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Abstract

Immunosignaturing shows promise as a general approach to diagnosis. It has been shown to detect immunological signs of
infection early during the course of disease and to distinguish Alzheimer’s disease from healthy controls. Here we test
whether immunosignatures correspond to clinical classifications of disease using samples from people with brain tumors.
Blood samples from patients undergoing craniotomies for therapeutically naı̈ve brain tumors with diagnoses of astrocytoma
(23 samples), Glioblastoma multiforme (22 samples), mixed oligodendroglioma/astrocytoma (16 samples), oligodendro-
glioma (18 samples), and 34 otherwise healthy controls were tested by immunosignature. Because samples were taken prior
to adjuvant therapy, they are unlikely to be perturbed by non-cancer related affects. The immunosignaturing platform
distinguished not only brain cancer from controls, but also pathologically important features about the tumor including
type, grade, and the presence or absence of O6-methyl-guanine-DNA methyltransferase methylation promoter (MGMT), an
important biomarker that predicts response to temozolomide in Glioblastoma multiformae patients.
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Introduction

The identification of biomarkers for presymptomatic detection

of disease and classification of existing disease states could provide

a rapid and inexpensive adjunct to standard pathological

diagnosis. Researchers continue to search for blood-borne protein

biomarker(s) for detection of cancer, but sensitivity remains

stubbornly low [1], [2]. Immune surveillance, however, occurs

continuously and is quite sensitive to changes antigen profiles [3],

[4], [5], [6], [7]. It has been demonstrated that cancer cells elicit

a detectable humoral immune response [6], [7]. Antibodies make

excellent biomarkers because they are stable in serum, have high

specificity and affinity to their cognate antigen, are abundant, and

enable retrospective studies. An activated B cell can produce

5000–20,000 antibodies per minute [8], [9] while replicating every

,70 hr [10] with a lifespan up to 4K months [11], [12], leading

to .1011 amplification of a specific signal per week. Antibody-

based biomarkers avoid the dilution problem seen with proteomic

biomarkers [13], [14] and in are not only highly abundant but can

be physically captured at nano- and picomolar affinities. Further,

unpurified antibodies are stable, allowing archival samples to be

used for testing where RNA or proteins may have degraded [15].

The major impediment to using antibodies as biomarkers has been

our inability to deconvolve the dense information contained in

antibodies as they exist in a complex milieu [16]. There are .109

separate specificities in the blood of an average adult, more than

can be examined individually. Fingerprinting cancer antibodies

has worked in the past [17], [18] but this has been an onerous task.

We introduced immunosignaturing as a simple and very in-

expensive approach to diagnostics. Here we address whether

immunosignatures are correlated to biological or clinical classifica-

tions.

Cancer cells may elicit the production of antibodies against self-

antigens or against neo-antigens [3], [18], [19], [20], [21], [22],

[23], [24]. We have no a priori way to determine exactly what

profile of antigens will be presented by a cancer cell (although

analysis of EST libraries may suggest candidates). Thus, creating

an epitope or protein microarray capable of detecting cancer-

specific antigens would be difficult. Although phage display has

been shown to detect antibodies specific to cancer [17], [18], [25],

for a number of technical and practical reasons panning is not

amenable as a diagnostic tool. We created a single-use microarray

composed of 10,000 different random-sequence peptides. We use

20mer peptides that incorporate all possible amino acids, except

cysteine which we use as a linker. These 20mers can contain at

least 7 typical-sized epitopes. Phage display and epitope micro-

arrays tend to use shorter peptides to prevent cross-talk and

maintain specificity; in our case, longer peptides allow us to extend

the complexity of our microarray which has comparatively few

features. Also, the arrays exhibit extremely high reproducibility so

that even small differences in binding between antibody and

peptide can be significant. The peptides are printed at very high

density, an important consideration when using random peptides

to detect antibodies that bind at micromolar or even millimolar

affinities [26]. The density of these random-sequence peptides on

the surface of the microarray creates an avidity-like affect where
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the off-rate is slowed by several orders of magnitude, enhancing

the weak but reproducible interactions between antibody and the

peptide. Patterns become detectable, and are so reproducible that

sub-classification of diseases is feasible. Although the array has an

effective many-to-many relationship between antibody and pep-

tide, the patterns produced are by no means monotonic; in fact

they are quite distinguishable from disease to disease. Thus, the

‘immunosignature’ is defined as the common pattern of binding

that is shared by patients with a given disease but not with another

disease or with healthy controls [27], [28], [29], [30].

