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Abstract 
Robust control design has been increasingly used in industrial settings by leading automation companies. The 

design procedure has evolved in the last decades and fairly automated procedures exist now for use by practicing 

engineers or even operators. One does not need to be familiar with the details of the underlying theory to use it. 
Robust control is different than conventional control in that it accounts for uncertainty bounds and designs a 

controller with known/desired performance and stability characteristics.  Robust control can be applied to 

multivariable or Single Input Single Output (SISO) processes. This paper is aimed at providing a tutorial on the 

Robust PID control design approach to practicing chemical engineers. We use the classical pH control problem as 

an example, which is a challenging problem due to its non-linearity. First, we analyze the pH process by using the 

benchmark model of Henson and Seborg. We identify the fundamental limitations of the linear control design in 

terms of model uncertainty and sensor sampling constraints. Subsequently, we design a controller following the 

guidelines from robust control theory. Finally, we demonstrate the results though implementation in a lab-scale 

wastewater system. The experimental results show the validity of the process model and the control design 

approach. It also points out the limitations of the linear controller performance, leading to an interesting follow-up 

work regarding gain scheduling and adaptation. 

 

Introduction 
 

Control theory provides a solid base for designing controllers for the industrial processes. An engineer who 

is designing controllers should make sure that the designed controllers produce a stable closed-loop and satisfy 

given closed-loop specifications. Some of the important closed-loop specifications are the time constant and 

allowable percent overshoot. Most of the controller design methods require a linear model (nominal model) of the 

process. Frequency domain dominates the analysis in modern techniques, although more recent methods can be used 

to formulate time and frequency domain specifications in convex optimization objectives. Controller specifications 

listed above can be translated into closed-loop bandwidth (roughly the inverse of the closed-loop time constant) and 

the peak of the closed-loop frequency response.   

The nominal model response can deviate from the actual response due to a variety of factors, such as the 

presence of nonlinearity, noise, and unmodeled dynamics. The term “uncertainty” in robust control theory refers to 

the differences between the model (nominal) response and true process response. There are many ways of describing 

uncertainty. The robust control theory helps practicing engineers to design controllers for the nominal model with 

uncertainty so that the closed-loop system remains stable and has the specified performance regardless of the exact 

properties of the actual process.  

This paper describes a procedure for the analysis of a dynamical system or plant for the purposes of feedback 

control and robust PID design. This procedure is illustrated by using two examples, one with a first-principles model 

(from physical laws like mass balance and charge balance) and one with an experimental process model (where the 

model is directly determined from fitting experimental data), bringing out their similarities and differences. Lastly, 

limitations of linear controllers motivate the need for nonlinear controller design and some specific solutions are 

discussed.   

The procedure for system analysis and robust controller design used in the process industry is summarized in 

the Figure 1. It should of course be understood that not all steps are explicitly followed in every case nor are they 

given equal weight. The basic steps are as follows: 

 Understand the process and the control requirements:  It is important to understand the dynamic process 

behavior near an operating point, for example by looking at the speed and directionality of the step response 

of the actual process or simulation of its approximate model. Some important aspects are process variables 



  

that need to be controlled, acceptable variation from the set point and the magnitude and frequency of the 

disturbances entering the process.  It is also important to understand the limitations imposed by the 

actuators and sensors. Actuator limitations include dynamics, maximum and minimum limits, hysteresis and 

other nonlinearities. Typical sensor limitations come from sampling-time constraints, accuracy, and precision 

or noise characteristics.   

  Model the process and compute uncertainties: One way of modeling process behavior is using first-

principles like mass balance, charge balance and energy balance. This method allows for a deeper process 

understanding at the nominal operating point, but also away from it. It is very complex and time consuming 

and it is not always clear what level of detail is needed for controller design purposes. Another way of 

obtaining a process model (such as, a Laplace transfer function) is by performing identification experiments. 

