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Abstract 15 

Despite the prevalence of directional changes during every-day gait, relatively little is known 16 

about turning compared to straight gait. While the whole body center-of-mass (COM) movement 17 

during straight gait is well characterized, the COM trajectory, and the factors that influence it, 18 

are less established for turning. This study investigated the influence of a corner’s height on the 19 

COM trajectory as participants walked around the corner. Ten participants (25.3 ± 3.74 years) 20 

performed both 90° step and spin turns to the left at self-selected slow, normal, and fast speeds 21 

while walking inside a marked path. A pylon was placed on the inside corner of the path. Four 22 

different pylon heights were used to correspond to heights of everyday objects: 0 cm (no object), 23 

63 cm (box, crate), 104 cm (desk, table, counter), 167 cm (shelf, cabinet). Obstacle height was 24 

found to significantly affect the COM trajectory. Taller obstacles resulted in more distance 25 

between the corner and the COM, and between the corner and the COP. Taller obstacles also 26 

were associated with greater curvature in the COM trajectory, indicating a smaller turning radius 27 

despite the constant 90° corner. Taller obstacles correlated to an increased required coefficient of 28 

friction (RCOF) due to the smaller turning radii. Taller obstacles also tended towards greater 29 

mediolateral (ML) COM-COP angles, contrary to the initial hypothesis. Additionally, the COM 30 

was found to remain outside the base of support (BOS) for the entire first half of stance phase for 31 

all conditions indicating a high risk of falls resulting from slips.  32 
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Introduction 33 

Human gait has been a widely researched area especially concerning slips, trips, and falls. 34 

However, the majority of research has examined straight gait even though daily activities 35 

necessitate directional changes. Turning and non-straight steps make up approximately 35-45% 36 

of all steps (Glaister et al., 2007a) yet has received relatively little attention compared to straight 37 

gait. An individual’s whole body center-of-mass (COM) trajectory has been well characterized 38 

during straight gait (Gard et al., 2004; Granata and Lockhart, 2008; Lee and Farley, 1998; Lee 39 

and Chou, 2006; Lockhart et al., 2003; MacKinnon and Winter, 1993; Orendurff et al., 2004) but 40 

is less understood during turning.  41 

Turning is distinctly different than straight walking (Glaister et al., 2008; Hicheur and Berthoz, 42 

2005). Turning requires a much larger required coefficient of friction (RCOF) to prevent slips 43 

(Fino and Lockhart, 2014) and has a higher incidence of falls resulting from slips (Yamaguchi et 44 

al., 2012a) than straight walking due to the lateral displacement of the COM relative to the base 45 

of support (BOS). The radius of the turn affects the orientation of the head and trunk while 46 

walking (Sreenivasa et al., 2008). The COM is also affected by the turning radius with larger 47 

turning angles resulting in greater COM displacement (Hollands et al., 2001) as well as 48 

decreased walking velocity (Dias et al., 2013). Increasing the walking speed has a similar 49 

relationship, increasing the COM displacement outside the BOS (Orendurff et al., 2006).  50 

To date, no study has examined how the geometry of an object affects the COM around a turn. 51 

During turning, individuals tend to “lean in” to the turn to compensate for the centripetal force 52 

necessary to make a turn (Courtine and Schieppati, 2003). While the degree to which individuals 53 

lean depends on speed (Orendurff et al., 2006) and turning radius (Hollands et al., 2001), the 54 



   
 

4 
 

response if this “lean in” angle is obstructed by an obstacle is unknown. Previous studies have 55 

used objects to demark a corner (Grasso et al., 1998) or prevent participants from crossing 56 

through a corner (Glaister et al., 2008; Glaister et al., 2007b), but there is currently no knowledge 57 

concerning how the object’s shape or size influences the participants’ kinematics. Our earlier 58 

analysis reported no effect of obstacle height on RCOF during the push-off phase of gait (Fino 59 

and Lockhart, 2014) but did not examine other phases of the turn nor reported COM trajectories. 60 

