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Identification of learning-induced changes in protein networks
in the hippocampi of a mouse model of Alzheimer’s disease
E Ferreira1, DM Shaw1,2 and S Oddo1,2

Memory loss is the most profound clinical manifestation in Alzheimer’s disease (AD); however, the molecular mechanisms
underlying these deficits are poorly understood. Identification of the molecular pathways involved in the onset of cognitive deficits
may lead to the identification of key events in the pathogenesis of AD. Using isobaric tags for relative and absolute quantitation
(iTRAQ) and proteomic methods, here we identified learning-induced changes in the hippocampal proteome of non-transgenic
(NonTg) and 3× Tg-AD mice, a widely used animal model of AD. We found that expression of 192 proteins was differentially
regulated by learning in NonTg mice. Notably, of these 192 proteins, only 28 were also differentially regulated by learning in
3 × Tg-AD mice, whereas the levels of 164 proteins were uniquely changed in NonTg mice but not in 3 × Tg-AD mice. These data
suggest that during learning, 3 × Tg-AD mice fail to differentially regulate 164 proteins. Gene ontology and protein interaction
analyses indicated that these proteins were overrepresented in RNA processing, specifically RNA transport, splicing and mRNA
translation initiation pathways. These findings suggest that mRNA-processing events that take place during learning and memory
are significantly altered in 3 × Tg-AD mice.
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INTRODUCTION
Alzheimer’s disease (AD) is a progressive neurodegenerative
disorder and the number one cause of dementia in the United
States. To this end, it is estimated that 413 million people will
have this disease in the United States by 2050.1 Histopathologi-
cally, AD is characterized in part by the presence of extracellular
neuritic plaques formed by Aß40 and Aß42 peptides. These
peptides are generated as the result of sequential cleavage of
the amyloid precursor protein (APP) through the amyloidogenic
processing pathway.2 The other hallmark lesion of AD is the
accumulation of intracellular neurofibrillary tangles consisting of
hyperphosphorylated tau.3 These lesions often develop early in
AD pathogenesis in the medial temporal lobe structures of the
entorhinal cortex and hippocampus.4 One of the earliest clinical
manifestations of AD is represented by impairments in memory
formation, and as the disease progresses other cognitive domains
become impaired, ultimately leading to a bedridden AD patient.5

To date, the precise mechanisms underlying the decline of
learning and memory associated with AD are not known.
Immediate early genes (IEGs) play a key role in memory

formation and consolidation.6 Most IEGs encode transcription
factors that regulate the expression of other genes involved in the
establishment of long-term memories.7 Growing evidence sug-
gests that the alterations in these mechanisms may be an early
event associated with AD pathogenesis. For example, cAMP-
response element-binding protein-regulated transcription is
impaired in multiple mouse models of AD, and restoring its
function is sufficient to rescue cognitive deficits in 3 × Tg-AD mice,
a widely used animal model of AD.8–10 In this work, we sought to
identify learning-induced changes in protein levels that may be
responsible for underlying cognitive deficits in AD.

The use of high-throughput quantitative proteomics has offered
significant insights into furthering the understanding of AD
pathogenesis at a global molecular level.11,12 These studies have
yielded significant results when comparing the proteome of the AD
brain versus control cases. For example, the proteomic analysis of
human samples compared to control cases has led to the
identification of potential biomarkers that can aid in differentiating
mild cognitive impairment from AD, as well as biomarkers with
both diagnostic value and prognostic value regarding mild
cognitive impairment to AD progression.13,14 Proteomic studies in
mice have led to important insights of AD pathogenesis as well,
such as characterization of the proteomic changes in the
hippocampus throughout AD pathogenesis when comparing non-
transgenic (NonTg) to transgenic mice with AD-like phenotypes.15

The quantitative proteomic strategy of using isobaric tag for relative
and absolute quantitation (iTRAQ) has been a particularly powerful
proteomics tool. As an example, iTRAQ method has been applied to
specific regions of the mouse brain (that is, hippocampus, parietal
cortex, cerebellum) in normal versus AD-like mice to yield the
identification of numerous proteins found to be differentially
regulated in AD-like mice in a site-specific manner, with most of
these proteins found to be involved in molecular transport, nervous
system development, synaptic plasticity and apoptosis.16

While these studies have generated significant knowledge
regarding proteomic changes due to AD pathogenesis, there is a
clear lack of quantitative proteomic studies designed specifically
to identify the learning-induced proteomic changes affected by
AD. This is a critical distinction, because events in AD pathogenesis
are linked to memory formation and consolidation.17 To better
understand how AD pathogenesis impedes memory, we
employed iTRAQ to measure proteomic differences induced by
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Morris water maze (MWM) training in 3 × Tg-AD and NonTg mice.
Differences in quantitative proteomic changes during MWM
training between NonTg and 3× Tg-AD groups were then used
in conjunction with publicly available bioinformatics databases to
determine which cellular processes and signaling pathways may
account for the learning deficits associated with AD pathology.
This led to the finding of several major pathways found to be
significantly affected by 3 × Tg-AD pathology during learning and
memory training.

MATERIALS AND METHODS
Mice
The generation of the 3 × Tg-AD mice has been described previously.10 All
mice were housed four to five to cage at 23 ºC, kept on a 12 h light/dark
cycle and were given ad libitum access to food and water. In our colony of
3 × Tg-AD mice, males show a large neuropathological variability, even
between littermates. In contrast, female 3 × Tg-AD mice do not show such
large variability and their phenotype changes as a function of age in a
predictable manner. Therefore, only female mice were used for the
experiments described here. All animal procedures were approved by The
Institutional Animal Care and Use Committee of Arizona State University.