This involves performing experiments by exciting the process and using the recorded input-output time series 

data to fit the model. There are many packages and tools available in the industry to identify a model from 

the data. System identification procedures for robust control are described in [5], [6], [7] and [9]. With the 

recent advances in both theory and computational tools, there is a growing interest towards data driven 

models which, by design, emphasize only the more important components of the system response, actuator 

and sensor dynamics, nonlinearities, and accuracy characteristics. The availability of actual data also allows 

for the computation of realistic estimates of the dynamic uncertainty (this estimate can take many forms, 

one such form called multiplicative uncertainty, is discussed in the next paragraph), which describes the 

range of validity of the model and is critical in controller design. On the other hand, such models are not easy 

to generalize or use for extrapolation purposes, away from the modeled operating conditions. Overall, it is 

fairly clear that a combination of first-principles modeling (for a suitable model structure and design of 

experiments) and data-driven modeling (for fine tuning and uncertainty characterization) offers the best 

promise for the development of a control-relevant model. However, the exact characteristics of each are not 

easy to determine a priori. 

Uncertainty computation: Understanding dynamic uncertainty of the process model is a very important 

aspect of robust controller design. There are several ways of characterizing uncertainty and they are not 

always equivalent. Nevertheless, a conceptually simple and fairly general characterization is in terms of 

the multiplicative uncertainty (Δ𝑚), i.e., the percent output error. This error is not necessarily a random 

variable but may have dynamics, i.e., be itself described by an unknown transfer function (See Appendix: 

A1 for more details). The interest in this form of uncertainty comes from its interpretation as an upper 

bound for the closed-loop system bandwidth. More specifically, for the nominal process model (𝑃) and 

controller (C), the complementary sensitivity 𝑇 of the closed-loop system is defined as: 

 

 𝑇 =
𝑃𝐶

1+𝑃𝐶
      Eq. (1) 

 

According to the small gain theorem, the closed-loop system of the perturbed process model 𝑃(1 + Δ𝑚) 

and the controller C  will be stable for all stable uncertainty operators that satisfy (See Appendix: A1 for 

more details):   

 

              |𝑇(𝑗𝜔)||Δ𝑚(𝑗𝜔)| < 1     Eq. (2) 

 

Since in general, the multiplicative uncertainty grows with frequency, this condition implies that the 

complementary sensitivity should roll-off (become smaller as the frequency becomes large), imposing 

limitations on the closed-loop bandwidth and hence, speed of response. Alternatively, this can be viewed 



  

as a signal-to-noise ratio (SNR) condition, namely that effective control can occur as long as the SNR 

(modeled output to output error) is greater than unity.   

 Specify desirable and achievable control objectives: Time domain specifications for the closed-loop system 

are closed-loop time constant and percent overshoot in the step set-point change. It is typically desirable to 

design a closed-loop system that responds fast to set-point changes with minimal overshoot. On the other 

hand, this may not be achievable due to process delays, inverse response, or process uncertainty. The time 

constant of a closed-loop specification can be related to the closed-loop bandwidth in the frequency domain 

(approximately, the inverse of the closed-loop time constant). The choice of closed-loop bandwidth for the 

controller design is the single most important specification for the controller design as it directly corresponds 

to the speed of the closed-loop response. It is also a very convenient design parameter since it is easily 

manipulated during the computation of the controller parameters.  The achievable closed-loop bandwidth 

(theoretical limit) and percent overshoot are affected by the uncertainty, sampling time of sensor and other 

delays in general, model characteristics like instability of the process model, transportation delays and sensor 

noise. Overall, the closed-loop specifications can be defined in terms of a “target loop”, which should then be 

approximated by the closed-loop with the designed controller. This problem is typically easier to solve 

computationally in the general case, than a generic bandwidth or overshoot specification. The relationship 

between process model characteristics like transportation delays, inverse responses and instability and the 

choice of a “target loop” in controller design has been a subject of considerable analysis [3], while some 

guidelines target loop selection can be found in [8].  

 Compute the controller parameters:  For the given controller specifications, there is a variety of 

sophisticated linear and nonlinear controllers available both in theory and in industrial applications. 

However, proportional-integral-derivative (PID) controllers are the most common with industrial usage up to 

95%. There are many procedures available for tuning PID gains like Ziegler-Nichols, Internal Model Control 

(IMC) [11], or optimization-based and, when used appropriately, they work as well as any other [9]. The more 

substantial advantages of one method over another are typically in minimizing design iterations, clarity of 

requirements from the modeling and data collection steps, ease of use and training.  The choice of design 

procedure is not important, as long as the designed controller satisfies a robust stability condition imposed 

by uncertainty (see Appendix: A1). A PID controller design using frequency loop shaping is used in this paper. 