Given that most turns in a crowded environment are to avoid obstacles (Glaister et al., 2007a), it 61 

is worth investigating whether the geometry of those obstacles impacts the resulting maneuver 62 

and influences fall risk. This knowledge, while important for researchers wishing to examine 63 

turning gait, may also prove useful in the design of pedestrian environments by providing 64 

guidelines for the height or size of barricades, posts, tables, and walls in order to maximize 65 

pedestrian flow and reduce the chance of slips and falls.  66 

This study observed the impact of an object’s height on the COM trajectory at slow, normal, and 67 

fast walking speeds while making a 90° turn. Our primary hypothesis was that taller obstacles 68 

would restrict the amount of “lean-in,” where “lean in” was defined as the mediolateral (ML) 69 

component of the COM-COP angle, θML. Additionally, we hypothesized that taller obstacles 70 

would result in wider turns with larger path curvature and greater clearance between the obstacle 71 

and the COM or COP (i.e. foot placement). The RCOF was also examined during the weight 72 

acceptance phase of the turn with a hypothesis that increased obstacle height would result in 73 

increased RCOF. Additionally, θML, the COM and COP clearance, and the RCOF were 74 

hypothesized to increase with faster speeds (Fino and Lockhart, 2014; Orendurff et al., 2006), 75 

with the COM and COP clearance and θML expected to be greater for step turns than for spin 76 

turns (Taylor et al., 2005). 77 
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Methods 78 

Participants 79 

Ten healthy adults (7 male, 3 female) 18-45 years of age (mean ± std dev = 25.3 ± 3.74 years), 80 

were recruited from Virginia Tech and the surrounding community for the study. Participants 81 

were informed of the protocol and signed an informed consent form prior to the experiment.  82 

Participants were excluded if they had any history of balance disorders, dizziness, 83 

musculoskeletal injury the past year affecting normal gait, any neurological disorders, one or 84 

more concussions within the past year, and / or significant visual impairment. The complete 85 

protocol was approved by the Institutional Review Board at Virginia Tech.  86 

 Experimental Procedure 87 

The full procedure was reported by Fino and Lockhart (2014). Briefly, participants walked along 88 

a 0.75 m wide marked path with a 90° turn. The path was straight for 3.5 m followed by a 90° 89 

left turn into a 2.5 m long straight segment. The beginning and end of the corner path were 90 

marked with start and stop lines, respectively. A 10 cm diameter pylon was placed on the inside 91 

of the 90° corner as the obstacle. Four different pylon heights were used corresponding to 92 

heights of everyday objects: 0 cm (no object), 63 cm (box, crate), 104 cm (desk, table, counter), 93 

and 167 cm (shelf, cabinet). The floor surface was covered in a Micropore tape (3M, St. Paul, 94 

MN 55144-1000, USA) to prevent slipping while turning the corner, especially at fast speeds. 95 

Prior testing revealed gait adjustments and slips when performing the task. The tape successfully 96 

increased the available friction of the floor allowing the participants’ natural actions to be 97 

observed without any adaptations (Fino and Lockhart, 2014). Participants wore their own athletic 98 

shoes throughout the experiment. An overhead view of the set-up is shown in Figure 1. 99 
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Figure 1. 100 

Three-dimensional kinematics were measured using a six-camera Pro-Reflex motion analysis 101 

system (Qualisys Track Manager version 1.6.0.163, Qualisys AB, Gothenburg, Sweden) and 35 102 

infrared-reflective markers placed bilaterally over the first, second, and fifth metatarsal heads, 103 

medial and lateral malleolus, calcaneus, medial and lateral femoral condyle, anterior superior 104 

iliac spine, trochanter, iliac crest, clavicle, acromioclavicular (AC) joint, lateral humeral condyle, 105 

ulnar stylus, third metacarpal head, ear, and top of head. A marker was also placed on top of the 106 

corner pylon directly over the inside corner of the path. Two force plates (AMTI # 107 

BP6001200100, AMTI Force and Motion, Watertown, MA 02472, USA) (Bertec #K80102, 108 

Type 45550-08, Bertec Corporation, OH 43212, USA) were embedded into the walkway just 109 

before and after the corner pylon. All data was sampled at 100 Hz. 110 

Participants were instructed to walk normally inside the path until they reached the stop line and 111 

to avoid hitting the pylon. The participants were instructed to walk at one of three speeds: normal 112 

(NW), slower than their normal pace (SW), and “as fast as possible without running or jogging” 113 

(FW). Warm-up trials were used to adjust the subjects starting position such that their turning 114 

limb landed on the corner force plate. The participants performed three straight gait trials, 115 

followed by 24 turning trials for each speed. The turning trials were divided into four blocks, one 116 

for each obstacle height. For each obstacle height, participants performed three step turns and 117 

three spin turns, where a step turn was defined as a turn away from the stance limb and a spin 118 

turn is defined as a turn toward the same side of the stance limb (Taylor et al., 2005). To 119 

eliminate order effects, speed, obstacle height, and step turn versus spin turn order was rotated 120 

for each participant (Fino and Lockhart, 2014). A total of 72 turning trials and nine straight 121 
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walking trials were recorded for each participant: three spin turns and three step turns for each of 122 

the four obstacle heights at each of the three speeds and three straight trials for each speed.  123 

