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We propose a novel, efficient approach for obtaining high-quality experimental designs for
event-related functional magnetic resonance imaging (ER-fMRI), a popular brain mapping
technique. Our proposed approach combines a greedy hill-climbing algorithm and a cyclic
permutation method. When searching for optimal ER-fMRI designs, the proposed approach
focuses only on a promising restricted class of designs with equal frequency of occurrence
across stimulus types. The computational time is significantly reduced. We demonstrate that
our proposed approach is very efficient compared with a recently proposed genetic algorithm
approach. We also apply our approach in obtaining designs that are robust against misspeci-
fication of error correlations.
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1. Introduction

We are concerned with experimental designs for event-related functional magnetic
resonance imaging (ER-fMRI), one of the most dominating brain mapping tech-
nologies for studying brain activity in response to mental stimuli (e.g. pictures or
sounds). An ER-fMRI design determines the presentation order and onset times
of the mental stimuli that are to be presented in turn to a subject in an ER-fMRI
experiment. It can be written as a finite sequence with elements 0, 1, ..., Q, where
Q is the total number of stimulus types. For example, a design with two stimulus
types may look like ξ = {01120 · · · 2}. The `th element in ξ corresponds to time
(`− 1)ISI, where the ISI is a pre-specified inter-stimulus interval (e.g. 4 s); time
0 may be synchronized with the first valid MR scan. A positive integer q in ξ in-
dicates an onset of the qth-type stimulus and a 0 means no stimulus onset at the
corresponding time point. Each stimulus may last a short period of time (e.g. 1
s) and the control (e.g. periods of visual fixation or rest) appears during the time
periods when there is no stimulus presentation.

A planned ER-fMRI design is presented to an experimental subject while an
MR scanner repeatedly scans the subject’s brain to acquire fMRI time series for
making statistical inference about brain functions. The quality of the collected data
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depends on the selected design. A well-planned design helps to collect informative
data to permit valid and precise conclusions. However, an imprudently selected
design may hinder statistical inference, making it impossible to correctly answer
the scientific questions of interest. Obtaining a good design to allow a successful
ER-fMRI experiment is thus crucially important.

When selecting ER-fMRI designs, we need to consider not only statistical efficien-
cies, but also psychological constraints. Taking both considerations into account,
Wager and Nichols [31] evaluated the quality of designs using a weighted sum of
individual design criteria, each corresponding to a study objective of interest; the
weights are selected to reflect the importance of the corresponding objective. To
obtain a design optimizing the weighted sum design criterion, Wager and Nichols
advocated the use of a genetic algorithm to search over the enormous space of
all ER-fMRI designs. Recently, Kao et al. [16] proposed improvements to the ap-
proach of Wager and Nichols [31]. This improved genetic algorithm approach has
been applied in some studies to address important ER-fMRI design issues [e.g.
6, 18, 19, 27, 28].

Genetic algorithms [12] are metaheuristic algorithms widely considered in vari-
ous optimization problems. While powerful, genetic algorithms are often criticized
for being computationally expensive, mainly due to a large degree of randomness
involved [29]. When obtaining ER-fMRI designs, genetic algorithms also tend to
require much CPU time. As reported in Kao et al. [16], a genetic algorithm may
take several minutes to hours just to achieve one design. The required CPU time
can be significantly increased with the size and complexity of the problem, and
the search for optimal ER-fMRI designs can easily become infeasible. For example,
Maus et al. [27] proposed a maximin approach for obtaining maximin designs that
are robust against misspecified autocorrelation coefficient ρ of first-order autore-
gressive (AR1) noise. The obtained designs are of great practical value since the
ρ-value is almost always uncertain at the design stage. However, to obtain such
a maximin design, one must implement the genetic algorithm multiple (e.g. 153)
times to generate multiple locally optimal ER-fMRI designs, each being optimal for
a given ρ-value (see Subsection 4.2). A highly efficient search algorithm allowing
to quickly obtain these ER-fMRI designs is called for.

In this article, we develop a novel, fast approach for searching for optimal ER-
fMRI designs by combining the hill-climbing technique and the cyclic permutation
procedure considered by Kao et al. [18]. Hill-climbing algorithms typically start
with a potential solution, which is an ER-fMRI design in our context, and iter-
atively make incremental changes to the solution to seek a better solution. The
process is repeated until no further improvements can be made. This technique is
simple and is widely applied in some non-deterministic polynomial-time (NP) hard
optimization problems such as the traveling salesman problem. Empirical studies
also suggest that, for some cases, carefully designed hill-climbing algorithms can
provide a better performance than the genetic algorithms; see also, Forrest and
Mitchell [7], Juels and Wattenberg [14], and Baluja [2]. Here, we demonstrate that
the hill-climbing algorithm that we develop can help to efficiently obtain good ER-
fMRI designs. The idea of our approach is to operate on a ‘short’ ER-fMRI design,
which is used to generate a full-length design by cyclically permuting the labels of
the stimulus types (Q − 1) times. The obtained designs will thus have a (nearly)
equal frequency of appearance across stimulus types. This means that our approach
will focus only on a restricted class of designs having such a special pattern. We
then propose a hill-climbing algorithm to iteratively replace the current short de-
sign by the ‘best’ short design in a small neighborhood. Here, a short design is said
the be the best if, compared with other short designs, it yields a full-length design
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that has the best value (design efficiency) of a specific design criterion. The search
is terminated if no further improvements can be made.

With various case studies, we demonstrate that our newly proposed approach sig-
nificantly outperforms the genetic algorithm of Kao et al. [16] in terms of computing
time. Designs that we obtain attain similar design efficiencies as those found by the
genetic algorithm. Our approach helps to save much computational resource with-
out sacrificing the performance of the obtained designs. We also use the proposed
approach to obtained ER-fMRI designs when the noise is modeled by an second-
order autoregressive (AR2) process. This extension is of great practical relevance.
In addition to AR1 process, the use of an AR2 process is not uncommon [e.g. 21],
and can provide improved analysis results [20]. However, the previous approach for
obtaining ER-fMRI designs is computationally very expensive, if not infeasible, for
this important situation. Our newly proposed approach helps to efficiently obtain
high-quality designs.

The remainder of the article is organized as follows. In Section 2, we provide
background information. Our proposed approach is described in Section 3. We
then present some case studies in Section 4 and compare our approach with the
genetic algorithm of Kao et al. [16]. Finally, concluding remarks are provided in
Section 5.

2. Background

An ER-fMRI design is a sequence of mental stimuli. It can be written as a sequence
of finite numbers of length L; e.g. ξ = {01120 · · · 2}. The `th element specifies
the stimulus type to be presented at time (` − 1)(ISI) with a pre-specified ISI.
Specifically, a positive integer q represents a qth-type stimulus and a 0 indicates no
stimulus presentation at that time point. While being presented to an experimental
subject, each stimulus appears briefly (e.g. 1 s). The control (e.g. visual fixation) is
presented from the offset time of a stimulus to the onset time of the next stimulus.