In this method PID parameters are tuned to achieve loop transfer function close to the chosen “target loop”, 

where the choice of a target loop, the procedure for tuning PID and its limitations are described in more 

detail in [8]. 

 Validate the closed-loop control system: The designed controller is validated in the frequency domain and in 

the time domain using simulations. The frequency domain validation includes verification of the small gain 

robust stability condition for the model uncertainty (See Appendix: A1 for details). The designed controller is 

validated in the time domain by analyzing the step responses of the closed-loop system to set-point changes 

and disturbances. Depending on the severity of nonlinearities in actuators and sensors, the designer should 

also evaluate in this step the effect of saturating actuators, sensor sampling delays, noise and quantization. 

For example, an iteration may be necessary if the observed noise is too large and causes excessive movement 

in the actuators.      

 Implement and test the closed-loop control system: Once the controller is validated, it is implemented and 

tested on the actual process for set point tracking and disturbance rejection. This step will reveal 

inconsistencies, if any, between the testing conditions and the actual system operation, in which case a 

controller redesign, or even a redesign of the excitation conditions for system identification, may be 

necessary. 



  

 

pH neutralization model analysis and controller design  
Our motivating application is the control of pH at a given desired level (5-9), which is required in wastewater 

treatment for process optimization. This section focuses on analysis and controller design of the pH neutralization 

process model described in [1]. The same nominal operating conditions as described in [1] are used for this model. 

(See Appendix: A2  for the brief description of the model). The process model is linearized around pH=6 and pH=8 

and, as it turns out, the transfer functions of these models in minutes are represented as follows: 

 

    𝑃𝑚(𝑠) =
𝐾

𝜏𝑠+1
      Eq. (3) 

 

The individual parameters for this expression are given in Table 1, where Pm6(s)  and Pm8(s) are the transfer 

functions of linear models at pH = 6 and pH = 8 respectively. The unit step responses of these process models are 

shown in Figure 2. These plots are used as examples to illustrate the more general observation arising from the 

analytical study of the first-principles model that both models have similar time-constants but very different steady 

state gains. This is also verified by examining the step and frequency responses of several other linearized models 

at intermediate pH values (omitted here for clarity). 

To determine the suitability of a single controller to control the process, we consider the performance of a 

controller designed for one pH value, and evaluate it at all other pH operating points.  For example, we choose pH 

= 6 as the nominal operating point for the controller design and then calculate the multiplicative uncertainty for 

the model at pH = 8. The plots of multiplicative error provide an estimate of multiplicative uncertainty arising due 

to changes in the operating conditions.  As shown in Figure 2a, with either one as the nominal model, the  

multiplicative uncertainty is near or greater than unity. This results in robust stability conditions (Eq. 2) that are 

violated or satisfied with a small margin, implying that a single (linear) controller cannot approximate well a 

particular closed-loop target. For more detailed models, the uncertainty may also be affected by the inclusion of 

actuator and sensor dynamics which themselves can be uncertain.  To complete this step, a target bandwidth of 

0.6rad/min is chosen for controller design based on the sensor sampling constraints (>1sec), actuator capabilities 

and some trial-and-error. The transfer functions of the designed PI controllers (for this process model a derivative 

action is not needed) are given below as 𝐶𝑚6(𝑠) and 𝐶𝑚8(𝑠), which are PI controllers of the linearized process 

models at pH = 6 and pH = 8 respectively. 

   𝐶𝑚6(𝑠) =  106.53 (1 + 
1

1.44 𝑠
)     Eq. (4) 

 

    𝐶𝑚8(𝑠) =   14.20 (1 + 
1

1.38 𝑠
)     Eq. (5) 

The controller 𝐶𝑚6 fails the frequency domain validation since the value of the uncertainty is higher than one for 

all frequencies and, even though there is no closed-loop instability, this is manifested by a large variability in the 

closed-loop responses. Figures 3a and 3b show the step responses of the closed-loop system with 

controllers 𝐶𝑚6and 𝐶𝑚8 respectively. At pH = 6, 𝐶𝑚6 results in the expected performance (settling time of 8 min), 

and so does 𝐶𝑚8 at pH = 8. At pH = 6 response of the closed-loop system with 𝐶𝑚8 is very slow with settling time 

around 25 minutes. At pH = 8 the response of the closed-loop system with  𝐶𝑚6  is very fast with settling time 

around 1 minute. This is also undesirable since the choice of bandwidth will ultimately depend on uncertainty and 

robustness considerations and a faster loop may exhibit instability when implemented. On the other hand, the 

integral time constants are very similar 1.44 for Cm6 and 1.38 for Cm8, and the difference between the controllers 

is essentially limited to gain variations, 106.53 for Cm6 and 14.20 for Cm8. This facilitates the design of a nonlinear 

(gain-scheduled or adaptive) controller for this process but it extends beyond the scope of this study. 

