/2

0.02 M2m1/4

[Γ(k−k)]1/4
1
t1/4

(4.3)

In figure 4 we plot EvisYX evaluated at t = 1 sec as a function of the string mass scale
M =

√
µ. In the case of a cuspy loop network, fc ≈ 0.5, we find that the BBN bound is

exceeded if the string mass scale falls in the range 1012 GeV .M . 1015 GeV and if Γ(cusp) is
sufficiently large. In the case of a kinky loop network, fc ≈ 0.01, the bound is only exceeded
for a very narrow range of parameters. (Recall that Γ(cusp),Γ(k−k) < O(1) for realistic models
as in eqs. (2.5) and (2.6).) The double-peaked structure is a consequence of summing the
two populations of cuspy and kinky loops. If the string mass scale is high (low), EvisYX
is dominated by the contribution from cuspy loops (kinky loops). The peaks occur at the
mass scales

Mcuspy(t = 1 sec) ' (5× 1013 GeV)
(

Γ(cusp)
)1/3

(4.4)

Mkinky(t = 1 sec) ' (3× 1011 GeV)
(

Γ(k−k)
)1/4

(4.5)

where Mcuspy(t) and Mkinky(t) are given by eq. (3.33).
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Figure 4. The predicted energy injection at t = 1 sec, given by eq. (4.3), compared to the bound
from BBN in eq. (4.1). The left panels show a cuspy loop network (fc = 0.5), and the right panels
shows a kinky loop network (fc = 0.01). In the top panels, Γ(cusp) = 1 is fixed and Γ(k−k) is varied,
and in the lower panels Γ(cusp) is varied instead.

The excluded parameter regime is also shown in figure 5. The bound arising from cuspy
loops agrees well with the recent calculation of ref. [36]. Additionally, there is a bound from
kinky loops if M = (6−9)×1011 GeV and Γ(k−k) ≈ 1. For Γ(k−k) . 0.1 the predicted energy
injection does not exceed the BBN bound, see the top-right panel of figure 4.

4.2 CMB spectral distortion

For the most part, Higgs emission during the radiation era leaves no imprint, since the
Higgs decays quickly into particles that thermalize with the plasma. Late into the radiation

– 17 –



J
C
A
P
1
2
(
2
0
1
4
)
0
4
0

-7 -6 -5 -4 -3 -2 -1 0
11

12

13

14

15

Log10@ G
HcuspL D

Lo
g 1

0
@M

�G
eV

D
fc = 0.5

GHk-kL = 1

-7 -6 -5 -4 -3 -2 -1 0
11

12

13

14

15

Log10@ G
HcuspL D

Lo
g 1

0
@M

�G
eV

D

fc = 0.01

GHk-kL = 1

Figure 5. The excluded region of parameter space for a cuspy string network (left) and a kinky
string network (right). The contribution to EvisYX from the kinky loops falls below the BBN bound
for Γ(k−k) . 10−1, i.e. the region M ≈ 1012 GeV is unconstrained if Γ(k−k) . 0.1.

era, however, thermalization is inefficient and the energy injection can manifest itself as a
distortion of the CMB spectrum [51, 52] (see also the review [53]). Specifically, if the radiation
is injected after the photon-number-violating double Compton scattering process has gone out
of equilibrium, the spectrum will be of the Bose-Einstein form with a nonzero dimensionless
chemical potential µdist.. The magnitude of the so-called µ-distortion is constrained by the
COBE FIRAS measurement of the CMB spectrum as |µdist.| < µfiras with [54]

µfiras = 9× 10−5 (4.6)

at the 95% confidence level. The next-generation CMB telescope PIXIE is expected to achieve
a sensitivity of [55]

δµpixie ≈ 5× 10−8 . (4.7)

The chemical potential µdist. measures the ratio of the injected energy, ∆ργ , to the
energy of the blackbody spectrum, ργ = (2π2/30)T 4. The µ-distortion is induced when the
energy injection occurs after double Compton scattering goes out of equilibrium (t1 ≈ 1 yr,
z1 ≈ 2 × 106) and before single Compton scattering goes out of equilibrium (t2 ≈ 100 yr,
z2 ≈ 105). Earlier energy injections can still thermalize, and later energy injections lead
to a y-type distortion, but we do not expect this to provide a stronger constraint (see, e.g.
Ref. [56]). The rate of energy density injection in the form of Higgs bosons was given by
PH(t) in eq. (3.34), and we can estimate the contribution that goes into electromagnetic
species with a factor of fem ≈ 1/2 since roughly half of the energy is lost into neutrinos [57].
The µ-distortion is estimated as [53]

µdist. ≈ 1.4
∆ργ
ργ

= 1.4fem

∫ t2

t1

dt
PH(t)

ργ(t)
. (4.8)
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Figure 6. The predicted µ-distortion, given by eq. (4.9), compared to the FIRAS bound and expected
sensitivity of PIXIE. Since all curves fall well below the FIRAS limit, µfiras = 9× 10−5, the model is
currently unconstrained.