 Data Analysis 124 

Data from all ten participants were analyzed. Trials in which the participant stepped multiple 125 

times on the force plate or only partially stepped on the force plate were excluded from the 126 

analysis. A total of 291 of the 720 trials were excluded for this reason (148 slow trials, 84 127 

normal, and 59 fast). These excluded trials occurred across all ten participants. The 3-128 

dimensional marker data and the force plate data were filtered using a 5 Hz 2
nd

 order low-pass 129 

Butterworth filter. Due to a systematic obstruction of the motion capture cameras’ view of the 130 

markers during the second half of the stance phase, kinematic data from only the first half of 131 

each stance phase was analyzed. All analysis was performed using MATLAB (MATLAB and 132 

Statistics Toolbox Release 2013b, The MathWorks, Inc., Natick, Massachusetts, USA). 133 

COM Clearance and COP Distance 134 

The COM was calculated using individual body segment mass and COM location from the 135 

reflective markers at the segment endpoints (De Leva, 1996). The COM clearance was calculated 136 

as the distance in the horizontal plane from the COM to the corner pylon as shown in Figure 2. 137 

Due to the different pylon heights, a vertical projection of the corner pylon was used. This 138 

projection extended upward to the COM height. The ground reactive forces (GRF) were recorded 139 

by the force plate and used to calculate the COP according to the force plate manufacturer 140 

(Bertec Corporation, OH 43212, USA). The COP distance was calculated as the distance from 141 

the COP at weight acceptance to the corner pylon.   142 

Figure 2. 143 
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  Required Coefficient of Friction 144 

The frictional demand RCOF was also calculated as 145 

𝑅𝐶𝑂𝐹 =
𝐹ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙

𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙
      (1) 146 

where 𝐹𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 is the vertical force 𝐹𝑧 and 𝐹ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 is the resultant sum of 𝐹𝑥 and 𝐹𝑦, 147 

𝐹ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 = √𝐹𝑥
2 + 𝐹𝑦

2 .     (2) 148 

Maximum RCOF values were extracted from the first half of the stance phase where the stance 149 

limb contacted the force plate. The maximum RCOF during the first half of the stance phase 150 

corresponded to the RCOF at weight acceptance. Immediately following heel contact and 151 

preceding toe-off, large RCOF values have previously been reported but do not result in slips 152 

(Redfern et al., 2001). The large RCOF values are products of extremely small vertical GRFs, 153 

which inflate the RCOF values. In practice, however, the opposite limb supports the majority of 154 

the body weight. Thus, slipping the foot supporting little body weight does not result in the 155 

macroscopic slips associated with slip and fall accidents. To prevent these high RCOF values 156 

which do not typically result in slips and falls from distorting the RCOF necessary to prevent a 157 

slip, only RCOF values where the vertical force was greater than 50 N were compared (Fino and 158 

Lockhart, 2014; Yamaguchi et al., 2012b). Stance time was defined as the time from heel contact 159 

to the push-off / toe-off phase of the gait cycle (i.e. the vertical force dropped below 50 N as the 160 

toe pushed off the ground) during the directional change.  161 

COM-COP Angle 162 
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The amount of “lean in” was defined as the ML COM-COP angle, θML. It was calculated as a 163 

component of the total COM-COP angle, θ, between the vertical axis and the line connecting the 164 

COM to the COP, (Yamaguchi et al., 2012b) 165 

Θ = tan−1
√(𝑥𝐶𝑂𝑃−𝑥𝐶𝑂𝑀)2+(𝑦𝐶𝑂𝑃−𝑦𝐶𝑂𝑀)2

𝑧𝐶𝑂𝑀
     (3) 166 

where  𝑥𝐶𝑂𝑃, 𝑦𝐶𝑂𝑃 are the x and y coordinates of the COP and 𝑥𝐶𝑂𝑀, 𝑦𝐶𝑂𝑀, and 𝑧𝐶𝑂𝑀 are the x, 167 

y, and z coordinates of the COM. The ML COM-COP angle, θML, shown in Figure 3 was 168 

calculated as the ML component of θ using the orientation of the pelvis to construct a body fixed 169 

reference frame (Glaister et al., 2007b). The body fixed reference frame was constructed using 170 

the vector from the mean of the iliac crest and trochanter markers on the right side to the left 171 

side. θML was calculated at the same time as the RCOF at weight acceptance.  172 

Figure 3. 173 

  COM Curvature 174 

Whereas the turning angle was specified at 90°, the turning radius of the COM may change 175 

based on θML and the amount of the outlined path the participants’ actually utilize. The curvature 176 

of the COM trajectory is a more accurate indicator of the true turning radius. To calculate the 177 

curvature of the COM trajectory, a least-squares quadratic polynomial equation was fitted to the 178 