 



  

pH control experimental analysis and controller design 
This section demonstrates the analysis and controller design procedure using a lab-scale pH control experimental 
process as an example.  First, the experimental setup is discussed in some detail. Second, the system identification 
results around pH = 5 through 9 are presented. Third, the controller design and choice of bandwidth is discussed. 

Last, the implementation and validation of these controllers is presented. 
 
The schematic diagram of the experimental setup is shown in Figure 4.  The experimental set up consists of a 
500ml magnetically stirred reactor with acid, base and buffer flows. The volume inside the reactor is kept constant 
using an overflow tube. The base flow is used as the control variable, varied by controlling the motor voltage, while 
the other two flows (acid and buffer) are fixed at 2.45 ml/min.  

For the identification of the system model, a Pseudo Random Binary sequence (PRBS) with switching time 
of 100 sec signal is used as input to Pump 2 to perturb the system around the operating points with pH = 5, 6, 7, 8, 
and 9. The interest in the two extreme values, which are outside the operating range of the motivating application, 
is to enable the assessment of the model continuity at the ends of the interval. The output (pH) sequences are 
measured and then fitted by linear dynamic models.  Since the reactor size used in this experiment is 500 ml and 
the total flow rates (acid + buffer + base) is around 7.35 ml/min, the approximate settling time for the step change 
in flow is around 3.4 which is 3 times the time constant of the system(3*500/(7.35*60)). Consequently, for the 
frequency range of interest for our experiments (around 0.6rad/min), the data is expected to be well-represented 
by an integrating model. The results of the modeling computations are shown in Figure 4 where the step responses 
of the models at each operating point are plotted. Note that there is an inflection in the rate curve at pH = 7 where 
the integration rate is lowest, while at pH = 5, 6, 8 and 9 the rate is larger. Also note that the largest gain occurs at 
a pH = 5. 

A small delay is estimated in all models. This delay is attributed to quantization in the sensor and the 
pump. The quality of the identified models at the various pH levels is shown in Figure 6 in terms of model 
predictions. This figure shows the measured value of the pH along with the value predicted by the model for a 
sequence of steps in the base flow rate, which is the input of the process. The output of the model is the predicted 
value. The transfer functions of the identified models at pH = 6, pH = 7 and pH = 8 have the form given by Eq. (6). 

 

    𝑃(𝑠) =
𝐾(𝜏1𝑠+1)

𝑠(𝜏2𝑠+1)
𝑒−𝑇𝑑𝑠     Eq. (6)  

 
The parameters of the various models appear in Table 2, with P6, P7 and P8 denoting the identified model at the 
corresponding operating point of pH of 6, 7 and 8 respectively.  It is worth noting that the experimental results are 
in line with the results of the linearization of the detailed model presented in [1], showing a large variation of 
process gain (K) which here is the integration rate. 

Next, the uncertainty analysis is performed by examining the spectral power ratio of the residuals to the 
output which gives an indication of the expected noise to signal ratio in the frequency domain. (A variety of 
spectral methods can be used for this, but since the interest is just in the uncertainty bound, the results are 
typically very similar.) Figure 7 shows the inverse of the multiplicative uncertainty estimate, which serves as an 
upper bound on the loop complementary sensitivity which, in turn, provides an upper bound on the controller 
gains. It is quite clear that for the robust stability condition to be satisfied, the loop should have bandwidth less 
than 1rad/min. This is the point that the inverse multiplicative uncertainty becomes unity, as shown in the figure. 
At higher frequencies the value becomes less than one which indicates that the controller should be attenuating 
the loop signals.  