While the subject is cognitively engaged with the stimuli in an ER-fMRI de-
sign, an MR scanner scans the subject’s brain to collect fMRI time series. At an
activated voxel, each stimulus evokes an influx of oxygenated blood and changes
the ratio of the oxy- to deoxy-blood. The strength of the local magnetic field is
perturbed, leading to an increase in the MR signal intensity. With no additional
stimuli, the MR signal intensity falls back to baseline, typically followed by an un-
dershoot before completely returning to baseline. This rise and fall of MR signals
may take about 20-30 s, and is described by the hemodynamic response function
(HRF). Under a commonly assumed linear time invariance system [e.g. 21], the
HRFs evoked by the stimuli of the same qth type are assumed to be the same
throughout the experiment, and will be denoted by hq(τ), where τ is the time
elapsed since the stimulus onset; q = 1, ..., Q (=total number of stimulus types).
In addition, when the stimuli are close in time, the evoked HRFs overlap and the
heights of overlapping HRFs are assumed to accumulate linearly. The accumulated
HRF height at time t can be represented as [13]:

h(t) =

Q∑
q=1

∫ t

0
xq(τ)hq(t− τ)dτ,

where xq(τ) is the stimulus function of the qth-type stimuli. For ER-fMRI with
brief stimuli, xq(τ) = 1 if a qth-type stimulus onsets at time τ , and xq(τ) = 0 oth-

erwise; see also Josephs et al. [13]. Consequently, h(t) =
∑Q

q=1

∑
τ∈Tq(t) hq(t − τ).
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Here, Tq(t) = {τq,1, ..., τq,Jq(t)}, τq,j is the jth onset time of the qth-type stimulus,
and Jq(t) is the number of qth-type stimuli that occur on or before time t. Making
inferences about (some characteristics of) hq(.) is of great interest to neuroscien-
tists; studying the HRF helps to understand the underlying brain activity due to
the stimuli [21].

The fMRI time series, y(t), collected from a voxel is commonly modeled as the
sum of 1) the accumulated HRF h(t), 2) a commonly observed drift/trend, and 3)
correlated noise. With an MR scanning rate of TR (e.g. 2 s), a model for describing
the fMRI time series can be written as:

y =

Q∑
q=1

Xqhq + Sγ + e. (1)

Here, y is the T × 1 vector with the jth element yj = y((j − 1)TR). The vector
hq = (h1,q, ..., hk,q)

′ is a discretization of hq(τ). In particular, hj,q = hq((j−1)∆T ),
where ∆T is the discretization interval and is the greatest value making both
(ISI/∆T ) and (TR/∆T ) integers. With this ∆T , all the HRF heights that can
possibly contribute to y are included in hq; see also Kao et al. [16]. The length k of
hq is determined by to the duration of the HRF, counting from the stimulus onset
to the HRF’s complete return to baseline. Typically, the duration of an HRF evoked
by a brief stimulus is no longer 32 s; k is thus set to 1 + b32/∆T c. Xq in (1) is the
T × k, zero-one design matrix for the qth stimulus type. A construction of Xq can
be found in Kao et al. [19]. The vector Sγ allows for a drift/trend of y, where S is a
specified matrix and γ is an unknown parameter vector. The vector e = (e1, ..., eT )′

represents the correlated noise with mean 0 and variance-covariance matrix σ2Σ.
By setting h = (h′1, ...,h

′
Q)′ as a unknown parameter vector of interest, Model

(1) is widely considered for estimating the HRFs. In general, the main focus is on
estimating Chh, where Ch is a specified matrix of coefficients of linear combina-
tions of interest. The design goal is to achieve a design yielding the most precise
least squares estimate Chĥ of Chh. To that end, we may consider to minimize
the sum of the variances of the least squares estimates of the parametric func-
tions of interest. This is to find a design maximizing σ2/trace[cov(Chĥ)], where

cov(Chĥ) = σ2Ch

[
X ′V ′(IT −P V S)V X]−1C ′h, X = [X1, ...,XQ], V is such that

V ΣV ′ = IT , IT is the T × T identity matrix, and PA is the orthogonal pro-
jection onto the column space of A. This trace criterion will be referred to as
the A-optimality criterion hereinafter. We will also consider another popular de-
sign criterion, namely the D-optimality criterion, and aim at designs maximizing
σ2rh/det[cov(Chĥ)], where rh is the number of rows of Ch; see also Kao et al. [16]
and Maus et al. [27].

In addition to estimating the HRF, another study objective of interest to neu-
roscientists is to detect brain voxels that are activated by the stimuli. For this
objective, the HRF is typically modeled as the product of a reference wave-
form and an unknown scaling parameter (or HRF amplitude); i.e., hq(τ) =
θqh
∗(τ) with a specific h∗(τ) and an unknown parameter θq. The function h∗(τ)

is commonly set to the double-gamma function of the SPM software package
(http://www.fil.ion.ucl.ac.uk/spm/), which is widely used for fMRI data analysis.
Specifically, h∗(τ) = g(τ)/maxs g(s), where

g(τ) =
τ5e−τ

5!
− 1

6

τ15e−τ

15!
.
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A general linear model for detection problems can thus be written as:

y =

Q∑
q=1

Xqh
∗θq + Sγ + ε, (2)

where h∗ = (h∗1, ..., h
∗
k)
′ with h∗j = h∗((j − 1)∆T ), θq is the unknown amplitude of

the HRF of the qth stimulus type, and ε = (ε1, ..., εT )′ is the correlated noise. All
the other terms in Model (2) are as in Model (1). For detection, the focus is normally
on Cθθ with a given linear combination coefficient matrix Cθ, and θ = (θ1, ..., θQ)′.
The design goal for this study objective is to obtain a design optimizing some
function of cov(Cθθ̂) = σ2Cθ

[
(IQ ⊗ (h∗)′)X ′V ′(IT − P V S)V X(IQ ⊗ h∗)]−1C ′θ;

Cθθ̂ is the least squares estimate of Cθθ, and ⊗ is the Kronecker product. We
will focus on obtaining A-optimal designs maximizing σ2/trace[cov(Cθθ̂)] and D-

optimal designs maximizing σ2rθ/det[cov(Cθθ̂)], where rθ is the number of rows of
Cθ.

Selecting a design to efficiently achieve estimation and detection is important.
However, some selected designs may easily incur psychological confounds such as
anticipation and habituation to contaminate the data [5, 24]. To avoid such designs,
we may consider to optimize the Rth order counterbalancing criterion proposed by
Wager and Nichols [31]. Designs optimizing this criterion make it hard for the
subject to predict the next stimulus based on the previously presented stimuli.
Here, we consider a modified version of the counterbalancing criterion provided
by Kao et al. [16] to account for the finiteness of design length. Specifically, the
modified Rth order counterbalancing criterion is:

R∑
r=1

Q∑
p=1

Q∑
q=1

b|nrpq − (L0 − r)/Q2|c. (3)

Here, R is a specified integer and is typically set to 3. The values of nrpq and L0

are calculated from a subsequence generated by leaving out all the zeros in the
design being evaluated. Specifically, nrpq is the observed number of occurrences in
the subsequence that a q follows a p with r− 1 elements in between, and L0 is the
length of the subsequence. A design is said to be Rth order counterbalanced if its
subsequence minimizes (3). We note that the criterion is defined for Q > 1.

For studies with one or more previously mentioned objectives, we may consider
to obtain designs maximizing the following weighted sum criterion:

F ∗ = wc

[
1− Fc

max(Fc)

]
+ wd

[
Fd

max(Fd)

]
+ we

[
Fe

max(Fe)

]
(4)

= wcF
∗
c + wdF

∗
d + weF

∗
e .