During the radiation era we have (1 + z(t))/(1 + zeq) = (teq/t)
1/2 = T (t)/Teq. This estimate

neglects the evolution of µdist.(t) until recombination (zrec ≈ 1300) but it is reliable for order
of magnitude estimates [58].

We estimate µdist. using the the piecewise approximation to PH(t) given in eq. (3.36).
Then we find

µdist. ≈
femfc
T 4

eqt
2
eq

×Min

 0.7 Γ(cusp)

Γ2
gG

2M2m1/2
1

t
1/2
1

0.8 M2m1/6

[Γ(cusp)]1/3
t
1/6
2

+
fem(1− fc)
T 4

eqt
2
eq

×Min

 3 Γ(k−k)

Γ
5/2
g G5/2M3m

1
t1

0.4 M2m1/4

[Γ(k−k)]1/4
t
1/4
2

(4.9)

Figure 6 shows the predicted µ-distortion for a range of model parameters: varying Higgs-
to-string coupling ghhstr and varying string mass scale M . The peaks occur at the mass scales

Mcuspy(t
3/4
1 t

1/4
2 ) ' (2× 1012 GeV)

(
Γ(cusp)

)1/3
(4.10)

Mkinky(t
4/5
1 t

1/5
2 ) ' (3× 109 GeV)

(
Γ(k−k)

)1/4
(4.11)

where Mcuspy(t) and Mkinky(t) are given by eq. (3.33).
For the entire parameter range indicated, the expected level of spectral distortion is

well-below the current FIRAS bound, eq. (4.6), and the model is unconstrained. A future
experiment with a sensitivity comparable to PIXIE has the potential to constrain M ≈
1012 − 1013 GeV if Γ(cusp) & 10−2.

4.3 Diffuse gamma ray background

As we saw in section 2, particle emission from the dark string is mostly in the form of SM
Higgs bosons. The Higgs decays very quickly, mostly into hadrons such as pions, which
themselves decay into photons and charged leptons [59]. These particles can scatter on
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the CMB photons and extragalactic background light initiating an electromagnetic (EM)
cascade [60]. This process results in gamma rays that will show up on Earth as a diffuse
gamma ray background (DGRB).

The Fermi-LAT gamma ray telescope measures the spectrum of the DGRB in the energy
range 100 MeV . E . 100 GeV, and the spectrum is seen to fall as E−2.4 [61]. If the DGRB
arose from an EM cascade, then the spectrum would be softer, falling as E−2 [60]. The
cascade photons, therefore, can only make up a subdominant contribution to the total DGRB,
implying an upper bound on the amplitude of this component of the spectrum. Since the
predicted spectral shape of the EM cascade is known, it is convenient to express this limit
instead as a bound on the integrated spectrum, i.e. the total energy density ωcas in the EM
cascade today [57]. This bound is found to be ωcas < ωmax

cas with [62]

ωmax
cas ≈ 5.8× 10−7 eV

cm3
. (4.12)

We calculate ωcas using the Higgs injection function PH(t) given by eq. (3.34). Not all
of the energy carried by the Higgs bosons is transferred to the EM cascade. We estimate the
fractional contribution as fem ≈ 1/2 since roughly half of the energy is lost into neutrinos [57].
Then ωcas is calculated by integrating over the history of the network as [60] (see also ref. [57])

ωcas ≡ fem
∫ ttoday

tcas

dtPH(t)
1

[1 + z(t)]4
(4.13)

where the factor of (1 + z)−4 = (t/ttoday)8/3 accounts for the cosmological redshift between
time t in the matter era and today (t = ttoday). We truncate the integral at tcas ≈ 1015 sec (or
zcas ≈ 60) corresponding approximately to the time at which the universe became transparent
to gamma rays [32].

We perform the integrals in eq. (4.13) using the approximation to the Higgs injec-
tion function, given by eq. (3.36), and we obtain the predicted EM cascade energy density
today to be

ωcas = fem fc ×Min


0.7 Γ(cusp)

Γ2
gG

2M2m1/2

t
1/2
eq

t
8/3
todayt

1/3
cas

0.3 M2m1/6

[Γ(cusp)]1/3
t
1/2
eq

t
7/3
today

+ fem (1− fc)×Min


2 Γ(k−k)

Γ
5/2
g G5/2M3m

t
1/2
eq

t
8/3
todayt

5/6
cas

0.2 M2m1/4

[Γ(k−k)]1/4
t
1/2
eq

t
9/4
today

(4.14)

where we have used tcas � ttoday. Note that for the case in which gravitational (particle)
radiation controls the loop decay, the integral is dominated by the lower (upper) limit of
integration corresponding to early (late) times. This behavior results from a competition
between the Higgs injection function PH , which decreases with increasing t, and the redshift
factor, which increases with increasing t.