COM trajectory in the horizontal plane using MATLAB. Taking the second derivative of this 179 

function with respect to the x axis  180 

𝑑2𝑓(𝑥)

𝑑𝑥2
= 𝜅 =

1

𝑟
      (5) 181 
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yielded a constant curvature κ equal to the inverse of the radius, 
1

𝑟
. The magnitude of the 182 

curvature κ was calculated for each COM trajectory.  183 

Approach Speed and Turning Speed 184 

The turning speed was defined as the resultant instantaneous COM velocity at weight 185 

acceptance. It was calculated at the same instant as the RCOF at weight acceptance. The 186 

approach speed was defined as the speed of the participant as he approached the corner prior to 187 

any deceleration. It was calculated from the resultant instantaneous COM velocity at weight 188 

acceptance one stride before the turn. 189 

 Statistical Analysis 190 

Univariate descriptive statistics of the COM clearance, COP distance, RCOF, and θML were 191 

calculated at each speed, height, and turning strategy. To determine the relationship between 192 

COM clearance, COP radius, RCOF, θML, and curvature to speed, height, and turning 193 

strategy, we fit generalized estimating equation (GEE) models that account for the within subject 194 

correlation among each subject’s trials. We selected the compound symmetry covariance 195 

structure as the most appropriate structure for our data after comparing several models using the 196 

Akaike information criterion. Model assumptions were validated using the distributions of the 197 

residuals for each model. Curvature had a skewed distribution and was thus log transformed in 198 

order to satisfy the models’ assumptions. Contrasts between each obstacle height were performed 199 

for each outcome. Trial, two-way and three-way interaction effects were also examined using 200 

type 3 tests for fixed effects with significant interactions retained in the final model. A 0.05 201 

significance level was used throughout this analysis. All analysis was performed in SAS 9.4 202 

(SAS Institute Inc., Cary, NC, USA). 203 
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Results 204 

 Descriptive Results 205 

Univariate descriptive statistics are summarized in Table 1. The average height and weight of the 206 

participants was 1.78 ± 0.11 meters tall (mean ± std dev) and 79.97 ± 12.39 kg, respectively. 207 

Mean approach speeds and turning speeds are summarized in Table 2. Weight acceptance was at 208 

an average of 10% of stance phase. Values for θML are plotted in Figure 4 for the first half of 209 

stance phase.      210 

Table 1. 211 

Table 2.  212 

Figure 4. 213 

The average trajectories of the COM and the left and right foot COMs are shown in Figures 4-6 214 

for each obstacle height, speed, and strategy. The COM remained outside the BOS during the 215 

first half of stance for every condition. The average COM trajectories for each variable are 216 

overlaid in Figure 8 for a direct curvature comparison. All quadratic fits had a R
2
 value greater 217 

than 0.9.  218 

Figure 5. 219 

Figure 6. 220 

Figure 7. 221 

Figure 8. 222 
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GEE Model Results 223 

From the results of the GEE model presented in Table 3, higher obstacle heights resulted in 224 

statistically significant increases in COM clearance, COP distance, RCOF, and curvature. 225 

Statistically significant differences in θML existed between the lowest (0 cm) and tallest (167 cm) 226 

obstacle heights. Though not statistically significant, a difference in θML between the 0 cm and 227 

104 cm heights was also found. Contrasts revealed no additional statistical differences in θML 228 

between any pairwise comparisons of height, though slight differences between the 104 cm and 229 

167 cm heights (p=0.0633) and between 63 cm and 167 cm heights (p=0.1079) were noted. 230 

Significant differences were found between all height-wise contrasts for COM clearance, 231 

curvature, and COP distance (p<0.0001). Contrasts also showed significantly different RCOF 232 

values between heights 104 cm and 167 cm (p=0.0123) with all other contrasts not statistically 233 

significant.  234 

COM clearance, RCOF, curvature, and θML at self-selected slow and fast speeds were 235 

significantly different compared to normal speeds.  Turning strategy significantly affected all 236 

outcomes.  237 

There was a significant interaction between speed and turning strategy for curvature (p=0.0072). 238 

Spin turns had decreased curvature compared to step turns at slow speeds but increased curvature 239 

with respect to step turns at fast speeds. No other significant two or three-way interactions 240 

between speed, obstacle height, and turning strategy (p>0.05) and no significant trial effects were 241 

found. Measured approach and turning speeds for slow, normal, and fast speeds were 242 

significantly different from one another (p<0.0001). No differences were found in turning speeds 243 

across obstacle height (p=0.79) or turning strategy (p=0.27).  244 
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Table 3. 245 