Here, Fc represents counterbalancing criterion in (3); Fd is the A- or D-optimality
criterion for detection with Model (2); Fe is the A- or D-optimality criterion for
estimation with Model (1); wi’s are user-specified weights with wi ≥ 0 and

∑
iwi =

1. Following Kao et al. [16], the max(Fc) is calculated as the Fc-value of the design
ξ1 = {1 · · · 1}, which is the design involving only the first stimulus type; ξ1 can
be replaced by ξq = {q · · · q} for any q = 2, ..., Q since we focus only on designs
where all the stimulus types appear equally often. The maxima of Fd and Fe are
generally unavailable, and are approximated by using an optimization algorithm
(e.g., the genetic algorithm of Kao et al. [16] or our proposed approach described
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in the next section) to maximize Fd and Fe, respectively.

3. A Novel Approach

We propose a novel, fast approach for searching for optimal ER-fMRI designs
that optimize a specific objective function, F †, which can be Fd, Fe or F ∗ in (4).
Our proposed approach combines the cyclic permutation method used by Kao
et al. [18] and a greedy hill-climbing algorithm. The cyclic permutation method
was originally proposed to obtain multiple sequences of stimuli for multiple MR
scanning sessions; each sequence is for one scanning session. Here, we adapt the
method for finding one sequence of stimuli for one, single MR scanning session.
Our use of the cyclic permutation method here is motivated by the observation
that designs achieving the maximal design efficiency F † tend to have (nearly)
equal stimulus frequency across stimulus types. For simplified models, this design
property is proved by Liu and Frank [23]. The empirical results of Kao et al. [17]
and Kao et al. [16] also suggest that the property may remain true for the more
realistic models presented in the previous section. The cyclic permutation method
uses a ‘short design’ of length dL/Qe to generate a design of full length L; dae is
the smallest integer ≥ a. Starting with such a short design, additional Q− 1 short
designs are sequentially constructed by cyclically permuting the labels of stimulus
types. Specifically, the label q in the current short design becomes q+1 in the next
short design, q = 1, ..., Q− 1, the label Q is replaced by 1, and 0’s are kept intact.
A full-length design is then generated by concatenating the Q short designs and
trimming off the last (QdL/Qe − L) elements. The obtained designs have (nearly)
equal frequency across stimulus types. The cyclic permutation method allows us to
focus only on this promising class of designs when searching for optimal ER-fMRI
designs.

We would like a short design that yields a full-length design maximizing the
objective function F †. Targeting such a short design, we propose a greedy hill-
climbing approach which gradually increases the achieved F †-value by iteratively
updating a fraction of an initial short design. At the first iteration, we create some
‘neighbors’ by perturbing the first b elements of the initial short design. If the F †-
value is improved by the best neighbor, we replace the current short design by this
best neighbor; otherwise, the current short design is kept. We then move to the
next b elements and repeat the process until all the dL/Qe elements are considered
once. This finishes the first ‘run’. Another ‘run’ is then started by returning to the
first b elements of the short design achieved in the previous run. This hill-climbing
procedure is repeated and terminated if there is no improvement in the last run. We
note that, at the last iteration of each run, the number of elements to be perturbed
might be ≤ b. Our method for perturbing the selected elements is described below.

To generate neighbors of a short design, we make use of the (2b − 1) non-zero
b-element binary sequences. We add (subtract) each of these sequences to (from)
the b elements of the short design being considered at the current iteration; other
elements are kept intact. If a resulting element is Q+1, it is replaced by 0. We also
substitute −1 by Q so that the obtained neighboring short design is feasible. With
these perturbations, we will have 2b − 1 neighboring short designs for Q = 1 since
addition and subtraction lead to identical short designs in this case. For Q > 1, a
total of 2(2b − 1) neighbors will be generated at each iteration .

We now present in details the steps of our proposed approach:

Step 0. Specify an initial short design π(0) of length dL/Qe. Use the cyclic
permutation procedure described previously to obtain the full-length design
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of length L. Calculate the F †-value of the obtained full-length design. Set

F †max to the obtained F †-value, and t = 0.
Step 1. For π(t) = {π1, ..., πdL/Qe}, create its neighbor by replac-
ing (πtb+1, ..., π(t+1)b) with (mod(πtb+1 + ζ1, Q + 1),mod(πtb+2 + ζ2, Q +
1), ...,mod(π(t+1)b+ζb, Q+1)), where mod(a1, a2) is a1 modulo a2, and ζi is
the ith element of a non-zero binary sequence of length b; i = 1, ..., b. Use all
the 2b−1 non-zero binary sequences to generate 2b−1 neighbors. If Q > 1,
obtain additional 2b − 1 neighbors by replacing (πtb+1, ..., π(t+1)b) with
(mod(πtb+1− ζ1, Q+1),mod(πtb+2− ζ2, Q+1), ...,mod(π(t+1)b− ζb, Q+1)).

Step 2. Similarly to Step 0, obtain the F †-values for the neighboring short
designs generated in Step 1. Find the the best short design, πnbr, and its

F †-value, F †nbr. If F †nbr > F †max, then set F †max = F †nbr and π(t+1) = πnbr;

otherwise, π(t+1) = π(t). Set t = t+ 1.
Step 3. Repeat Steps 1 and 2 until t = b(dL/Qe/b)c + 1. When t =
b(dL/Qe/b)c + 1 and l = mod(dL/Qe, b) > 0, repeat Steps 1 and 2 once
more to but with b replaced by l in Step 1 to perturb the last l elements.
Step 4. Terminate the search if the F †-value is not improved in the current
run. Otherwise, set π(0) to π(t) (i.e., the most updated short design), and
then reset t to 0 and repeat Steps 1 to 3 for another run.

In our case studies, we start the search with a sequence of zeros as the initial short
design. The integer b in Step 1 determines the number of neighboring short designs
or, equivalently, the size of the neighborhood. With a large b, a large number of
neighbors can be considered, but the computational burden is also increased. In
our experience, setting b to around 4 tends to yield good designs. We also note
that, unlike genetic algorithms which often involve many algorithmic parameters,
our proposed algorithm only has one algorithmic parameter b to be determined by
users.

In the next section, we consider various case studies and compare the performance
of the proposed hill-climbing approach with that of the genetic algorithm of Kao
et al. [16]. For these case studies, we set b = 4. As for the genetic algorithm, the
algorithmic parameters are set to their default values as in Table 1 of Kao [15],
except for the stopping rule. Here, we considered an efficient stopping rule, which
is also built in the program of Kao [15]; see the Appendix for details.

4. Case Studies

In this section, we apply our proposed approach to obtain single- and multi-
objective ER-fMRI designs. We then follow the maximin procedure of Maus et al.
[27] to achieve designs for cases where the autocorrelation between observations is
uncertain.

4.1. Single- and multi-objective ER-fMRI designs

In the first set of case studies, we consider various (Q,L) combinations, including
(1, 255), (2, 242), (3, 255), (4, 624), and (6, 342), and set the ISI to 4 s and TR
to 2 s. Following Kao et al. [16], the reference waveform h∗ of model (2) is set
to the double-gamma function of SPM, normalized to have a maximum of 1. The
fMRI time series is assumed to have a second-order Legendre polynomial drift. The
errors follow an AR1 process and Σ−1 is a tri-diagonal matrix with ((Σ−1))1,1 =
((Σ−1))T,T = 1, ((Σ−1))i,i = 1 + ρ2, i = 2, ..., T − 1, ((Σ−1))i,j = −ρ for |i− j| = 1
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and ((Σ−1))i,j = 0 for |i − j| > 1. The whitening matrix V can be obtained
from Σ−1 by, e.g., the Cholesky decomposition. Following previous studies, the
autocorrelation coefficient is set to ρ = 0.3. We will relax this assumption in the
next subsection. The computations for this first set of case studies are conducted
on a desktop computer with a 3.0 GHz Intel Pentium 4 quad-core processor.