The contribution to ωcas from cuspy loops has been calculated previously in refs. [32,
33, 36], and our result (first term of eq. (4.14)) agrees with those references. Ref. [21] neglects
the radiation era relic loops and obtains a different expression for ωcas. The contribution to
ωcas from kinky loops has been calculated in ref. [34], but this cannot be compared against
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Figure 7. The EM cascade energy density, given by eq. (4.14), compared to the Fermi-LAT upper
bound, given by eq. (4.12).

our eq. (4.14) (second term) since ref. [34] takes the emission power from kinks to be of the
form P ∼ L0 whereas we have P ∼ L−1 (cf. eq. (2.4)).

We are now led to ask why our calculation matches well with the literature even though
the prior work has overlooked the factor of (L/L0)p, which was discussed below eq. (3.24).
Since this factor suppresses the abundance of small loops, L ≤ L0, we only expect it to
have an impact when small loops give the dominant contribution to PH . Three of the four
integrals in eq. (3.35) are insensitive to the lower limit of integration, and the fourth integral
has only a logarithmic sensitivity, discussed below eq. (3.36). If the particle radiation power
would grow more rapidly with decreasing L, then a more dramatic effect would be seen upon
implementing the correct loop length distribution.

In figure 7 we show ωcas for a range of values of the string tension scale M =
√
µ. Even

for the maximum reasonable value of the dimensionless couplings, Γ(cusp) ∼ Γ(k−k) ∼ 1 we
find that the predicted ωcas falls below the Fermi-LAT bound, and the model is unconstrained.
This conclusion was also obtained by ref. [36]. The peaks occur at the mass scales

Mcuspy(t
1/2
todayt

1/2
cas ) ' (1× 1011 GeV)

(
Γ(cusp)

)1/4
(4.15)

Mkinky(t
1/3
todayt

2/3
cas ) ' (4× 107 GeV)

(
Γ(k−k)

)1/3
(4.16)

where Mcuspy(t) and Mkinky(t) are given by eq. (3.33). For large (small) M the EM cascade
primarily arises from the cuspy (kinky) loops. Eventhough the rate of Higgs emission from
kinky loops is smaller than cuspy loops by a factor of 1/

√
ML (compare eqs. (2.3) and (2.4)),

these loops dominate ωcas since they decay more slowly than the cuspy loops and therefore
have a larger abundance today (see section 3.3).
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4.4 Diffuse cosmic ray fluxes

Since the 1980s there has been considerable interest in the study of high energy cosmic
rays (CRs) produced by cosmic string networks (see the review [57]). For the case of non-
superconducting strings the conclusions of these studies were often negative, meaning that
the predicted CR flux fell short of the observed flux [20, 22, 28, 63] (see also [64, 65]). Since
the CR calculation parallels our discussion of the DGRB in section 4.3, and since the latter
bound is typically more constraining [62], we will only briefly review the diffuse CR proton
and neutrino fluxes.

(i) Protons. The Higgs decay leads to a hadronic cascade that can produce cosmic ray
protons. In 1989 ref. [22] was the first to study the CR proton flux that results when X
bosons are emitted in cusp evaporation events and subsequently decay hadronically. This
analysis concluded that the model is unconstrained regardless of the string tension mass scale.
The results of this reference to not directly carry over to the case of the dark string, because
ref. [22] took the particle radiation power to scale as P ∝ L−1/3 whereas we have L−1/2 (see
eq. (2.3)). However, the general conclusion is the same, which we will demonstrate with the
following estimate.

The observed flux of ultra-high energy cosmic ray protons is measured to be [66–68]

E3Ip
∣∣
obs.
≈ 1024 eV2 m−2 sec−1 sr−1 (4.17)

for 2 × 1017 eV < E < 5 × 1019 eV. We suppose that a fraction fp of the energy emitted
from the cosmic string network is transferred to CR protons. We can estimate this energy
density, call it ωcr, from the EM cascade energy density given previously by eq. (4.13) using
ωcr ≈ (fp/fem)ωcas. From figure 7 we see that in the most optimistic region of parameter
space ωcr ≈ fp × 10−8 eV cm−3. At energies of 1019 eV this roughly corresponds to a flux of

E3Ip ≈
E

4π
ωcr ≈

(
1023 eV2 m−2 sec−1 sr−1

) fp
0.1

. (4.18)

We find that the predicted flux is insufficient to explain the observed flux in eq. (4.17).