Based on the uncertainty estimate, a loop bandwidth of 0.6 rad/min is chosen for the controller design for 
the both process models (pH = 6 and pH = 8) as it satisfies robustness with some margin, sampling time 
constraints, and is consistent with actuator saturation limits and quantization noise levels (the last one is verified 
after a few loop simulations which not shown here). Two controllers are designed, one at pH=6 and the other at 
pH=8.  The closed-loop systems are tested at nominal and off-nominal conditions. The term “nominal condition” 
refers to the point at which the controller was designed to operate. The transfer functions of the two controllers 
are: 

    C6(s) = 12450(1 + 
1

2.94 s
)     Eq. (7)  



  

 

    C8(s) =   3596 (1 + 
1

2.36 s
)     Eq. (8) 

Both controllers satisfy the small gain theorem for the respective model uncertainty characterization and provide 
reasonable responses during a simulation-based validation.  Figure 8a shows the experimentally measured step 
responses of closed-loop system with the controllers C6 and C8 at their respective nominal pH conditions. These 
agree very well with the simulated closed-loop responses, something that verifies the success of the identification 
process. Figures 8b & c compare the closed-loop responses with the controller for the alternative operating point 
(off-nominal design). The performance degrades by either becoming too slow, or too fast, which in some cases can 
also result in oscillatory behavior or instability. Figure 9 shows one such extreme case where the closed-loop 
system is destabilized when the C6 controller operates near pH = 4.5 where the process gain is high.  

 

Discussion and conclusions 
The pH control problem exhibits several interesting characteristics that are associated with the process 
nonlinearity and the uncertainty (or complexity) in the description of the practical components, such as sensors 
and actuators. The process itself undergoes large gain variations, which means that simple controllers, such as a 
standard PI/PID, would either require significant performance compromises, or restriction of their operation to a 
tight range.  The paper provided a brief overview of a complete controller design procedure, starting with first 
principles and data and ending with controller validation. The experimental results show that, in the vicinity of an 
operating point, the process model and its limitations of achievable performance can be identified with 
confidence, and a controller can be designed to achieve them by means of a systematic procedure. On the other 
hand, there is significant performance degradation in pH control when operating away from the nominal design 
conditions. Performance degradation can be expected due to the nonlinear behavior of the process or other 
changes in the process parameters, and becomes more pronounced as the process moves further away from its 
nominal operating conditions.  

This raises the important question whether control performance can be improved in a wider range of 
operation by online controller scheduling or adaptation. Based on preliminary work, beyond the scope of this text, 
we expect that uniform performance can be achieved by using more sophisticated, nonlinear controller schemes. 
For example, the Nonlinear Model Predictive Controller paradigm can be followed, whereby the Control input is 
chosen based on the identification full nonlinear process models, e.g., the Hammerstein model, such that it 
minimizes a suitable error (e.g., set-point tracking) for a given prediction horizon. Details of this method can be 
found in [10].  A different approach would be to invoke the general principle of Gain Scheduling and design 
different controllers for different operating points and schedule them based on independent measurements that 
determine the operating point. Alternatively, one can also apply adaptive control principles to estimate the 
controller gains based on input-output measurements. Such an adaptive PID is of particular interest here, since the 
controller complexity is kept low, while the effective variability can be attributed to a single parameter which can 
be estimated reliably with very modest excitation requirements. Details of this method are found in [4] and an 
application to the pH problem will be the subject of a future study. 
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Appendix 

A1: Robust control framework description 

This section provides a brief description of the key concepts of robust control theory, with references [1], [12] and 

[13] providing an excellent background.  First, the multiplicative uncertainty is introduced to characterize and 

quantify the modeling error. Second, the small gain theorem is stated which is a cornerstone of connecting controller 

design with modeling uncertainty. In particular, its application to the case of multiplicative uncertainty yields a 

fairly intuitive approach to robust control.    

 

Multiplicative uncertainty 

The multiplicative uncertainty describes the mismatch between the actual process and its model in a normalized 

sense. Let 𝑃 be an actual process between the input (𝑢) and the output (𝑦) and let 𝑃0 be the nominal process model. 