Tables 1 and 2 provide comparisons between our proposed hill-climbing algo-
rithm and the genetic algorithm of Kao et al. [16] in optimizing a class of objective
functions, including Fd, Fe, and F ∗de(w) = wF ∗d +(1−w)F ∗e for w = 0.2, 0.4, 0.5, 0.6,
and 0.8. As described under (4), Fd is the design efficiency for detection, and Fe is
used to evaluated the worth of designs for estimating the HRF. F ∗de is defined as
F ∗ in (4) with (wc, wd, we) = (0, w, 1 − w). Both A-optimality and D-optimality
are considered. We separately study cases where the individual stimulus effects
are of interest, and cases where pairwise comparisons are of interest. When in-
dividual stimulus effects are of interest, the focus of estimation is on estimating
h = (h′1, ...,h

′
Q)′ of Model (1), and that of detection is on studying θ = (θ1, ..., θQ)′

of Model (2). For pairwise comparisons with A-optimality, the linear combination
coefficient matrix Cθ for θ contains the coefficients of all the Q(Q− 1)/2 compar-
isons, namely (θi−θj), 1 ≤ i < j ≤ Q. For pairwise comparisons with D-optimality,
we set Cθ to a (Q−1)-by-Q matrix with the ith row corresponding to the compar-
ison between the first and the (i+1)st stimulus types (i.e., θ1−θi+1). In particular,
when Q = 3, we have

Cθ =

1 −1 0
1 0 −1
0 1 −1

 for A-optimality; and Cθ =

(
1 −1 0
1 0 −1

)
for D-optimality.

In addition, the linear combination coefficient matrix Ch for h is Cθ ⊗ Ik; k =
1 + b32/∆T c.

[[ Table 1 is about here ]]
Table 1 presents the CPU time spent of our proposed approach relative to the

genetic algorithm. For most cases, the CPU time used by our approach is less than
half of that of the genetic algorithm. In many of these cases, the relative CPU time
is no more than 10%. Our newly proposed algorithm is very efficient. In addition,
the reduced CPU usage does not hinder the quality of the obtained ER-fMRI
designs. As presented in Table 2, the designs obtained by the two approaches yield
similar efficiencies.

[[ Table 2 is about here ]]
We further consider cases where avoiding psychological confounds is also of inter-

est and regard F ∗ = (F ∗c +F ∗d +F ∗e )/3 as the objective function. Figure 1 presents
the CPU time spent (A1 & B1) and the max(F ∗) (A2 & B2) achieved by the two
approaches for these cases. In that figure, (A1) and (A2) are for individual stimulus
effects and (B1) and (B2) are for pairwise comparisons. The results presented in
Figure 1 convey the same information as those in Tables 1 and 2. We again observe
that our proposed hill-climbing approach requires much less CPU time than the
genetic algorithm and achieves highly efficient designs. In particular, our approach
saved about 76%-98% of the CPU time for the cases considered in Figure 1.

[[Figure 1 is about here ]]
We note that, for each case with two or more objectives, we need to obtain three

designs. Specifically, a design maximizing Fd and a design maximizing Fe. These
two designs allow us to calculate the value of the multi-objective design criterion
(F ∗de or F ∗) of each candidate design. We then obtain the third design, which is a
multi-objective design maximizing the specified multi-objective design criterion. In
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Table 1 and Figure 1, the CPU time spent for obtaining a multi-objective design
is thus calculated as the total time for obtaining the three designs. Although both
algorithms are used to obtain max-Fd and max-Fe designs for calculating the CPU
times, we choose to use the maxima achieved by the genetic algorithm for evaluating
the value of the multi-objective design criterion. This is to provide a fair comparison
of the achieved designs, and it ensures that the two search algorithms aim at the
same objective functions. The max(Fd) and max(Fe) obtained by our proposed
algorithm can also be considered.

4.2. Maximin robust ER-fMRI designs for AR1 noise

As described in Maus et al. [27], the autocorrelation coefficient ρ of AR1 noise of the
fMRI time series may be uncertain, especially at the design stage. Consequently,
obtaining an optimal design with a fixed ρ-value may be unsatisfactory. It is thus
desired to achieve a design performing relative well across all possible values of
ρ. For this purpose, we follow Maus et al. [27] to aim at designs maximizing the
following maximin criterion:

F ∗Mm(ξ) = min
ρ∈[0,0.5]

RE(ξ | ξ∗ρ) = min
ρ∈[0,0.5]

F (ξ; ρ)

F (ξ∗ρ; ρ)
. (5)

Here, F (.; ρ) can be Fd for detection, Fe for estimation, or F ∗ (or F ∗de) for a weighted
sum criterion. We note that the criteria Fd, Fe, F

∗ and F ∗de are defined as in the
previous sections, and their values depend on ρ. In addition, we use ξ∗ρ to represent
a design maximizing the specified F (.; ρ) with a given ρ.

In Maus et al. [27], the minimum RE(ξ | ξ∗ρ) is obtained over a grid on the range
[0, 0.5] of ρ. Specifically, they increased the value ρ from 0 to 0.5 in steps of 0.01
and utilized the genetic algorithm of Kao et al. [16] to generate a ‘locally optimal
design’ ξ∗ρ for each of the 51 ρ-values. With these 51 ξ∗ρ designs, the value of F ∗Mm
can be calculated for any given design ξ. Maus et al. [27] then evaluated the F ∗Mm-
values of the 51 ξ∗ρ designs and select the one having the greatest F ∗Mm-value. The
selected design is identified as the ‘maximin design’.

Here, we compare the performance of our proposed approach with that of the
genetic algorithm in implementing this maximin procedure of Maus et al. [27].
Following Maus et al. [27], we set the ISI and TR to 2 s. Other settings are as in the
previous subsection. We obtain maximin designs for: (I) detection with individual
stimulus effects; (II) detection with pairwise comparisons; (III) estimation with
individual stimulus effects; and (IV) estimation with pairwise comparisons. We also
consider bi-objective criteria and assign equal weights to detection and estimation
with (V) individual stimulus effects, and (VI) pairwise comparisons; see Table 3.
This set of case studies is performed on a desktop computer with a 3.4 GHz Intel
Core i7-2600 processor. We note that, Maus et al. [27] only studied cases (I), (II),
(III) and (V) with (Q,L) = (3, 255).

4.2.1. Cases (I) to (IV)

[[Table 3 is about here]]
For cases (I) to (IV), the focuses are on single objective functions. In particular,

F (.; ρ) in (5) is either Fd or Fe. For each case, we follow Maus et al. [27] to apply the
genetic algorithm to obtain a set, ΞGA, of 51 ξ∗ρ,GA designs that maximize F (.; ρ) for
ρ = 0, 0.01, ..., 0.5. The obtained design set is used to provide an approximation of
F ∗Mm, denoted by F ∗Mm,GA. With respect to F ∗Mm,GA, a maximin design ξ∗GA is then
selected from the design set ΞGA. Following this same procedure, we also use the



November 16, 2012 19:59 Journal of Statistical Computation & Simulation FMRI-
DOE˙Kao˙Mittelmann˙R1˙10052012

10 Ming-Hung Kao and Hans D. Mittelmann

proposed hill-climbing algorithm to obtain another design set ΞHC = {ξ∗ρ,HC , ρ =

0, 0.01, ..., 0.5}. Another approximation, F ∗Mm,HC , of F ∗Mm is achieved based on
ΞHC . With this F ∗Mm,HC , a maximin design ξ∗HC is obtained from ΞHC . The CPU
time spent on obtaining the design set Ξ∗HC and that for Ξ∗GA can be found in
Table 3. As presented in the table, the hill-climbing algorithm uses much less CPU
time than the genetic algorithm in implementing the maximin procedure of Maus
et al. [27]. For some cases, the genetic algorithm needs more than one or two hours
while our approach requires only a few minutes.