We asked whether antibodies raised against cancer cells might

be related to, or serve as a proxy for, clinically useful disease

biomarkers. To answer the question, we focused on malignant

brain tumors. Although the incidence of brain cancer is relatively

low compared to other cancers like breast and lung, Glioblastoma

multiformae (GBM) is one of the most deadly and aggressive tumors

with peaks of incidence in both younger and older populations

[31], [32]. The most common malignant brain tumors are the

astrocytomas, consisting of grade II, grade III (anaplastic) and

grade IV (GBM). Malignant tumors may also arise from the

oligodendrocytes and are considered low grade oligodendroglioma

(grade II) and anaplastic oligodendroglioma (grade III). There are

also mixed oligoastrocytomas (low grade and anaplastic). Meni-

giomas arise from the arachnoid cells that cover the brain and are

typically benign, but can recur. A small percentage of these may

progress to higher grades that are more invasive. In fact, patients

with any of the tumor types mentioned may present with a high

grade tumor initially, or they may progress over time. While the

diagnosis of some of these tumors may be relatively straightfor-

ward, such is not always the case [33], [34]. Neuropathologists are

faced with the challenge of making consistent calls – a non-

subjective biomarker panel that can distinguish between these

different types and grades of brain tumors would be very useful in

eliminating lab-to-lab variance. In this paper we present data that

illustrates the performance of our immunosignaturing platform for

identifying a variety of brain tumor types and subtypes.

Results

Immunosignaturing Can Distinguish GBMs from Other
Diseases

Previously published results from our laboratory [26], [28],

[29], [30] have shown signatures for Alzheimer’s disease,

infectious disease, monoclonal and polyclonal antibodies. First,

we tested the hypothesis that an autoimmune response occurs in

patients suffering from brain cancer. In order to do this, we

exposed serum from 5 randomly-selected GBM patients from our

patient cohort and 3 randomly-selected healthy, age-matched

controls to Life Technologies’ ProtoArrayH. After controlling for

the false discovery rate, no significant reactivity to any protein on

the ProtoArray was seen, either for the healthy controls or the

cancer patients. Given this, we asked whether cancer was

detectable at all on our peptide microarray, and whether different

cancer types produced distinct patterns of binding. In fact, cancer

and infectious disease both produce a reproducible pattern;

Figure 1 shows the 100 most significant peptides selected using

1-way ANOVA with p,1.06610213 across 28 breast cancer

patients, 19 healthy controls, 10 GBM patients, and 9 patients

with disseminated Coccidiodes immitis (Valley Fever). The classes of

disease were simultaneously discernible with 0% leave one out

cross-validation error using both linear discriminant analysis and

Support Vector Machine when classifying these patients. We

conclude that the GBM brain cancer samples have immunosigna-

ture patterns distinguishable from other diseases.

Immunosignature was Reproducible Across Different
Sample Sets and Over Time

In 2007, samples from 13 GBM patients and 45 healthy control

volunteers were run as a proof-of principal experiment. In 2010,

14 different GBM patients and 13 different healthy controls were

run on the immunosignature peptide microarray. In the in-

tervening 3 years, many changes in printing and slide surface

chemistry were implemented, so peptide-to-peptide reproducibility

improved from an average Coefficient of Variation per array

.50% to ,15%. Previously we used in-house coated aminosilane

slides and a Nanoprint 60 with Telechem SMP2 pins to contact

print peptides in a 1-up design. Currently Applied Microarrays

(Tempe, AZ) piezo prints peptides onto Schott (Jena, Germany)

Nexterion A+ aminosilane-coated slides using piezo deposition to

print 10,000 peptides in a 2-up design [26]. However, even with

these substantial changes and using new samples, many of the

peptides from 2007 had similar classification performance.