Discussion 246 

This study investigated the impact of a corner obstacle’s height on the kinematics during a turn. 247 

We found increased obstacle heights caused participants to give more distance between 248 

themselves and the corner. In essence, taller obstacles resulted in wider, sharper turns. Fast 249 

speeds, regardless of obstacle height, resulted in less COM clearance and narrower turns 250 

compared to normal or slow walking speeds. Similarly, spin turns brought the COM closer to the 251 

corner than step turns.  252 

Most prior studies investigating turning used walking paths or destination cues with no obstacle  253 

(Akram et al., 2010; Chang and Kram, 2007; Courtine and Schieppati, 2003; Hicheur and 254 

Berthoz, 2005; Hicheur et al., 2007; Hicheur et al., 2005; Jindrich et al., 2006; Olivier et al., 255 

2008; Orendurff et al., 2006; Patla et al., 1999; Patla et al., 1991; Pham et al., 2007; Taylor et al., 256 

2005; Yamaguchi et al., 2012a, b), while other obstacle circumvention studies used 2 m high 257 

pylons (Gérin-Lajoie et al., 2008; Gérin-Lajoie et al., 2006; Gérin-Lajoie et al., 2007; Vallis and 258 

McFadyen, 2003, 2005), 1.53 m tall poles (Glaister et al., 2008; Glaister et al., 2007b) or 259 

pedestrian barricades (Dias et al., 2013). The present results indicate the height of the corner 260 

could be an important factor in the study design. Hicheur et al. (2007)  showed that when given a 261 

target direction, individuals’ planar trajectories tend to follow a stereotyped behavior that 262 

minimizes jerk and snap (Pham et al., 2007). Fajen and Warren (2003) also provided a dynamical 263 

model of steering and route selection based on a two-dimensional, top-down, environment. Fajen 264 

and Warren (2003) acknowledged the inability of the system to model obstacles of varying 265 

lengths and widths. Our results suggest the height of the obstacle is also an important 266 
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characteristic, necessitating a three-dimensional model to accurately describe obstacle avoidance. 267 

Similarly, the “personal space” characterized by Gérin-Lajoie et al. (2008) would be more 268 

accurately defined as a three-dimensional vector space rather than in two-dimensions. 269 

Examining the trajectories of the whole body COM compared to the left and right foot COMs, 270 

we found that on average the whole body COM remains outside the BOS for the entire first half 271 

of stance phase regardless of speed, turning strategy, or obstacle height. This is in stark contrast 272 

to previous results which showed the COM only exited the BOS on spin turns (Taylor et al., 273 

2005) or at fast speeds (Orendurff et al., 2006). It is important to note that Taylor et al. (2005) 274 

instructed participants to perform quick/abrupt turn in the minimum amount of time, consistent 275 

with the theory that turning is an avoidance strategy as characterized by Patla et al. (1991). In 276 

reality, most turns in everyday locomotion occur over several steps (Fajen and Warren, 2003; 277 

Glaister et al., 2007a). In accordance, the subjects in our study were not instructed to make 278 

abrupt turns, but instead to turn the corner naturally.  279 

This new result has large implications for slips and falls. Because the COM remains outside the 280 

BOS for the entire first half of stance phase, slips during this weight acceptance phase are more 281 

likely to result in falls (Yamaguchi et al., 2012a). Furthermore, the RCOF values found during 282 

this weight acceptance phase of turning exceeded the RCOF values for normal walking of µ ≅ 283 

0.20 (Cham and Redfern, 2002; Redfern et al., 2001). This suggests that not only are slips more 284 

likely to occur while turning compared to normal walking (Fino and Lockhart, 2014; Yamaguchi 285 

et al., 2012b), but slips during the weight acceptance phase of turning may be more likely to 286 

result in falls than straight walking slips because of the COM displacement outside the BOS. In 287 

addition, we found the RCOF at weight acceptance differed between obstacle heights, suggesting 288 

the surrounding objects, not simply the available coefficient of friction from the shoe-floor 289 
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interface, may influence the risk of slipping.  While a previous analysis showed no differences 290 

between obstacle heights at the time of push-off (Fino and Lockhart, 2014) this difference 291 

between obstacle heights is most likely due to the different path curvatures caused by the 292 

obstacle.  293 

When walking around a corner, the centripetal force, Fc, is provided by the frictional force 294 

characterized by the individual’s body weight W and the RCOF µ. The centripetal force required 295 

to change direction is proportional to the velocity squared, v
2
, and the inverse of the radius, r, 296 

also known as the curvature, κ  297 

𝐹𝑐 = 𝜇𝑊 =
𝑚𝑣2

𝑟
= 𝑚𝑣2𝜅 .     (6) 298 

Therefore, the RCOF is proportional to the velocity squared and the magnitude of the curvature  299 