We also compare the achieved maximin designs ξ∗GA and ξ∗HC . A direct com-
parison between F ∗Mm,GA(ξ∗GA) and F ∗Mm,HC(ξ∗HC) is not reasonable since ΞGA and
ΞHC may differ. To provide a fair comparison, we combine ΞGA and ΞHC to provide
another approximation of F ∗Mm. Specifically, for each ρ, we select the better design
between ξ∗ρ,GA and ξ∗ρ,HC that yields a higher F (.; ρ)-value. The selected 51 designs

are then used to provide better approximations of F ∗Mm(ξ∗GA) and F ∗Mm(ξ∗HC).
These two F ∗Mm-values are reported in Table 3. As presented, the maximin effi-
ciencies achieved by the two algorithms do not differ much. The maximin designs
obtained by the two approaches are quite efficient for ρ ∈ [0, 0.5].

4.2.2. Cases (V) and (VI)

Cases (V) and (VI) are more complicated than the previous cases since two
objectives (detection and estimation) are simultaneously of interest. The F (.; ρ)
in (5) is F ∗de(0.5) = 0.5F ∗d + 0.5F ∗e . For each of the 51 ρ-values, we need a design
maximizing Fd and a design maximizing Fe; these two designs allow us to calculate
F ∗d and F ∗e , respectively, and thus F (.; ρ) = F ∗de; ρ = 0, 0.01, ..., 0.5. To evaluate the
F ∗Mm of (5), we need additional 51 locally optimal designs ξ∗ρ, each being optimal
for F (.; ρ). This calls for a total of 153 designs. We then follow Maus et al. [27]
to select the design maximizing F ∗Mm from the 51 ξ∗ρ designs. Without an efficient
approach for obtaining each of the required designs, this maximin procedure is
computationally very expensive.

We compare the performance of our proposed hill-climbing algorithm with the
genetic algorithm in obtaining these 153 designs and the maximin design. As pre-
sented in Table 3, our approach consistently requires much less CPU time than the
genetic algorithm in achieving a maximin design. To compare the performance of
the achieved maximin designs, we evaluate the F ∗Mm-value by using the 153 designs
obtained by the genetic algorithm to approximate max(Fd), max(Fe) and max(F ∗de)
for each ρ-value. This ensures that the designs obtained by different algorithms are
compared under the same criterion. The results reported in Table 3 show that the
F ∗Mm-values achieved by the two algorithms are very close to 1. This indicates that
both algorithms can obtain good maximin designs.

4.2.3. The performance of the ξ∗0.3 design

[[Table 4 is about here ]]
We also evaluate the performance of the locally optimal design ξ∗0.3,HC , which is

the best design obtained by the hill-climbing algorithm when ρ is fixed at 0.3. Table
4 presents the F ∗Mm-value of ξ∗0.3,HC relative to the maximin design ξ∗HC . For many
cases, the ξ∗0.3,HC design performs reasonably well even when the true value of ρ

is not 0.3. Nevertheless, a deign with an improved F ∗Mm-value can (almost always)
be efficiently obtained by combining our proposed algorithm with the maximin
approach of Maus et al. [27]. We also report in Table 4 the worst relative value of
F ∗Mm obtained among the 51 locally optimal designs. The result suggests that not
all the locally optimal designs perform as well as ξ∗0.3,HC or ξ∗HC ; an imprudently
selected design can result in a great efficiency loss.
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4.3. Maximin robust ER-fMRI designs for AR2 noise

In addition to AR1 process, modeling the correlated noise using AR2 process is
not uncommon [e.g. 21] and is recommended by Lenoski et al. [20] based on empir-
ical results. As demonstrated in the previous subsection, the genetic algorithm is
computationally very expensive in obtaining a maximin design for AR1 noise. This
approach becomes infeasible when the more complicated AR2 process is considered.
Our newly proposed algorithm greatly reduces computational burden, making it
an efficient approach for obtaining designs for this important situation. With an
AR2 process, the inverse of the variance-covariance matrix is proportional to Σ−1

having ((Σ−1))1,1 = ((Σ−1))T,T = 1;

((Σ−1))i,i =

{
1 + φ2

1, i = 2, T − 1;
1 + φ2

1 + φ2
2, 2 < i < T − 1;

((Σ−1))i,j =


−φ1, |i− j| = 1 and i+ j = 3, 2T − 1;
−φ1(1− φ2), |i− j| = 1 and 3 < i+ j < 2T − 1;
−φ2, |i− j| = 2;
0, |i− j| > 2.

Here, the range of the unknown parameter φ2 is set to [0, 0.5], and that
of the unknown parameter φ1 is [0, 0.5(1 − φ2)] when φ2 ∈ [0, 1/3], and is

[0,
√

0.5(1− 2φ2)(1− φ2)] when φ2 ∈ (1/3, 1/2]. This irregular parameter space
allows for a stationary process with ρ1 = φ1/(1 − φ2) and ρ2 = φ2/(1 − φ2) + φ2

ranging between 0 and 0.5. Here, ρi is the ith-order autocorrelation coefficient of
an AR2 process, which describes the correlation between et and et+i in Model (1)
and that of εt and εt+i in Model (2); t = 1, ..., T − i, i = 1, 2. We note that the
method that we consider here can also be applied to other parameter spaces.

We apply the proposed hill-climbing approach to obtain a locally optimal design
ξ∗φ,HC for each of the 1798 values of φ = (φ1, φ2) over a grid on the parameter

space described previously; the grid size is set to 0.01× 0.01. The obtained designs
are used to evaluate the following maximin criterion:

F ∗Mm2(ξ) = min
φ∈Ω

RE(ξ | ξ∗φ) = min
φ∈Ω

F (ξ;φ)

F (ξ∗
φ

;φ)
. (6)

Here, F represents the design criterion for the study objective(s) of interest; Ω is
the specified parameter space of φ; and ξ∗φ is a locally optimal design for a given

φ. We follow Maus et al. [27] to search over the obtained locally optimal designs
for a design maximizing F ∗Mm2. Instead of evaluating the F ∗Mm2-values of all the
1798 locally optimal designs, we consider a much more efficient two-stage procedure
to approximate the result; a similar procedure has also been considered in other
studies [30]. At the first stage, a design maximizing F ∗Mm2 is selected among a
subclass of locally optimal designs, each being optimal for a φ-value over a coarse
grid (0.1 × 0.1) on Ω. We then use the original grid size (0.01 × 0.01) to define a
neighborhood of the selected design and search over the neighboring locally optimal
designs for a better maximin design. For example, when searching for a maximin
design for detection with Q = 1 (Case I with Q = 1 in Table 5), a locally optimal
design ξ∗φ∗

,HC
for φ∗ = (φ∗1, φ

∗
2) = (0.4, 0.1) is selected at the first stage. The

neighboring designs that we consider at the second stage are those ξ∗φ,HC designs,

where the two coordinates of φ can be rounded to the corresponding coordinates
of φ∗.
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[[Table 5 is about here]]
In Table 5, we present F ∗Mm2-values of the designs obtain by using the two-stage

approach; the φ-values used to achieve these designs are also reported. From the
table, designs with a maximin efficiency of at least 95% can be achieved when
study objective is on estimation or on both estimation and detection. For cases
where detecting brain activation is the only study objective, we obtained designs
with about 85-92% maximin efficiency. For detection, the locally optimal designs
are (near) block designs. Compared with the other cases reported in Table 5, these
(nearly) patterned designs tend to suffer a slightly higher efficiency loss when the
φ-value of AR2 noise is misspecified. For comparison purposes, we also report in
Table 6 the F ∗Mm2-values of the ξ∗0.3,HC designs obtained in the previous subsection
for AR1 noise. While the ξ∗0.3,HC designs perform quite well under AR1 noise, they
are rather vulnerable to a misspecified φ-value of AR2 noise, especially for cases
where detection is the only study objective.