(ii) Ultra-high energy neutrinos. Ultra-high energy neutrinos will typically be produced
by the same decay chain responsible for the electromagnetic cascade discussed in section 4.3.
Namely, the Higgs boson decay initiates a hadronic cascade, and neutrinos are produced
along with gamma rays from the pion / kaon decays. Consequently, the predicted neutrino
flux is tied to the flux of the EM cascade gamma rays [69] (see also ref. [60]). If the neutrino
spectrum scales as Jν ∝ E−2 over the range Emin < E < Emax then the amplitude is bounded
as [70]

E2 Jν ≤
1

4π

ωcas

lnEmax/Emin
(4.19)

where ωcas is the energy density of the cascade photons today (see eq. (4.13)). As we saw
in figure 7, the most optimistic prediction of the dark string model is ωcas ≈ 10−8 eV cm−3.
Then estimating the logarithm as O(1) we find the most optimistic prediction of the dark
string model to be

E2 Jν ≈ 2× 10−8 GeV cm−2 sec−1 sr−1 . (4.20)
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This is still well below the current best limit from Ice Cube [71]

E2 Jν
∣∣
IceCube

. 1.2× 10−7 GeV cm−2 sec−1 sr−1 (4.21)

for 106 GeV . E . 1011 GeV. Future experiments such as LOFAR and SKA expect sen-
sitivities at the level of 10−9 and 10−10 GeV cm−2 sec−1 sr−1 [72]. This sensitivity may be
sufficient to detect a flux at the level given by eq. (4.20), but since eq. (4.19) is an upper
bound, a more careful calculation of Jν is required to assess whether these experiments will
be able to probe the model.

4.5 Burst rate

When radiation is emitted from a cusp on a cosmic string, it is beamed into a narrow
cone [27]. If this radiation reaches the Earth, it may be observed as a burst instead of a
diffuse flux [23, 73]. Let Γburst(t)dt be the number of bursts that arrive at the Earth between
time t and t + dt. We will estimate Γburst(ttoday) assuming that (i) every burst directed
toward the Earth eventually reaches the Earth (no dimming) and (ii) the radiation from
a burst propagates in a straight line at the speed of light. Then, Γburst(t) is obtained by
counting the number of loops in the past light cone of the Earth at time t, multiplying by the
burst rate, and including a geometrical factor to account for the burst that are not directed
toward the Earth.

Let R(t, t′) be the radius at time t′ of the past lightcone of an event at time t > t′.
During the matter era, it is given by R(t, t′) = a(t′)

∫ t
t′ dt

′′/a(t′′) = 3t1/3(t′)2/3[1− (t′/t)1/3].
Then the time interval from t to t + dt has a past light cone (a conical shell) that fills a
spatial volume at time t′ given by6

dV (t, t′) = 4πR2(t, t′)dR = 4πR2(t, t′)
∂R

∂t
dt = 36π (t′)2

[
1−

(
t′

t

)1/3
]2

dt (4.22)

We assume that only cuspy loops emit bursts, and the number density of cuspy loops at time
t′ with length between L and L+ dL is νcuspy(t′, L)dL, given by eq. (3.31). Assuming that a
burst occurs once in each loop oscillation period (T = L/2), then the rate of bursts emitted
from a loop of length L is γb(L) = 2/L. Since the loops are receding from the observer, the
observed rate is smaller by a factor of a(temitted)/a(tobserved) = (temitted/tobserved)2/3. When a
burst occurs, the radiation is emitted into a cone with opening angle θc(|k|, L) ≈ 0.1/(|k|L)1/3

with m3/2L1/2 < |k| < M3/2L1/2 ([19] and references therein). Then we calculate the burst
rate as (see, e.g. ref. [32])

Γburst(t)dt =

∫ t

tmin

dt′
∫ ∞

0
dL νcuspy(t′, L) dV (t, t′) γb(L)

(
t′

t

)2/3 ∫
θ<θc(L)

dΩ

4π
(4.23)

where we cutoff the time integral at tmin = ttoday/(1 + zmax)3/2.

We can now perform the integrals in eq. (4.23). The angular integral gives 2π(1 −
cos θc)/4π ≈ θ2

c/4 . 0.0025/(mL) where the inequality corresponds to |k| > m3/2L1/2.
To perform the loop length and time integrals, we follow the procedure of section 3.4 by

6In redshift space with t = ttoday this becomes dV (z′) = 54πt3today(
√

1 + z′ − 1)2(1 + z′)−5dz′. For
comparison, the volume contained between two surfaces of fixed redshift is smaller: dV̄ (z′) = dV (z′)(1 +
z′)−1/2 [74].
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considering separately νcuspy = νg and νc, then taking the smaller of the two results. Using
the formulae above, the remaining integrals yield