Then the multiplicative uncertainty (Δ𝑚) is defined as follows:      

     Δ𝑚 =
𝑃−𝑃0

𝑃0
        A1. (1) 

A block diagram of this description is shown in figure A1:1. For nonlinear systems the multiplicative uncertainty of 

the process model at a nominal operating point (𝑃𝑜) can be estimated by computing a bound of the multiplicative 

differences from the models at different operating points (i.e., using A1.1, with 𝑃 = 𝑃𝑖). This is only an estimate and 

becomes accurate under quasi-steady-state assumptions but it is useful in establishing the minimum degree of 

robustness that a controller should possess. The maximum uncertainty associated with the nominal model (𝑃𝑜) is 

computed by taking the maximum of the magnitude of the frequency response of the multiplicative uncertainty for 

all process models (𝑃𝑖).      
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In the case of identification of the model form the experiment data, estimation error can be expressed in terms of the 

multiplicative uncertainty (percent output error). A simple formula for calculating a frequency domain estimate of 

the multiplicative uncertainty, is as follows: 

 |𝛥𝑚(𝑗𝜔)| =
|𝐹𝐹𝑇(𝑦−𝑦𝑚)|

|𝐹𝐹𝑇(𝑦𝑚)|
        A1. (2) 

Here, 𝑦 is the actual output of the identification experiment, 𝑦𝑚is the estimated output from the model; 

|𝛥𝑚(𝑗𝜔)| denotes the magnitude of multiplicative uncertainty at frequency 𝜔; and 𝐹𝐹𝑇 refers to Fast-Fourier 

transform.  

 

Small gain theorem  

Consider generalized feedback system shown in the figure A1:2, where, 𝑀 is a nominal model and 𝛥 is an uncertain 

system for which a bound is available in terms of the amplitude of its frequency response. Then the feedback system 

is stable if the following frequency domain condition is true:  

    |𝛥(𝑗𝜔)||𝑀(𝑗𝜔)| < 1, ∀ 𝜔.     A1. (3) 

Here |𝛥(𝑗𝜔)| and |𝑀(𝑗𝜔)| are magnitudes of the frequency response of the uncertainty (Δ) and the model (𝑀), 

respectively. The inequality is referred to as a Robust Stability Condition for the feedback system. 

 

Application of Small Gain theorem to Multiplicative Uncertainty 

Consider the block diagram shown in figure A1:3 of the closed-loop system with multiplicative uncertainty. Here 𝑟 

is a set-point signal, 𝑢 and 𝑦 are the process input and output, respectively.  The application of the small gain 

theorem results in the following robust stability condition 

 |𝛥(𝑗𝜔)||𝑇(𝑗𝜔)| < 1, ∀ 𝜔.     A1. (4) 

Where |𝛥(𝑗𝜔)| and |𝑇(𝑗𝜔)| are magnitudes of the frequency response of the uncertainty (Δ) and the 

Complementary Sensitivity (𝑇), respectively, which is defined as follows: 

    𝑇 =
𝑃0𝐶

1+𝑃0𝐶
       A1. (5) 

To guarantee robust stability, the controller (𝐶) for the nominal process model (𝑃0) with a multiplicative uncertainty 

(Δ𝑚) should be designed such that the robust stability condition A1.4 is satisfied. Roughly, this condition implies 

that the closed-loop bandwidth cannot be higher than that of the inverse multiplicative uncertainty and that excessive 

peaks (resonances) should be avoided. In traditional feedback design, these constraints can be translated to crossover 

frequency and phase margin specifications; modern tools of robust control synthesis allow a tighter design for the 

same problem and offer certain optimality characteristics.  

 

A2: pH Neutralization model description 

The schematic diagram of the pH neutralization process is shown in figure A2:1 and its modeling approach follows 

from [1].  The reactor type is a continuous stirred tank reactor (CSTR) and its volume is 2500 m.l. Baffles are 

installed to reduce swirling. Inlet streams consist of q1, q2 and q3, where q1 is a strong acid stream, q2 is a weak 

acid stream (buffer solution) and q3 is a strong base stream. The pH of the reactor is directly measured by a pH 

probe. The volume of the reactor is kept constant.  It is assumed that perfect mixing occurs in the reactor, the 

temperature is constant and there is complete solubility of the ions involved. The following reactions are taking 

place in the reactor  

  

𝐻2𝐶𝑂2
                          
↔       𝐻𝐶𝑂2

− +𝐻+          A2. (1)      

𝐻𝐶𝑂2
−
                          
↔       𝐶𝑂2

2− +𝐻+        A2. (2) 

𝐻2𝑂
                          
↔       𝑂𝐻− +𝐻+         A2. (3) 



  

 

The chemical reactions in the reactor are assumed to be at equilibrium. The equilibrium constants of these reactors 

are defined as below  

 

𝐾𝑎1 =
[𝐻𝐶𝑂2

−][𝐻+]

[𝐻2𝐶𝑂2]
          A2. (4) 

𝐾𝑎2 =
[𝐶𝑂2

2−][𝐻+]

[𝐻𝐶𝑂2
−]

          A2. (5) 

𝐾𝑤 = [𝐻
+][𝑂𝐻−]         A2. (6) 

 

The chemical equilibria are modeled using the concept of reaction invariance [1].  For this system, two reaction 

invariants are involved for each stream (q1, q2, q3 and q4). 