[[Table 6 is about here]]

5. Discussion

High-quality experimental designs are important for ER-fMRI studies, and are in
great demand. To help efficiently achieve such designs, we propose a novel approach
that combines a cyclic permutation method and a greedy hill-climbing algorithm.
We demonstrate that, in terms of computational time, our approach can signifi-
cantly outperform the genetic algorithm of Kao et al. [16] that has been demon-
strated to work better than other methods hitherto published. For many cases, our
approach only requires about 10% of the CPU time used by the genetic algorithm
to achieve highly efficient ER-fMRI designs.

In addition, we use our proposed approach to implement the maximin proce-
dure of Maus et al. [27] for obtaining designs that allow uncertain autocorrelation
coefficient ρ of the AR1 noise. As argued by Maus et al. [27], obtaining such a
maximin robust design is important since the ρ-value is almost always unknown
at the design stage and can vary across brain voxels. As the same design is to be
applied on all voxels, the selected design should accommodate all the ρ-values that
can possibly occur. However, finding a maximin robust design can be very time
consuming. An efficient approach is thus crucially important. In our case studies,
we show that our proposed approach provides a very efficient tool for achieving
such designs.

Moreover, we apply our proposed approach to obtain maximin robust designs
under AR2 noise. While the AR2 process is commonly considered at the analysis
stage for modeling the noise, previous studies on ER-fMRI designs only focused
on the AR1 process. This lack is partly due to the fact that the genetic algorithm
is computationally very expensive. The proposed hill-climbing approach helps to
efficiently obtain good designs for this important situation.

Our proposed approach takes advantage of the knowledge that optimal ER-fMRI
designs tend to have equal stimulus frequency across stimulus types [e.g. 23]. We
thus focus only on a restricted class of designs in which the Q stimulus types appear
nearly equally often. Our results provide compelling evidence that highly efficient
ER-fMRI designs can be found from this restricted design class by applying the hill-
climbing technique. A drawback of the hill-climbing technique is that the algorithm
might be trapped at a local maximum. Similar to some other optimization problems
[e.g. 25], this potential drawback does not seem to hinder our search for efficient ER-
fMRI designs. Nevertheless, one may consider to combine our proposed algorithm
with a probabilistic method, such as the simulated annealing [e.g. 3], to avoid local



November 16, 2012 19:59 Journal of Statistical Computation & Simulation FMRI-
DOE˙Kao˙Mittelmann˙R1˙10052012

Journal of Statistical Computation & Simulation 13

optima. Further research in this direction is needed.
Another advantage of our hill-climbing approach is in the small number of al-

gorithmic parameters. When using the genetic algorithm, users need to decide the
size of population, mutation rate, number of immigrants, the stopping rule and the
algorithmic parameters involved with the selected stopping rule; see the Appendix
for details. On the other hand, our proposed algorithm only has one algorithmic
parameter, namely the number of perturbed elements b for determining the size of
the neighborhood to be explored. We recommend to set b to a divisor of b16/ISIc
that is around 4; this value is linked to the block size (around 16 s) of the com-
monly suggested 16s-on-16s-off block designs for detection [11]. In our experience,
when b is large, the approach tends to spend much CPU time without improving
much in the achieved design efficiencies. For a small b, the approach may easily
be trapped in a local optimum. Moreover, when implementing the hill-climbing
algorithm, we used a sequence of zeros as the initial short design. Our results with
this initial design seem satisfactory. Nevertheless, one may consider different initial
designs to generate several solutions and then select the best one. This procedure
is well suited to a parallel computing environment, which is becoming increasingly
available.

In our case studies, we consider both A- and D-optimality criteria. We observe
that, for some cases, the genetic algorithm requires much more time on searching for
an A-optimal design than for a D-optimal design. We believe that the observation
is linked to the quality of the initial designs used in the genetic algorithm. For
cases where the interest is in the individual stimulus effects, the initial designs are
favorable for D-optimality. Specifically, these initial designs have the same stimulus
frequency of 1/(Q+ 1) across all the Q stimulus types. This stimulus frequency is
the optimal frequency reported in Maus et al. [27] for D-optimality with individual
stimulus effects. For A-optimality, Liu and Frank [23] indicated that the optimal
stimulus frequency is 1/(Q+

√
Q).

We also note that our results are mainly for experiments with one, single scanning
session. In some experiments, multiple short scanning sessions are implemented
in replace of a long scanning session. For multiple scanning sessions, Kao et al.
[18] studied and compared several methods for obtaining good ER-fMRI designs.
A future research of interest is to extend our proposed hill-climbing algorithm
to provide an efficient alternative approach for obtaining ER-fMRI designs for
multiple scanning sessions.

Appendix A. A genetic algorithm

The genetic algorithm of Kao et al. [16] is provided here. This algorithm makes
use of some well known ER-fMRI designs. These designs are block designs, m-
sequence, random designs, and mixed designs. In a block design, stimuli of the
same type are clustered in blocks. For example, they can be formed by repetitions
of {111122220000} or repetitions of {11112222}. Such designs typically yield high
Fd-values and are commonly recommended for detection. The m-sequences are
known to have high Fe-values and are advocated by Buračas and Boynton [4] for
estimation problems. Such a design can be generated from primitive polynomials
for a Galois field, and only exists when Q + 1 is a prime or prime power [9, 26].
Random designs are randomly generated and are unlikely to have a perceivable
pattern. A mixed design is formed by combining part of a block design with part
of a random design or an m-sequence. Mixed designs can attain good compromises
between the two competing objectives, namely detection and estimation; see Liu
[22] for further details. The genetic algorithm takes advantage of these well known
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designs to find good designs. This algorithm is described below.

Step 1. Generate 2G initial designs, including block designs, m-sequences
(if exist), random designs, and mixed designs. Obtain the fitness, or the
value of the objective function, of each initial design. These designs form
the first generation.
Step 2. With probability proportional to fitness, select with replacement
G pairs of designs to generate G pairs of offsprings via crossover and mu-
tation. Specifically, the crossover operator randomly selects a cut-point,
and exchanges the corresponding subsequences following the cut-point in
the paired designs. The mutation operator perturbs a randomly selected
portion αm of elements of all offspring designs. Obtain the fitness of the
resulting designs.
Step 3. Add to the population another b2Gαic immigrants drawn from
random and block designs, and their combinations. Obtain their fitness.
Step 4. Create a pool to include the designs of the current generation,
offspring designs and immigrants. According to their fitness, keep the best
2G designs in the pool to form the next generation, and discard the others.
Step 5. Repeat steps 2 through 4 until a stopping rule is met. Keep track
of the best design over generations.