Γburst(ttoday) ≈ 10−3fct
1/2
eq ×Min


1

(ΓgG)7/2M7mt
5/2
today

f1(zmax)

m1/6

(Γ(cusp))7/3t
4/3
today

f2(zmax)
(4.24)

where f1,2(z) are functions of redshift that evaluate to O(1) for zmax ≈ 1. If gravitational
radiation is dominant then the burst rate rises rapidly with decreasing string mass scale, going
like M−7 as previously recognized by ref. [32], but for lighter strings the particle radiation is
dominant, and the burst rate becomes independent of M . Inserting numerical values gives
Γburst < 10−9 yr−1 for Γ(cusp) ≈ 1, and Γburst > 1 yr−1 for Γ(cusp) < 10−4 and M < 109 GeV.
Although the burst rate grows with decreasing Γ(cusp), the amount of energy released in the
form of particle radiation becomes smaller and the detection of any given burst becomes
more difficult.

5 Constraints on model parameters

In section 4 we have endeavored to perform a model-independent analysis of the astrophysical
and cosmological constraints. These calculations only assume that the particle radiation
power can be written as in eqs. (2.3) and (2.4) for cuspy and kinky loops, respectively. The
dimensionless coefficients, Γ(cusp) and Γ(k−k), are treated as independent free parameters that
only need satisfy Γ(cusp),Γ(k−k) < O(1). Of all the observables surveyed in section 4, only
the BBN bound actually constrains the model, as noted previously by ref. [36]. As seen in
figure 5 the light element abundances restrict

10−6 < Γ(cusp) for 1012 GeV < M < 1015 GeV (5.1)

for fc ≈ 0.5, and the bound weakens if fc � 1. In the context of specific particle radiation
models, we can write the effective parameter Γ(cusp) in terms of the Lagrangian parameters
and thereby assess whether the underlying model is constrained.

Higgs radiation results from the quadratic and linear couplings in the effective ac-
tion, eq. (1.2), and these channels correspond respectively to the expressions for Γ(cusp) =

Γ
(cusp)
hh ,Γ

(cusp)
h given by eqs. (2.5) and (2.6). In the case of the quadratic coupling we have

Γ
(cusp)
hh . 10−7(ghhstr)

2

(
m

125 GeV

1012 GeV

M

)1/2

(5.2)

with ghhstr = α < O(1) given by the Higgs portal coupling. Over the mass range where Γ(cusp)

is constrained by BBN data, see eq. (5.1), we see that the model predicts Γ
(cusp)
hh � 10−6.

Therefore, particle radiation via the quadratic coupling alone is insufficient to constrain
the model.

Since the linear coupling violates the electroweak symmetry, the corresponding dimen-

sionless coupling, Γ
(cusp)
h , is proportional to the value of the Higgs condensate at the string,

η0. Dimensional analysis suggests that η0 will either be set by the scale of electroweak sym-
metry breaking outside of the string, η ≈ 174 GeV, or by the mass scale of the string itself,
M . We consider these two cases separately.
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Case 1: electroweak-scale Higgs condensate. In ref. [17] we studied the structure of
the dark string by numerically solving the field equations to determine the profile functions.
Over the parameter space surveyed, we found that generally the value of the Higgs condensate
at the string core remains on the order of the electroweak scale, η0 ≈ η = 174 GeV. Then

Γ
(cusp)
h can be estimated using eq. (2.6) to be

Γ
(cusp)
h . 10−21(ghstr)

2

(
η0

174 GeV

1012 GeV

M

)2

(5.3)

where ghstr is related to the coupling constants in the Lagrangian [17], and perturbativity

requires it to not be much greater than O(1). Since Γ
(cusp)
hh � Γ

(cusp)
h , we see that the

dominant particle radiation channel is via the quadratic interaction, as previously noted by
ref. [19]. Therefore, in the region of parameter space where η0 ≈ η, we find that the model
is entirely unconstrained, independent of the mass scale of the string.

Case 2: string-scale Higgs condensate. Recently ref. [36] asserted that the model under
consideration here admits a region of parameter space that was overlooked by our previous
analyses [17, 19]. This region corresponds to κ � α <

√
κλ < λ where κ is the quartic

self-coupling of the singlet scalar, λ ≈ 0.1 is the self-coupling of the Higgs, and α is the
Higgs portal coupling, see eq. (1.1). An energy minimization argument suggests that the
Higgs condensate takes a value of η0 .

√
α/λM , which is not unlike the behavior in bosonic

superconductivity [35, 75]. Using also ghstr ≈ 10α/κ [17] we can estimate

Γ
(cusp)
h ≈ (10−2 − 101)

(
α√
κλ

)4

. (5.4)

Then the BBN bound in eq. (5.1) implies that (α/
√
λκ) & 0.02 is constrained if 1012 GeV <

M < 1015 GeV and fc ≈ 0.5. The model remains unconstrained by virtue of particle emission
if the string mass scale is lower M < 1012 GeV, higher M > 1015 GeV, or contains fewer cuspy
loops fc � 0.5.