𝑊𝑎𝑖 = [𝐻
+]𝑖 − [𝑂𝐻

−]𝑖 − [𝐻𝐶𝑂3
−]𝑖 − 2[𝐶𝑂3

2−]𝑖      A2. (7) 

𝑊𝑏𝑖 = [𝐻2𝐶𝑂3]𝑖 + [𝐻𝐶𝑂3
−]𝑖 + [𝐶𝑂3

2−]𝑖       A2. (8) 

 

The relation between a hydrogen ion concentration and reaction invariants is 

 

𝑊𝑏𝑖
𝐾𝑎1/[𝐻

+]+2𝐾𝑎1𝐾𝑎2/[𝐻
+]
2
 

1+𝐾𝑎1/[𝐻
+]+𝐾𝑎1𝐾𝑎2/[𝐻

+]2
+𝑊𝑎𝑖 +

𝐾𝑤

[𝐻+]
− [𝐻+] = 0      A2. (9) 

 

The pH value of the solution is obtained by taking the negative logarithm of the [H
+
] ion concentration   

 𝑝𝐻 = − log10([𝐻
+])         A2. (10) 

A dynamic process model for the pH neutralization process can be derived from the component material balance for 

the reaction invariants (Wa4 & Wb4) and the algebraic equation relating the pH and reaction invariants. Nominal 

operating conditions of the plant are described in Table 3.  

𝑑(𝑊𝑎4)

𝑑𝑡
=
1

𝑉
[𝑞1(𝑊𝑎1 −𝑊𝑎4) + 𝑞2(𝑊𝑎2 −𝑊𝑎4) + 𝑞3(𝑊𝑎3 −𝑊𝑎4)]    A2. (11) 

𝑑(𝑊𝑏4)

𝑑𝑡
=
1

𝑉
[𝑞1(𝑊𝑏1 −𝑊𝑏4) + 𝑞2(𝑊𝑏2 −𝑊𝑏4) + 𝑞3(𝑊𝑏3 −𝑊𝑏4)]    A2. (12) 

0 = 𝑊𝑎4 + 10
(𝑝𝐻−14) − 10(−𝑝𝐻) +𝑊𝑏4

(1+2×10(𝑝𝐻−𝑝𝐾2))

(1+10(𝑝𝐾1−𝑝𝐻)+10(𝑝𝐻−𝑝𝐾2))
    A2. (13) 
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Figure 1.  Step responses of linearized models 
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Figure 2. Plots of multiplicative uncertainty 
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Figure 3a. step responses of 𝑪𝒎𝟔 controller 
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Figure 3b. Sstep responses of 𝑪𝒎𝟖 controller 
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Figure 3a Schematic diagram of Lab scale experimental 
setup for pH control 
 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

Figure 4b, Specifications of the experimental setup 
 

 

 

 

 

 

 

Figure 4, Step responses of all models over 4 minutes 

 

 

 

Specifications of the experimental setup: 

 Reactor size: 500 ml 

 Acid:  1 Mol HCl 

 Base:  1 Mol NaOH 

 Buffer: 100 mMol Phosphate buffered saline 

 Pump: Ismatec reglo analog is a peristaltic pump with flow 

maximum flow rate of 7 ml/min 

 Control variable: Voltage across pump (0-5 V)(0-7 

ml/min)(0-4095 digital value) 

Base flow =
(DAC Setpoint)×7

4095
 𝑚𝑙/𝑚𝑖𝑛 

 Digital to Analog Converter (DAC): Output range of 0-5 V 

with 12 bit precision. 

 pH Sensor: Atlas Scientific pH sensor with pH circuit 4.0. 

Maximum sampling rate of 1 second with 95 % accuracy. 