In our case studies, we follow Kao et al. [16] to set G = 10, αm = 1% and
αi = 20%. In Kao et al. [16], the search is terminated after 10,000 generations. Here,
we consider a more efficient stopping rule presented in Kao [15]. The search is then
terminated if there is no significant improvement. Specifically, the improvement
in the value of the objective function is calculated every 200 generations. If the
improvement in the last 200 generations is no more than 10−7 of that of the first
200 generations, the search is stopped.

In addition, when calculating the multi-objective criteria F ∗de and F ∗, we need to
approximate max(Fd) and max(Fe). This is done by using the algorithm to search
for a design maximizing Fd, and a design maximizing Fe. Denote the former design
by ξ∗d and the latter one by ξ∗e . The max(Fd) and max(Fe) are approximated by
Fd(ξ

∗
d) and Fe(ξ

∗
e ), respectively.
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Table 1. Relative (%) CPU time spent of the proposed hill-climbing approach to the

genetic algorithm on maximizing Fd, Fe, or F∗
de(w) = wF∗

d + (1 − w)F∗
e .

(Q,L) Fe F ∗
de(0.2) F ∗

de(0.4) F ∗
de(0.5) F ∗

de(0.6) F ∗
de(0.8) Fd

A-optimality: individual stimulus effects
(1, 255) 41.4 52.4 49.6 58.9 43.8 47.6 47.8
(2, 242) 22.0 19.8 29.4 29.4 33.1 27.2 35.2
(3, 255) 4.3 7.8 5.4 6.4 9.1 8.2 17.6
(4, 624) 7.6 10.8 10.4 11.5 9.5 10.5 11.3
(6, 342) 5.1 4.3 5.9 5.9 3.4 2.8 10.0

D-optimality: individual stimulus effects
(1, 255) 19.6 31.9 31.9 43.0 42.1 39.8 66.9
(2, 242) 14.6 24.1 25.1 27.7 27.8 21.3 95.5
(3, 255) 23.4 24.7 18.1 16.7 18.0 17.3 20.3
(4, 624) 9.5 13.0 12.9 14.4 9.3 8.0 26.5
(6, 342) 7.6 5.2 3.9 3.1 2.3 3.7 6.5

A-optimality: pairwise comparisons
(2, 242) 22.6 17.9 18.0 18.0 20.2 26.6 12.1
(3, 255) 19.3 12.0 13.7 10.1 13.1 11.1 11.7
(4, 624) 12.7 11.1 15.9 13.1 15.8 9.9 49.6
(6, 342) 5.0 5.2 5.6 4.8 4.5 4.6 14.1

D-optimality: pairwise comparisons
(2, 242) 23.1 27.0 22.0 17.7 21.9 18.5 9.5
(3, 255) 19.7 22.4 12.1 22.4 21.0 12.6 53.2
(4, 624) 17.3 20.7 13.4 13.9 20.5 9.2 98.4
(6, 342) 2.4 3.0 2.6 2.5 2.9 1.9 24.3
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Table 2. Relative value (%) of the max(Fd), max(Fe), or max(F∗
de) achieved by the pro-

posed hill-climbing approach to that achieved by the genetic algorithm.

(Q,L) Fe F ∗
de(0.2) F ∗

de(0.4) F ∗
de(0.5) F ∗

de(0.6) F ∗
de(0.8) Fd

A-optimality: individual stimulus effects
(1, 255) 100.1 100.1 100.1 100.1 100.0 100.0 99.7
(2, 242) 100.1 100.0 99.9 99.9 100.1 100.1 100.0
(3, 255) 100.1 99.9 99.8 100.0 100.0 100.1 100.5
(4, 624) 100.1 100.1 100.0 100.0 100.0 100.3 100.5
(6, 342) 99.8 99.5 100.0 100.0 99.9 100.1 102.1

D-optimality: individual stimulus effects
(1, 255) 100.0 100.0 100.0 100.0 100.1 100.3 99.8
(2, 242) 99.9 100.1 100.0 100.0 100.1 99.9 98.7
(3, 255) 100.0 99.8 99.8 99.8 99.8 99.9 98.5
(4, 624) 100.0 100.0 100.1 100.1 100.1 100.1 98.9
(6, 342) 99.8 99.6 99.7 99.8 99.7 99.5 98.6

A-optimality: pairwise comparisons
(2, 242) 100.6 99.8 99.8 100.0 99.7 99.7 100.0
(3, 255) 99.4 99.6 99.8 99.3 99.3 99.3 102.1
(4, 624) 100.0 99.7 99.7 99.7 99.6 99.5 98.6
(6, 342) 98.6 98.2 98.4 98.3 97.9 98.7 102.4

D-optimality: pairwise comparisons
(2, 242) 99.8 99.8 99.9 99.9 99.6 99.7 100.2
(3, 255) 99.4 99.7 99.5 99.4 99.2 99.0 103.1
(4, 624) 99.9 99.7 99.7 99.7 99.6 99.4 98.5
(6, 342) 98.9 98.9 98.8 98.6 98.8 97.9 101.6
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Table 3. Total CPU time spent and the achieved F∗
Mm-value of the proposed hill-climbing algorithm

and the genetic algorithm.

A-optimality D-optimality
Q = 1 2 3 4 6 1 2 3 4 6

(I) Detection: individual stimulus
CPU time (minutes)
hillclimber 2.1 2.6 1.6 7.9 1.6 2.2 2.7 1.5 6.8 1.6
genetic alg. 4.0 8.0 14.8 82.1 54.4 4.1 8.6 14.6 19.4 29.2
F ∗
Mm2-value (%)

hillclimber 97.0 96.9 97.4 98.1 97.4 97.0 96.8 96.7 96.9 96.5
genetic alg. 94.9 95.4 97.0 95.4 96.7 95.5 96.2 98.0 98.1 97.5

(II) Detection: pairwise comparison
CPU time (minutes)
hillclimber n/a 1.2 1.3 7.0 1.7 n/a 1.3 1.3 7.0 1.8
genetic alg. n/a 8.3 18.5 100.6 50.1 n/a 8.4 19.1 96.2 54.4
F ∗
Mm-value (%)

hillclimber n/a 95.2 96.9 97.0 96.7 n/a 95.4 96.6 97.2 96.7
genetic alg. n/a 96.6 96.0 97.6 97.7 n/a 95.5 96.8 97.5 97.0

(III) Estimation: individual stimulus
CPU time (minutes)
hillclimber 1.8 2.1 2.3 14.7 5.0 2.5 3.0 4.2 22.4 13.8
genetic alg. 4.4 10.6 26.6 158.8 149.1 5.7 15.4 42.3 29.0 19.4
F ∗
Mm-value (%)

hillclimber 97.2 96.9 96.7 97.1 97.3 99.9 99.7 99.5 100.0 97.7
genetic alg. 96.8 97.3 97.2 96.9 97.1 99.8 100.0 100.0 99.8 100.0

(IV) Estimation: pairwise comparison
CPU time (minutes)
hillclimber n/a 1.7 4.3 16.0 12.6 n/a 2.9 4.9 25.5 18.9
genetic alg. n/a 12.4 28.4 154.5 149.2 n/a 14.6 37.2 221.6 275.1