6 Conclusion

Building on the work of refs. [17, 19] and others, we have studied the astrophysical and
cosmological constraints arising from cosmic strings in a hidden sector that couples to the
SM fields through the interactions in eq. (1.1). In principle, the presence of relic dark strings
in our universe could provide an indirect probe of the hidden sector even if the mass scale
of the new physics is well above energies accessible in the laboratory. This is because the
strings will radiate SM Higgs bosons (and also Z bosons to a lesser extent). In section 4 we
assess the impact of the Higgs decay products on nucleosynthesis, spectral distortions of the
cosmic microwave background, diffuse gamma ray flux, and cosmic ray fluxes. BBN leads to
the constraint shown in figure 5, but the predicted signals for the the other observables are
well below the current limits.

Since the conclusion is effectively a null result, one is inclined to ask what needs to be
improved or modified if one hopes to achieve meaningful constraints. Increased data is not
likely to change the situation. In some cases the data gives a measurement and in some cases
it gives a bound. For the cases in which there is already a measurement (diffuse gamma
ray and cosmic ray protons), it won’t be possible to constrain the model with just more
data. The predicted flux from strings is hiding under some other dominant contribution,
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and without being able to theoretically predict this contribution precisely, it won’t matter
if the precision of the data improves. For the cases in which there is only a bound (CMB
spectral distortion and neutrinos), it could be possible to detect evidence of cosmic strings if
the signal is eventually measured at the level predicted here. As we’ve discussed, however,
the sensitivity of the near-future experiments will be insufficient to reach the level predicted
from the string network except in the most optimistic parameter regime.

Although the model considered here is found to be unconstrained by virtue of its par-
ticle emission, it is worthing noting briefly that other models of cosmic strings are known to
be constrained. Superconducting strings emit electromagnetic radiation more copiously, and
this model is constrained by CMB spectral distortions [56, 76]. In the case of cosmic super-
strings, the reconnection probability is less than one, which enhances the loop abundance
at late times, and leads to constraints from BBN and the DGRB [77]. A similar behavior
arises in strongly type-I cosmic strings, which may be associated with supersymmetric flat
directions, and these strings are constrained thanks to an enhanced particle radiation power
associated with the lightness of the scalar string-forming field [78]. Strings that radiate dark
matter are restricted by relic abundance constraints [79, 80]. Additionally, if the Nambu-
Goto string approximation is unreliable and instead all the energy of the string network is
converted into massive radiation, as argued by ref. [38], then both BBN and the DGRB lead
to constraints [36] .

We have identified two aspects of the calculation that have been overlooked previously.
First, we include the contribution from both cuspy and kinky loops, whereas only one or the
other has been considered in the past. As a result, the observables display a doubled-peaked
structure when plotted against the string mass scale M =

√
µ, see figures 4, 6, and 7. The

cuspy loops give the dominant contribution for large M , and the kinky loops dominate for
small M . This behavior can be traced to the Higgs radiation powers in eqs. (2.3) and (2.4)

where P
(cusp)
hh /P

(k−k)
hh ∝

√
ML. Second, we have identified a suppression of the abundance of

small loops that decay by non-gravitational radiation. This effect, which is discussed below
eq. (3.27) (see also appendix A), arises from the non-trivial Jacobian factor that relates the
loop length at different times: if the loop decays subject to µdL/dt = −P ∝ L−p, then the
Jacobian factor is proportional to Lp giving a suppression for small loops.

In conclusion, we have investigated a variety of non-gravitational signatures of dark
strings in the context of the current observational status. We find that strings lighter than
about 1012 GeV and heavier than 1015 GeV are not constrained by any the probes considered
here. In this intermediate mass range, we find that BBN constrains cuspy string networks if
the average power in Higgs radiation P = Γ(cusp)M2/

√
mL has Γ(cusp) & 10−6; this confirms

the results of [36]. This power is too large to arise from a quadratic coupling of the Higgs
field to the string, as discussed below eq. (5.2), since the dimensionless coupling constant is
restricted by perturbativity to be < O(1). A large power may arise from a linear coupling
of the Higgs field to the string if the Higgs condensate at the string is sufficiently large, and
one obtains the bound (α/

√
λκ) & 0.02 if 1012 GeV < M < 1015 GeV and the string network

contains an O(0.1) fraction of cuspy loops.
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A Derivation of loop length distribution

We derive the loop length distribution following ref. [45], which considers loop decay via
gravity wave emission. We extend their calculation to include loops that decay by parti-
cle emission.