We found 55 peptides with a t-test p-value ,161026 between

45 controls and 13 GBM patients (Figure 2, left). We repeated the

experiment with 14 GBM and 13 control patients 3 years later

with the same peptide sequences (Figure 2 right) and found the

new samples had 0% classification error using both LDA and

SVM. A k-means clustering was performed on the peptides with

k = 3 and found that the peptides that formed the cyan cluster

(high-binding in GBM, low in controls) were the same for both the

2007 and 2010 samples.

Immunosignaturing Can Distinguish Different Brain
Tumor Pathologies and Molecular Subtypes

Finally, we asked if pathology of the brain tumor produced

a distinguishable immunosignature. We analyzed blood from

patients listed in Table 1.

Methylation of the O-6-methylguanine-DNA methyltransferase

promoter has been shown to be an important stratifier for GBM.

Patients with this molecular subtype have improved survival,

particularly when therapy includes temozolomide [38], [39], [40].

Current thinking is that the improved survival is not due solely to

this gene, but that methylation of this gene’s promoter may be

a marker for a more pleiotropic methylation phenotype.

The patient samples were run in duplicate on our two-up

micoarrays. A technical replicate was run on the top array of one

slide and the bottom of another to ensure no top/bottom bias.

The immunosignaturing arrays provided a minimum detection

limit of 1.25-fold at the 95th percentile across 2 technical

replicates on average. Arrays demonstrated a Pearson’s correla-

tion coefficient .0.97 across technical replicates from slides

within the same print batch, and .0.91 across print batches.

Analysis used the median non-background subtracted signals

taken directly from the gpr file (Genepix report). Background

subtraction is not used due to the even and very low background.

Peptide classification power is calculated using standard power

analysis in R [41] (‘power.t.test’ command). For test-training

purposes, we split samples 50:50 randomly, 1000 times and

computed the resulting accuracy. For feature selection we use

either t-test or ANOVA with appropriate multiple testing

correction. 100 peptides whose p values ranged from 10227 to

10218 were used in the heatmap seen in Figure 3.

As evident in the Figure 3a, each of the clinical classifications of

brain cancer produced a distinguishable pattern, including the

MGMT+ and MGMT- samples. A principal components plot

(Figure 3b) shows the relative differences between individual

samples, and linear discriminant analysis with leave-one-out cross-

validation (Table 1) provides the classification performance and

Immunosignaturing of Brain Cancer
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error. Only astrocytoma vs. controls produced mis-classification

on the samples tested. We performed test-training using LDA and

leave one out cross-validation by evenly splitting the cancer and

control samples into test-training sets. We did this 1000 times and

obtained 0% error for all pairwise comparisons except astrocyto-

ma vs. control where we obtained an average error rate of 4.7%.

We reported an error of 7% in Table 1 which corresponds to

a single randomly-selected test-training iteration. We had 0%

classification error between GBM MGMT+ vs. controls and

MGMT- vs. controls; we also had a 0% classification error

between MGMT+ and MGMT- GBM patients. We conclude that

the immunosignatures of the clinical classifications are distinct.

Figure 1. Classification across diseases. The heatmap presented here distinguishes 4 different diseases using 70 peptides identified as the most
significant using a 1-way ANOVA across the 27 breast cancer patients, 19 healthy controls, 10 Gliobastoma multiformae patients, and 9 Valley Fever
patients. Classification accuracy was 100% using both linear discriminant analysis and Support Vector Machines and leave one out cross-validation.
doi:10.1371/journal.pone.0040201.g001

Figure 2. Glioblastoma training and test data. The heatmap on the left shows 50 peptides that differentiated glioblastoma patients from
healthy persons obtained from 4 different geographical locations across the US (Fred Hutchison Institute, University of Washington, University of
California Irvine, Arizona State University). These peptides were also used to classify different samples consisting of blinded patient and healthy sera
obtained from the Barrow Neurological Institute 3 years later. The colored bars on the right indicate clusters that define groups of peptides. Although
there are differences between the values obtained in 2007 and 2010, most of the high-binding peptides are very similar.
doi:10.1371/journal.pone.0040201.g002
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Discussion

We first demonstrated that the immunosignature of GBM was

distinct from that of breast cancer and valley fever infection. We

also showed that the GBM signature was relatively stable, even

over several iterations of the microarray platform. Finally we

examined a large number of patients with the most common brain

cancer pathologies and found striking immunosignature differ-

ences between them. Surprisingly, even GBM patients with

differences in O6-methyl-guanine-DNA methyltransferase methyl-

ation status (MGMT) showed a measurable and common immune

signature, enough to classify MGMT status with 0% cross

validation error.