𝜇 ∝ 𝑣2𝜅.       (7) 300 

When compared with the curvature results, the differences in RCOF by obstacle height become 301 

clear. As obstacle height increased, it forced the COM further from the corner and increased the 302 

curvature. This increased curvature is most likely a cause of the increased RCOF. However, the 303 

increased RCOF at weight acceptance for faster speeds, despite a lower curvature, is caused by 304 

the proportionality to 𝑣2, which overcame the decrease in κ. The increased θML also contributed 305 

to the increased RCOF values observed during taller obstacle trials (Yamaguchi et al., 2012b). 306 

These results suggest that the radius of the turn, not the angle of the turn as presented by 307 

Yamaguchi et al. (2012a), is the critical factor in slip and fall risk during turning. However, if all 308 

are performed over the same distance, larger turning angles will necessarily result in a smaller 309 

turning radius. Thus the turning angle will reflect the actual turning radius.  310 
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The curvature and RCOF results have implications for designing pedestrian environments. In 311 

designing pedestrian walkways and areas, it may be important to consider not only the turning 312 

angle of paths (Dias et al., 2013) and the floor space of obstacles but also the height of 313 

barricades, railings, tables, posts, and walls that will impact the pedestrian path. Posts prohibiting 314 

vehicular traffic on pedestrian areas should be constructed high enough to be visible and 315 

effective, but as low as possible to reduce the effect on pedestrians. Besides reducing congestion, 316 

such design considerations may also be able to reduce the likelihood of slips and falls by 317 

maintaining low curvature paths to reduce the RCOF. 318 

Interestingly, across the obstacle heights and turning strategies, an increased COM clearance 319 

paired with an increased COP distance. However, this was not true for speed. As speed 320 

increased, the COP radius increased, but the COM clearance decreased. This would indicate 321 

greater θML angles at faster speeds consistent with results from Orendurff et al. (2006). Indeed, 322 

this result was observed; faster speeds utilized a greater θML. While we predicted the obstacle 323 

height would alter the COM by limiting θML, our results tended towards the opposite. An increase 324 

in obstacle height resulted in larger θML
 
values. Notably, only the lowest and highest heights 325 

were statistically different in terms of θML. However, this difference is peculiar as we expected 326 

taller obstacles would inhibit the lateral motion of the participants and restrict the degree to 327 

which the participants could lean over the obstacle and into the turn. This larger θML for the taller 328 

obstacle heights may have been caused by an anticipation of the smaller turning radius described 329 

above. Participants may have increased θML for taller obstacles because of the increased 330 

centripetal force of smaller radii. By leaning into the turn, they would have reduce the net 331 

overturning moment by balancing the moment due to friction with the moment due to their COM 332 

displacement. For this study, θML was only calculated at weight acceptance, therefore this result 333 
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may only be true during the weight acceptance phase of the turn. From Figure 4, it appears that 334 

examining the maximum θML may yield different results than when extracting the θML from 335 

weight acceptance (~10% stance). Furthermore, the motor control strategy was not investigated 336 

in this study. Future research should explore this entire result in greater detail.  337 

Overall, these results show obstacle height has a distinct effect on navigational strategies. Future 338 

work should investigate whether these effects result in different biomechanical responses such as 339 

increased lateral flexion or trunk roll, as well as the increase of θML
 
for taller obstacles. 340 

This study has two potential limitations. First, the sample size was limited to only 10 people, 341 

although the repeated measures increased the total trial sample size to 429 trials. Second, the 342 

availability of the kinematic marker data from the second half of stance phase was inconsistent. 343 

Due to laboratory space requirements, the motion capture cameras were confined to specified 344 

locations. This presented difficulties in capturing each kinematic marker once the participants 345 

changed directions. Laboratory structures, including the pylon used in the trials, obstructed the 346 

views of the cameras causing some but not all kinematic markers to be lost for periods of time 347 

following the change in direction. Rather than using long spline fits to interpolate these lost data 348 

points, we elected to report only the data which was accurately and consistently captured for 349 

each participant. For this reason, we presented only the first half of stance for all trajectories. 350 

Future analysis should consider the entire stance phase. 351 
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Figure 1 452 

 453 

 454 

Figure 1. Adopted from Fino and Lockhart (2014). A top-down view of the walkway and 455 

adjoining section with marked start and stop lines, path, and corner pylon. All dimensions given 456 

are in meters. The gray shaded areas indicate the locations of the force plates. The green shaded 457 

area indicates the area covered in Micropore tape. 458 
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Figure 2 460 