Let f(t, L, p)dt dL dp be the number of loops produced per comoving volume between
time t and t+dt with length between L and L+dL and momentum between p and p+dp. Let
n(t, L, p)dLdp be the number of loops per comoving volume at time t with length between
L and L+ dL and momentum between p and p+ dp. Then we have

n(t, L, p) =

∫ t

0
dtif(ti, Li, pi)

∂Li
∂L

∂pi
∂p

(A.1)

where Li is the length of a loop at time ti that will later have length L at time t > ti, and
similarly pi is the momentum of a loop at time ti that will later have momentum p at time
t > ti. Simulations of string networks tell us the loop production function in the absence
of loop decay, and the decay is taken into account by the transformation from L to Li and
p to pi.

The momentum is assumed to evolve solely due to cosmological redshift:

pi = p
a

ai
,

∂pi
∂p

=
a

ai
≥ 1 (A.2)

where ai is the FRW scale factor at time ti that later becomes a at time t. In the radiation-
and matter-dominated eras, we have ai/a = tνi /t

ν with ν = 1/2 and ν = 2/3, respectively.

The particle horizon at time t is given by dh(t) = a
∫ t

0 dti/ai = t/(1− ν).

It is convenient to move to scaling coordinates

α =
L

dh(t)
, αi =

Li
dh(ti)

. (A.3)

Let f(α, p)dαdp be the number of loops formed in a physical volume d3
h in a time dh with

α and p in the ranges dα and dp, and let n(t, α, p)dαdp be the number of loops present in
a physical volume d3

h at a time t with α and p in the ranges dα and dp. If the system is in
the scaling regime, then n only depends on time through the scaling length α, but in general
(and specifically, in the case of particle radiation that we consider here) n will be a function
of both t and α separately. Then, we have the relationships7

f(α, p) =
d5
h

a3
f(t, L, p) ,

n(t, α, p) =
d4
h

a3
n(t, L, p) , (A.4)

and

n(t, α, p) = (1− ν)

∫ α

∞
dαi

t4−2ν

(ti)5−2ν
f

(
αi, p

tν

(ti)ν

)
∂Li
∂L

∂ti
∂αi

(A.5)

7That is, f(α, p) =
∫
dh
dt

∫
d3
h
d3x f(t,L,p)

a3
∂L
∂α

.
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where the quantities with an i subscript are understood to be functions of αi. Since we
are not interested in the distribution of momenta, we integrate f(α) =

∫∞
0 dp f(α, p) and

n(t, α) =
∫∞

0 dp n(t, α, p). This gives the “master formula”:

n(t, α) = (1− ν)

∫ α

∞
dαi

t4−3ν

(ti)5−3ν
f(αi)

∂Li
∂L

∂ti
∂αi

. (A.6)

To proceed further, we must specify the loop decay process (this gives a relationship between
ti and αi) and the cosmological epoch (this gives ν and f(αi)).

As we discuss in section 3.2, the evolution of a given loop is determined by solving the
initial value problem

M2dL

dt
= −P (L) , L(t = ti) = Li (A.7)

where P (L) is the rate at which a loop of length L at time t loses energy into gravitational
radiation and particle emission. We assume that the power can be parametrized as

P (L) = Γ
M2

(mL)p
(A.8)

where Γ is a dimensionless parameter. For gravitational radiation p = 0 and Γ = ΓgGM
2,

and for all the particle radiation channels discussed in section 2 p 6= 0 and Γ < 1 is a
dimensionless coefficient. The solution of eq. (A.7) is

(Li)
p+1 = Lp+1 + (1 + p)(t− ti)

Γ

mp
,

∂Li
∂L

=
Lp

Lpi
=
αptp

αpi t
p
i

≤ 1 . (A.9)

In terms of the scaling coordinates, the solution is

(αi)
p+1(ti)

p+1 + (1 + p)(1− ν)p+1 Γ

mp
ti = αp+1tp+1 + (1 + p)(1− ν)p+1 Γ

mp
t (A.10)

from which we obtain

∂ti
∂αi

= − ti

αi + (1− ν)p+1 Γ
(mαiti)p

. (A.11)

Using ∂Li/∂L and ∂ti/∂αi from above, the master formula becomes

n(t, α) = (1− ν)

∫ ∞
α

dαi

(
t

ti

)4−3ν+p( α
αi

)p f(αi)

αi + (1− ν)p+1 Γ
(mαiti)p

(A.12)

where ti is expressed as a function of αi, α, and t by solving eq. (A.10).
It is not always possible to obtain the solution of eq. (A.10) in closed form. However,

it turns out that the linear term on the left hand side is always negligible,8 and the solution
is simply

ti =
1

αi

[
αp+1tp+1 + (1 + p)(1− ν)p+1 Γ

mp
t

]1/(p+1)

. (A.13)