An initial concern for the usefulness of immunosignaturing was

that the inflammatory response to any disease would dampen

specificity for a disease. As shown in our comparison between

GBM, breast cancer and Valley Fever, disease specific signatures

are evident. A technical concern is the stability of the microarray

platform. As shown in Figure 2, GMB-distinctive peptides were

evident even on arrays printed 3 years apart with aging (and

presumably degrading) solubilized peptide stocks. However, we

improved the platform in the intervening years by instituting non-

contact printing techniques (Applied Microarrays, Tempe, AZ),

larger print batches (136 slides per batch), and automation of

sample processing (HS 4800 Pro Hybridization Station, Tecan,

Männedorf, Switzerland).

We show for the first time that a pathological state, defining the

tumor’s cellular origin or development, can be reflected in the

immunosignature (Figure 3a, 3b and Table 1). To our surprise,

a single molecular marker, MGMT promoter methylation status,

has such a profound effect on the immune system that the

immunosignature is distinct. Of course, MGMT promoter

methylation may be quite pleotropic and could mark additional

changes in the cell causing multiple targets to be presented to the

immune system. We do not discount the possibility that the

differences we see in immune signatures are due to those multiple

proteins being activated by a single promoter. Given that the

MGMT status is relevant to outcome and temazolamide response,

immunosignatures could lead to a useful non-invasive diagnostic

for brain cancer.

In summary, we have shown that immunosignaturing of brain

cancer reflects pathological distinctions. Even though the brain is

immunologically privileged, cancers can apparently breach the

blood-brain barrier and stimulate a broad humoral response. It is

important to note that the peptides used on these microarrays are

completely random. They can be used for the analysis of any

disease in any species; they are not specific to brain cancer and they

were not preselected in any way. Whether immunosignaturing

would have diagnostic or prognostic uses for brain cancer is not

answered by this study, but the technology is attractive in its

simplicity and low cost and has high sensitivity to changes in

circulating antibodies. Brain cancer has imposed enormous

hurdles that impede detection, monitoring, and treatment. We

feel this technology provides a new method to overcome many of

these obstacles.

Materials and Methods

Samples
Blood was collected from patients undergoing craniotomy for

the resection of primary, therapy-naı̈ve brain tumors under IRB#
10BN171 at Barrow Neurological Institute, Phoenix, AZ. Samples

were frozen at 220uC from 1 to 7 years prior to use. Blood was

centrifuged 100,0006g for 30 min to pellet cell debris and

hemolyzed plasma was transferred to a new tube and frozen at

220uC. Healthy volunteers of approximately the same age and

male-female composition as the cancer cohort donated blood that

was frozen in a similar manner. We also obtained samples from

patients diagnosed with breast cancer and Valley Fever. Table 1

shows the number and type of samples used in this analysis.

MGMT promoter methylation analysis of GBM tumor tissue was

performed by polymerase chain reaction (PCR) analysis of

bisulfite-modified DNA as described [42].

Protoarray Platform: Presence of Autoantibodies
We selected 5 Glioblastoma multiformae patients and 3 healthy age-

matched controls from our cohort of serum samples. We followed

Life Technologies’ protocol for detection of autoantibodies exactly

as written. We used Novagen Biologicals (San Diego, CA)

biotinylated anti-human secondary at the suggested concentration

and Life Technologies’ AlexaFluor 647-Streptavidin as the

Table 1. Patient information and classification performance.