Maximin efficiency (%)
hillclimber n/a 97.0 96.4 97.1 94.8 n/a 100.0 99.4 99.8 98.5
genetic alg. n/a 97.0 96.9 96.8 96.2 n/a 99.5 100.0 100.0 100.0

(V) Detection + estimation (equal weights): individual stimulus
CPU time (minutes)
hillclimber 6.4 7.8 6.6 40.6 11.6 8.3 10.6 10.7 54.5 27.7
genetic alg. 16.2 31.0 69.5 425.8 396.2 15.9 42.0 112.0 355.2 497.6
F ∗
Mm-value (%)

hillclimber 98.8 98.7 98.5 99.0 98.6 99.1 99.3 98.8 99.3 98.9
genetic alg. 98.7 99.0 98.8 98.8 98.4 99.2 99.0 99.3 99.3 99.2

(VI) Detection + estimation (equal weights): pairwise comparison
CPU time (minutes)
hillclimber n/a 4.8 8.2 37.6 19.8 n/a 6.6 9.7 58.5 30.8
genetic alg. n/a 34.1 76.0 438.4 645.9 n/a 43.0 114.3 673.8 649.3

Maximin efficiency (%)
hillclimber n/a 98.5 98.5 98.7 96.6 n/a 99.1 98.3 98.9 98.0
genetic alg. n/a 98.3 98.7 98.7 98.5 n/a 99.4 99.4 99.2 99.5
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Table 4. The relative maximin efficiency, [F∗
Mm(ξ)/F∗

Mm(ξ∗HC)]× 100%, of the locally optimal design

ξ∗0.3,HC for ρ = 0.3 and the worst relative maximin efficiency over the design class Ξ∗
HC of the 51

locally optimal designs obtained by the hill-climbing approach; ξ∗HC is the maximin design over ΞHC .

A-optimality D-optimality
Q = 1 2 3 4 6 1 2 3 4 6

(I) Detection: individual stimulus
ρ = 0.3 92.9 96.5 94.7 96.5 92.5 92.9 96.8 95.4 98.5 94.9
Worst case 83.2 83.3 81.9 85.0 88.5 83.2 85.5 89.4 89.2 91.7

(II) Detection: pairwise comparison
ρ = 0.3 n/a 100.0 98.8 97.7 96.4 n/a 100.0 98.4 98.9 97.5
Worst case n/a 91.1 87.4 89.6 90.9 n/a 91.1 87.7 90.3 91.4

(III) Estimation: individual stimulus
ρ = 0.3 99.2 98.8 98.8 99.4 96.6 99.8 99.9 99.9 99.9 100.0
Worst case 92.6 91.2 91.5 92.5 88.5 99.5 99.6 99.2 99.7 98.2

(IV) Estimation: pairwise comparison
ρ = 0.3 n/a 99.3 99.6 99.2 100.0 n/a 99.6 99.9 99.8 99.9
Worst case n/a 91.5 91.5 91.9 86.8 n/a 98.1 98.6 99.5 98.1

(V) Detection + estimation (equal weights): individual stimulus
ρ = 0.3 100.0 99.8 99.1 99.6 100.0 99.7 99.7 100.0 99.8 99.7
Worst case 96.4 95.9 94.8 96.2 93.8 97.3 97.3 96.5 97.3 96.9

(VI) Detection + estimation (equal weights): pairwise comparison
ρ = 0.3 n/a 99.7 98.6 99.4 97.2 n/a 100.0 99.7 99.8 98.4
Worst case n/a 94.9 39.7 96.3 94.3 n/a 96.8 97.5 97.5 96.8
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Table 5. The F∗
Mm2-value (%) of a near maximin design for AR2 noise, and the corre-

sponding (φ1, φ2)-value that yields this design.

A-optimality D-optimality
Q = 1 2 3 4 6 1 2 3 4 6

(I) Detection: individual stimulus
F ∗
Mm2 91.9 91.1 90.8 91.2 92.1 91.9 89.9 91.2 92.1 91.7
φ∗1 0.39 0.15 0.18 0.00 0.07 0.39 0.00 0.31 0.05 0.31
φ∗2 0.13 0.23 0.21 0.30 0.24 0.13 0.30 0.09 0.22 0.12

(II) Detection: pairwise comparison
F ∗
Mm2 n/a 85.9 90.2 90.6 90.9 n/a 85.9 90.4 89.4 91.3
φ1 n/a 0.02 0.00 0.45 0.19 n/a 0.02 0.00 0.00 0.35
φ2 n/a 0.29 0.25 0.02 0.18 n/a 0.29 0.25 0.27 0.04

(III) Estimation: individual stimulus
F ∗
Mm2 96.1 96.2 96.1 95.8 95.6 99.5 99.8 99.7 99.8 99.6
φ1 0.16 0.15 0.20 0.16 0.21 0.14 0.04 0.14 0.20 0.05
φ2 0.27 0.29 0.31 0.20 0.13 0.44 0.31 0.39 0.30 0.28

(IV) Estimation: pairwise comparison
F ∗
Mm2 n/a 96.6 96.2 96.1 95.9 n/a 99.5 99.5 99.7 99.3
φ1 n/a 0.20 0.15 0.20 0.19 n/a 0.31 0.25 0.08 0.30
φ2 n/a 0.23 0.26 0.26 0.10 n/a 0.09 0.00 0.29 0.00

(V) Detection + estimation (equal weights): individual stimulus
F ∗
Mm2 97.6 97.9 97.8 97.8 97.6 96.8 96.9 96.7 96.9 97.7
φ1 0.21 0.15 0.20 0.18 0.18 0.49 0.30 0.00 0.00 0.00
φ2 0.29 0.33 0.38 0.26 0.21 0.01 0.10 0.28 0.33 0.32

(VI) Detection + estimation (equal weights): pairwise comparison
F ∗
Mm2 n/a 97.6 97.6 96.3 97.2 n/a 97.2 97.2 96.8 97.7
φ1 n/a 0.16 0.19 0.36 0.18 n/a 0.01 0.05 0.15 0.22
φ2 n/a 0.23 0.25 0.20 0.29 n/a 0.30 0.25 0.24 0.18
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Table 6. The F∗
Mm2-value (%) of the obtained locally optimal design ξ0.3,HC for AR1 noise

with ρ = 0.3.

A-optimality D-optimality
Q = 1 2 3 4 6 1 2 3 4 6

Case (I) 62.8 66.9 62.8 67.6 56.8 62.8 67.7 66.5 75.4 65.7
Case (II) n/a 74.5 73.0 72.2 71.4 n/a 74.5 72.7 75.8 72.9
Case (III) 88.7 88.1 88.8 88.2 92.4 98.4 99.0 99.3 99.1 99.0
Case (IV) n/a 90.7 93.2 89.1 92.1 n/a 98.6 99.5 99.0 99.3
Case (V) 92.6 90.7 92.7 93.1 94.7 91.5 91.6 91.5 91.8 92.6
Case (VI) n/a 92.7 91.2 92.8 91.9 n/a 93.8 91.9 91.5 90.4
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Figure Caption:

Figure 1. The CPU time (minutes) and the achieved maximal F ∗ = (F ∗
c + F ∗

d + F ∗
e )/3 of the proposed

hill-climbing approach and the genetic algorithm for individual stimulus effects (A1 & A2) and pairwise
comparisons (B1 & B2) with both A- and D-optimality criteria and (Q,L) = (2, 242), (3, 255), (4, 624) and
(6, 342).