  

 

 

 

 

Figure 5, Open-loop Predictions of all models, -green 
actual output(y) -red predicted output (𝒚𝒎) 

 

 

 



  

 

 

 

Figure 6, Inverse multiplicative uncertainty estimate for 
the model at pH = 8, showing an effective bound on the 
loop bandwidth of 1rad/min (Similar results at pH 6). 

 

 



  

 

Figure 7a Step reposes of 𝑪𝟔 at pH 6 and 𝑪𝟖  at pH 8 
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Figure 8b Step responses of 𝑪𝟔  at pH 6 and 8 

0 5 10 15
-0.1

0

0.1

0.2

Min


 p

H
Delta Change from nominal controller designed at pH 6

 

 

0 5 10 15
1000

2000

3000

4000

Min

D
A

C
 s

e
tp

o
in

t

 

 

ref

y - pH6

y - pH8

u - pH8

u - pH6



  

 

Figure 8c Step responses of 𝑪𝟖  at pH 6 and 8 
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Figure 
9 Step response of 𝑪𝟔 at pH 4.5  
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Figure 10 Integration rates as a function of pH for all 

data 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1:1: Block diagram of multiplicative uncertainty 
at the output 

 

 



  

 

 

 

 

 

 

 

 

Figure A1:2: Block diagram of general feedback system 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

Figure A1:3: Block diagram of feedback system with 
multiplicative uncertainty 

 

 

 

 



  

 

Figure A2:1:  Schematic diagram of pH neutralization 

process 

  



  

Tables 

 

 

 

 

Table 1: Transfer functions of linearized process models 

 

 

 

 

 

 

Table 2: Transfer functions of identified process models 

 

 

Table 3: Nominal Operating Conditions 

 

 

𝑃𝑚 =
𝐾

𝜏𝑠 + 1
 

 𝐾 𝜏 

𝑃𝑚6 1.5042 × 10−2 2.6 

𝑃𝑚8 1.014 × 10−1 2.372 

𝑃 =
𝐾(𝜏1𝑠 + 1)

𝑠(𝜏2𝑠 + 1)
𝑒−𝑇𝑑𝑠 

 𝐾 𝑇𝑑  𝜏1 𝜏2 

𝑃6 6.69 × 10−5 0.367 2.65 2.8 

𝑃7 4.964 × 10−5 0.217 0 0.0625 

𝑃8 2.02 × 10−4 0.183 0 0.124 

Symbol Values  Symbol Values  Symbol Values  Symbol Values 

𝐾𝑎1 4.47
× 10−7 

 𝑉 2500  
𝑚𝑙 

 𝑊𝑎1 3 × 10−3M  𝑊𝑏1 0M 

𝐾𝑎2 5.62
× 10−11 

 𝑞1 540 𝑚𝑙
/𝑚𝑖𝑛 

 𝑊𝑎2 −0.03M  𝑊𝑏2 0.03M 

𝑝𝐾1 6.349692  𝑞2 36 𝑚𝑙
/𝑚𝑖𝑛 

 𝑊𝑎3 −3.05 ×
10−3M 

 𝑊𝑏3 5.0 × 10−5M 

𝑝𝐾2 10.25026  𝑞3 510 𝑚𝑙
/𝑚𝑖𝑛 

 𝑊𝑎4 −4.32 ×
10−4M 

 𝑊𝑏4 5.38 × 10−4M 



  

 

Nomenclature  

Term    Description 

Nominal model(𝑷𝟎) Process model that is sued for the controller design and uncertainty characterization 

FFT Fast Fourier transform  

𝝎 Frequency in rad/min 

Complementary  
Sensitivity (𝑻) 

Transfer function between reference and output. 

𝑻 =
𝑷𝑪

𝟏+𝑷𝑪
 , where 𝑷 is process model and 𝑪 is controller transfer function.  

𝚫𝒎 Multiplicative uncertainty 
|𝚫𝒎(𝒋𝝎)| Magnitude of frequency response of multiplicative uncertainty at frequency 𝝎 

Bandwidth  Frequency at which complementary sensitivity (𝑻) crosses 0.707 magnitude. 
Approximately equal to 1/(Closed-loop time constant) 
 

PID controller structure  
𝑲𝒄(𝟏 +

𝟏

𝑻𝒊𝑺
+ 𝑻𝒅𝑺) 

𝑲𝒄 is proportional gain, 𝑻𝒊 integral time constant  and 𝑻𝒅 is derivative time constant. 

 