 461 

Figure 2. Depiction of COM clearance and COP distance calculations. The COM clearance was 462 

the planar distance from the whole body COM to the pylon (yellow) or pylon projection to the 463 

COM horizontal plane. The COP (red star) distance was the horizontal distance from the COP to 464 

the base of the pylon. 465 
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 467 

Figure 3 468 

 469 

Figure 3. Diagram of the mediolateral COM-COP angle θML. The ML COM-COP angle was the 470 

angle between the vertical and the line connecting the COM to the COP (red star) as seen from 471 

the frontal plane of the participant. The frontal plane and participant-fixed coordinate frame was 472 

defined by the orientation of the hips using the iliac crest and trochanter markers on each side of 473 

the body.   474 

  475 

θ
ML

 



   
 

24 
 

Figure 4 476 

 477 

Figure 4. Population average plots of θML for the first half of the turning stance for each obstacle 478 

height (top-left), speed (top-right), and strategy (bottom-left). Values reported in Tables 1 and 3 479 

reflect means at weight acceptance, which occurred at an average of 10% of stance. 480 
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Figure 5 482 

 483 

Figure 5. Population average plots for the whole body (solid line), left foot (dashed line), and 484 

right foot (dotted line) COM trajectories over the first half of stance phase for each obstacle 485 

height. For all heights, the COM remains outside of the BOS for the entire first half of stance 486 

phase. As obstacle height increased, the curvature of the COM trajectory also increased. 487 

488 

-0.8 -0.6 -0.4 -0.2 0
-0.2

0

0.2

0.4

0.6

0.8

0 cm

Meters

M
e
te

rs

-0.8 -0.6 -0.4 -0.2 0
-0.2

0

0.2

0.4

0.6

0.8

63 cm

Meters

M
e
te

rs

 

 

COM

Left Foot

Right Foot

Pylon

-0.8 -0.6 -0.4 -0.2 0
-0.2

0

0.2

0.4

0.6

0.8

104 cm

Meters

M
e
te

rs

-0.8 -0.6 -0.4 -0.2 0
-0.2

0

0.2

0.4

0.6

0.8

167 cm

Meters

M
e
te

rs



   
 

26 
 

Figure 6 489 

 Figure 6. Population average plots for the 490 

whole body (solid line), left foot (dashed 491 

line), and right foot (dotted line) COM 492 

trajectories over the first half of stance 493 

phase for each speed. The COM 494 

displacement outside the BOS increases as 495 

speed increases, but even at slow speeds the 496 

COM travels outside the BOS. 497 
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Figure 7 499 

500 
  501 

Figure 7. Population average plots for the whole body (solid line), left foot (dashed line), and 502 

right foot (dotted line) COM trajectories over the first half of stance phase for each strategy with 503 

representative foot placement. The stance limb for step turns to the left is the right leg, while for 504 

spin turns to the left it is the left leg which results in small path lengths for those respective 505 

trajectories. For both trajectories, the COM falls outside the BOS for the entire first half of 506 

stance. The COM displacement outside the BOS is much higher during spin turns than step turns. 507 
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Figure 8 509 

 510 

 511 

Figure 8. Population average plots for the COM trajectories separated by variable to show the 512 

different trajectories’ average curvatures.  513 
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 516 

Table 1 517 

 518 

Table 1  
Results from the univariate descriptive statistics: Means and standard deviations for minimum COM clearance, COP 
distance, RCOF at weight acceptance, and θML by speed, height, and turning strategy. The medians and inter-quartile 
bounds (Q1, Q3) are presented for curvature. 

    
COM Clearance 

(m) COP Radius (m) RCOF ΘML (degrees) Curvature 

  
Number 
of Trials* Mean St Dev Mean St Dev Mean St Dev Mean St Dev Median [Q1, Q3] 

Speed (self-selected)       
  

  

Slow 92 0.28 0.09 0.45 0.12 0.27 0.07 4.4 6.0 8.7 [4.8, 14.0] 

Normal 156 0.25 0.10 0.46 0.14 0.30 0.07 6.8 6.1 6.9 [4.5, 11.1] 

Fast 181 0.21 0.10 0.51 0.13 0.41 0.08 12.7 7.0 6.5 [4.0, 10.9] 

Height (cm)       
  

  

0 129 0.15 0.09 0.36 0.13 0.32 0.09 8.1 7.0 4.7 [2.4, 7.3] 

63 111 0.23 0.08 0.47 0.11 0.33 0.09 7.6 6.7 5.5 [3.9, 10.3] 

104 105 0.30 0.06 0.55 0.10 0.35 0.09 9.3 7.9 8.4 [5.9, 13.2] 

167 84 0.33 0.05 0.57 0.09 0.36 0.10 10.4 7.6 10.6 [7.6, 16.1] 

Turning Strategy         
  

  

Step 205 0.25 0.10 0.53 0.13 0.35 0.09 14.6 5.0 9.6 [5.7, 14.6] 

Spin 224 0.23 0.10 0.43 0.12 0.33 0.09 3.4 4.4 5.3 [3.5, 8.8] 

*Number of trials analyzed after excluding trials with improper foot placement or multiple steps on the force plate 

 519 
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Table 2 521 

 522 

Table 2  
Average approach speeds for each self-selected speed. Average turning 
speeds are separated by each variable. 