Astrocytoma
grade II Oligodendroglioma Mixed astro/oligo GBM MGMT+a GBM MGMT-b Control

Total Nc 23 18 16 16 6 34

Maled

Femaled

Avg. aged

14
9
39616

8
10
42613

11
5
46614

9
7
58613

3
3
49614

17
17
42613

Specificity vs. controle 94.1% 100% 100% vs. MGMT-; 100% 100

Sensitivity vs. controlf 91.3% 100% 100% vs. MGMT-; 100% 100

Accuracy vs. controlg 93% 100% 100% vs. MGMT-; 100% 100

AUROCh 0.927 1 1 1 1

a = GBMs in which the MGMT promoter is methylated.
b = GBMs in which the MGMT promoter is not methylated.
c = Total number of patients with each diagnosis.
d = number of males and females tested and median age6standard deviation.
e = classification specificity of that tumor type vs. control.
f = classification sensitivity of that tumor type vs. control.
g = classification accuracy of that tumor type vs. control using LDA and LOOCV.
h = area under the ROC (Receiver Operator Characteristic) curve.
doi:10.1371/journal.pone.0040201.t001
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detecting tertiary. Slides were scanned in an Agilent ‘C’ scanner,

100% laser power, 80% PMT at 10um resolution. Slides were

aligned with the appropriate.gal file, and converted to values using

Molecular Devices’ (Santa Clara, CA) GenePix Pro 6.0. All

controls supplied with the arrays worked as expected; data was

analyzed in Agilent’s (Palo Alto, CA) GeneSpring 7.3.1 using

FWER = 5%. No proteins on the arrays met the false discovery

criteria for significance between healthy vs. cancer patients.

Immunosignature platform
The immunosignaturing technology has been described else-

where [26], [27], [28], [29], [30], [35], [36], [37], [43]. Briefly,

Figure 3. Classification of multiple cancer types and molecular markers. Top: six different classes of brain tumor patients were tested for
their immunosignature. We examined Glioblastoma multiformae (MGMT- is brown, MGMT+ is purple), astrocytoma grade II (red), oligodendroglioma
(cyan) and mixed oligo/astro (blue) against otherwise healthy controls (yellow). We used a 1-way ANOVA to select the 100 most significant peptides,
p,10218. High (red) and low (blue) signals correspond to patient antibodies detected with a fluorescently labeled anti-human secondary. Data was
grouped using hierarchical clustering on both peptides (Y-axis) and patients (X-axis). Bottom right: principal components display of the separation
between samples. X and Y axes represent the first two principal components making up 64% of the total variance across the samples. Patient
information is found in Table 1.
doi:10.1371/journal.pone.0040201.g003
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a 1:500 dilution of plasma was added to incubation buffer

consisting of 5% BSA, 0.1% Tween 20 in 1X PBS pH 7.2. This

mixture was incubated on the immunosignaturing microarrays

(obtained from www.peptidemicroarraycore.com) at 37uC for 1

hour with agitation on a Tecan 4800 Pro Hybridization Station

(Tecan, Salzburg, Austria), dried under molecular grade nitrogen,

and scanned on an Agilent ‘C’ scanner at 70% laser power, 20%

PMT at 10um resolution, single color mode. 16-bit microarray

images were converted to values using GenePix Pro 6.0 (Molecular

Devices, Santa Clara, CA) to produce a gpr file. Data was

analyzed with GeneSpring 7.3.1 (Agilent, Santa Clara, CA). The

Pearson’s Correlation Coefficient across these samples averaged

.0.92. Samples with correlation coefficients across technical

replicates ,0.85 were re-run.

Informatic Analysis
Preprocessing of microarray data consisted of median normal-

ization per slide and log10 transformation. T-tests were Welsh-

corrected and adjusted for multiple test bias by using a FWER

(Family-Wise Error Rate) of 5%; ANOVA likewise. Peptides were

analyzed by testing the hypothesis that there were differences in

intensity across the brain cancer or other disease cohorts and

control patients as a result of the disease status. Peptides that met

these criteria were the ‘features’ were used for classification.

Classification used linear discriminant analysis (LDA) with leave-

one-out cross-validation. Support Vector Machines (SVM) with

a polynomial dot product order of 1 and 0 diagonal scaling factor

was used with the initial features to ensure that classification

performance was not due to the classifier. SVM produced

classification errors within 3% of LDA. A Receiver Operator

Characteristic (ROC) curve was created and the area under the

ROC curve (AUROC) was calculated (Table 1).
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