8The ratio of the first to second term is O(αp+1
i (mti)

p/Γ). The factor (mti)
p is large for cosmological time

scales, and although the factor αp+1
i could be arbitrarily small in principle, we will see in the paragraph below

that the integral over αi is dominated by αi = O(0.01). For the case of gravitational radiation with p = 0 we
have Γ = O(GM2)� 1.
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The same approximation allows us to neglect the second term in the denominator of
eq. (A.12), since it arose from the linear term in eq. (A.10). Inserting eq. (A.13) into the
master formula gives

n(t, α) =
(1− ν) t4−3ν+p αp

[αp+1tp+1 + (1 + p)(1− ν)p+1 Γ
mp t]

4−3ν+p
p+1

∫ ∞
α

dαi(αi)
3−3νf(αi) . (A.14)

The loop formation function f(αi) is extracted from simulations of string networks.
During the radiation-dominated era (ν = 1/2), the formation function is well-approximated
by a Dirac delta function [45]

fr(αi) ≈
ζr

α
3/2
i

δ(βr − αi) (A.15)

where ζr = 1.04 and βr = 0.05. Inserting fr into eq. (A.14) gives

nr(t, α) =
ζr
2

Θ(βr − α)
t5/2+pαp

[αp+1tp+1 + (1+p)
2p+1

Γ
mp t]

5/2+p
p+1

. (A.16)

During the matter-dominated era (ν = 2/3) the formation function instead takes the form [45]

fm(αi) ≈
ζm
α1.69
i

Θ(βm − αi) (A.17)

where ζm = 5.34 and βm = 0.06. Inserting fm into eq. (A.14) gives

nm(t, α) =
ζm
3

β0.31
m − α0.31

0.31

t2+pαp

[αp+1tp+1 + (1+p)
3p+1

Γ
mp t]

2+p
p+1

. (A.18)

Radiation-matter equality occurs at a time t = teq. A loop with scaling length α at
time t has a length Leq at time teq, which is found by solving eq. (A.9) with L = 3tα. The
corresponding scaling length is αeq = Leq/2teq and hence

αp+1
eq =

(
3t

2teq

)p+1

αp+1 +
(1 + p)(t− teq)Γ

(2teq)p+1mp
,

∂αeq

∂α
=

(
3t

2teq

)p+1 αp

αpeq
. (A.19)

In the matter era, the population of radiation era relic loops is given an appropriate trans-
formation of the distribution at radiation-matter equality:9

nr(t > teq, α) = nr(teq, αeq)
a3

eq

a3

(3t)3

(2teq)3

∂αeq

∂α
. (A.20)

Using a ∼ t2/3 during the matter era and inserting the solution from eq. (A.16) gives

nr(t > teq, α) =
ζr

25/2
Θ(βr − αeq(t))

33/2t2+pt
1/2
eq αp

[αp+1tp+1 + (1+p)
3p+1

Γ
mp t]

5/2+p
p+1

(A.21)

where αeq(t) is given by eq. (A.19).

9The number of loops per horizon volume at time teq with scaling length between αeq and αeq + dαeq

is nr(teq, αeq)dαeq. Multiplying by (aeq/2teq)3 gives the number per comoving volume, and multiplying by
(3t/a)3 gives the number per physical horizon volume at a later time t. The final Jacobian factor ∂αeq/∂α
transforms the differential element to give nr(t > teq, α)dα.
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We convert back to physical coordinates using eq. (A.4), ν(t, L)=n(t, L)/a3 =n(t, α)/d4
h,

such that ν(t, L)dL = n(t, L)dL/a3 is the number density of loops per physical volume at time
t with length between L and L+ dL. Applying these transformations to eqs. (A.16), (A.18),
and (A.21) gives the length distribution of loops during the radiation era, the length distri-
bution of loops formed during the matter era, and the length distribution loops surviving
from the radiation era into the matter era

νr(t < teq, L) =
ζr

25/2
Θ(2tβr − L)

1

t3/2
Lp

L0(t, L)5/2+p
(A.22a)

νm(t > teq, L) =
ζm
33

β0.31
m − (L/3t)0.31

0.31

1

t2
Lp

L0(t, L)2+p
(A.22b)

νr(t > teq, L) =
ζr

25/2
Θ(2teqβr − Leq(t, L))

t
1/2
eq

t2
Lp

L0(t, L)5/2+p
(A.22c)

where

Leq(t, L) =

[
Lp+1 + (1 + p)(t− teq)

Γ

mp

]1/(p+1)

(A.23)

L0(t, L) =

[
Lp+1 + (1 + p)

Γ

mp
t

]1/(p+1)

(A.24)

are the length of a loop at radiation-matter equality and at t = 0, respectively, that later has
length L < Leq, L0 at time t.

Note especially the factors of (L/L0)p in eq. (A.22). These factors arose from the
Jacobian in eqs. (A.9) and (A.19) associated with the non-linear coordinate transformation
between L(t) and Li(ti).
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