    
Approach Speed 

(m/s) 
Turning Speed 

(m/s) 

  
Number 
of Trials Mean Std Mean Std 

Speed (self-selected) 
    Slow 92 0.93 0.28 1.10 0.24 

Normal 156 1.43 0.36 1.27 0.26 

Fast 181 2.03 0.27 1.65 0.25 

Height (cm) 
    0 129 1.48 0.57 1.36 0.33 

63 111 1.45 0.54 1.36 0.35 

104 105 1.49 0.57 1.41 0.35 

167 84 1.45 0.56 1.44 0.33 

Turning Strategy   
     Step 205 1.47 0.54 1.40 0.35 

Spin 224 1.46 0.58 1.37 0.33 

  523 



   
 

31 
 

Table 3  524 
Table 3  
Results from GEE models for outcomes: minimum COM clearance, COP distance, RCOF at weight acceptance, and θML by speed, height, and 
turning strategy. The beta coefficients show the mean differences between each category and the reference. The model intercept (β0) is 
also presented as the mean outcome at a normal speed, 0 cm height, and a step turning strategy.  The significance level was set at 0.05. 

  COM Clearance (m) COP Radius (m) RCOF ΘML (degrees) Curvature 

  
Number 
of Trials 

Beta 
(SE)  P Value  

Beta 
(SE)  P Value  

Beta 
(SE)  P Value  

Beta 
(SE)  P Value  

Beta 
(SE)  P Value  

Intercept 0.25 
(0.10) 

<0.0001 0.40 
(0.01) 

<0.0001 0.29 
(0.01) 

<0.0001 12.19 
(0.42) 

<0.0001 1.77 
(0.09) 

<0.0001 

Speed (self-selected)      
  

  

Slow 
 

92 
 

0.04 
(0.01) 

<0.0001* 
 

0.002 
(0.01) 

0.8264 
 

-0.03 
(0.01) 

0.0040* 
 

-2.13 
(0.45) 

<0.0001* 
 

0.42 
(0.13) 

0.0009* 

Normal 
 

156 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

Fast 
 

182 
 

-0.05 
(0.01) 

<0.0001* 
 

0.04 
(0.01) 

<0.0001* 
 

0.11 
(0.01) 

<0.0001* 
 

5.78 
(0.38) 

<0.0001* 
 

-0.23 
(0.10) 

0.0200* 

Height (cm)       
  

  

0 
 

130 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

63 
 

111 
 

0.08 
(0.01) 

<0.0001† 
 

0.12 
(0.01) 

<0.0001† 
 

0.02 
(0.01) 

0.0651 
 

0.15 
(0.45) 

0.7457 
 

0.35 
(0.08) 

<0.0001† 
 

104 
 

105 
 

0.16 
(0.01) 

<0.0001† 
 

0.19 
(0.01) 

<0.0001† 
 

0.02 
(0.01) 

0.0123† 
 

0.85 
(0.46) 

0.0633 
 

0.72 
(0.08) 

<0.0001† 
 

167 
 

84 
 

0.19 
(0.01) 

<0.0001† 
 

0.21 
(0.01) 

<0.0001† 
 

0.03 
(0.01) 

0.0010† 
 

0.96 
(0.49) 

0.0488† 
 

0.93 
(0.09) 

<0.0001† 
 

Turning Strategy         
  

  

Step 
 

205 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

Ref. 
 

Spin 
 

225 
 

-0.02 
(0.01) 

0.0141‡ 
 

-0.10 
(0.01) 

<0.0001‡ 
 

-0.02 
(0.01) 

0.0062‡ 
 

-11.05 
(0.34) 

<0.0001‡ 
 

-0.57 
(0.10) 

<0.0001‡ 
 

Speed*Strategy Interactions          

Slow * Spin 
- - - - - - - - -0.31 

(0.17) 
0.0634 

Fast * Spin 
- - - - - - - - 0.20 

(0.13) 
0.1378 
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* Significantly different than normal speed 
† Significantly different than 0 cm height (no obstacle) 
‡ Significantly different than step turn 
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