Protein extraction from mouse hippocampus for iTRAQ labeling
Mice were killed by CO2 asphyxiation 2 h after final MWM training. Their
brains were removed and sagittally bisected. The left hippocampus was
removed and used for iTRAQ labeling; the right hippocampus was
removed and stored at − 80 °C until use for western blot analysis.
Hippocampi were homogenized and lysed in a lysis buffer containing 8 M

urea, 50 mM HEPES, pH 8.5. After centrifugation at 20 000g and 4 °C for
60 min, the protein concentration of the supernatant was determined
using BCA assay (Thermo Scientific, San Jose, CA, USA). The protein
disulfide bonds in the supernatant were reduced for 40 min with 5 mM

dithiothreitol at room temperature and alkylated for 40 min with 15 mM

iodoacetamide in the dark. Alkylated protein samples were diluted with
100 mM HEPES pH 8.5 to 2 M urea followed by digestion overnight at 37 °C
with trypsin in a 1:50 enzyme-to-substrate ratio (Promega, Madison, WI,
USA, V5113). After digestion, the peptide mixtures were acidified with
trifluoroacetic acid (TFA) to 1%, and subjected to C18 solid-phase extrac-
tion (Sep-Pak, Waters, Milford, MA, USA). Finally, the desalted peptide
samples were dried in a vacuum concentrator and stored at − 20 °C for
peptide TMT labeling.

iTRAQ protocol
The desalted peptides were dissolved in 100 μl of 100 mM TEAB, pH 8.5.
The peptide concentration was measured using a MicroBCA assay (Thermo
Scientific), and 100 μg of digested peptides for the samples were
incubated with 40 μl TMT reagents (Thermo Scientific) for 1 h at room
temperature. Reactions were quenched by adding 8 μl of 5% hydro-
xylamine and incubating for 15 min. TMT-labeled samples (S1, S5, S9, S13,
S17, S21) were combined at a 1:1:1:1:1:1 ratio, desalted and dissolved in an
isoelectric focusing (IEF) buffer consisting of 5% glycerol and 2% IPG buffer
(pH 3–10, GE Healthcare, Arlington Heights, IL, USA). The peptide mixtures
were loaded into 24 wells over a 24-cm Immobiline Dry Strip, pH 3–10 (GE
Healthcare), and separated on a 3100 OFFGEL Fractionator (Agilent
Technologies, Santa Clara, CA, USA) according to the manufacturer's
instructions. A total of 24 peptide fractions were obtained, acidified using
1% TFA and desalted prior to liquid chromatography–tandem mass
spectrometry (LC-MS/MS) analysis. The dried peptides were dissolved in
20 μl of 0.2% formic acid and subjected to nanoLC-MS/MS analysis. The
peptides were separated with the homemade C18 reverse-phase column
packed with 15 cm of ReproSil-Pur C18-AQ resin (3 μm, 120 Å, Dr Maisch,
Ammerbuch, Germany). Peptides were eluted with a 2 h gradient of 6–30%
acetonitrile in 0.1% formic acid at a flow rate of 300 nl min− 1 using an Easy
nLC 1000 system (Thermo Scientific). The eluted peptides were analyzed
directly with a Q Exactive (Thermo Fisher Scientific, Anthem, AZ, USA). The
spray voltage was set to 2.0 kV. Full-scan MS survey spectra (m/z 300–1600)
in profile mode were acquired in the Orbitrap with a resolution of
30 000 after accumulation of 1 000 000 ions, followed by 4 CID
fragmentation (collision-induced dissociation; normalized collision energy,
35%; activation time 30 ms, isolation width 1.0 m/z) and 4 HCD fragmen-
tation (higher-energy collisional dissociation, normalized collision energy

70%; maximum inject time 300 ms; mass resolution 7500; activation time
30 ms) for the 4 most intense peptide ions selected from the survey scan in
the Orbitrap.

Data processing, statistical analysis and bioinformatics
Raw MS data files were processed with Proteome Discoverer (Version 1.4,
Thermo Fisher Scientific) and searched against Uniprot mouse protein
sequence database. The parameters were set as follows: fixed modifica-
tions, carbamidomethylation (C), TMT/+229D-K and TMT/+229D-N term-
inal; oxidation (M) (variable); the enzyme specificity was set to trypsin; the
maximum missed cleavages were set to 2; the precursor ion mass
tolerance was set to 10 p.p.m. while MS/MS tolerance was 0.5 Da. The false
positive rate was set as 0.01. A TMT 6-plex quantitation method in
Proteome Discoverer was applied for HCD-based peptide quantitation. This
allowed for quantitative measurement of each detected protein as relative
abundance ratios. Ratios were used to determine 1.2-fold change levels
and significance of these fold-changes (Po0.05) using an online
distribution-free permutation-based quantitative proteomics P-value cal-
culator (http://qppc.di.uq.edu.au). To account for false discovery, Benja-
mini–Yekutieli method was used.
ConsensusPathDB-mouse (http://cpdb.molgen.mpg.de/MCPDB) is a

bioinformatics web-tool that integrates interaction networks in Mus
musculus, including binary and complex protein–protein, genetic, meta-
bolic, signaling, gene regulatory and drug–target interactions, as well as
biochemical pathways. Data originate from 16 public resources for
interactions and interactions curated from the literature. Overrepresenta-
tion analysis was used to identify pathway-based sets in which the 164
proteins of interest were enriched.
STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) is a

database of known and predicted protein interactions. The interactions
include direct (physical) and indirect (functional) associations; they are
derived from four sources: genomic context, high-throughput experiments,
coexpression and previous knowledge. Proteins of interest were mapped
to the STRING10.0 M. musculus database to identify high-confidence
protein–protein interaction networks using confidence analysis.
The PANTHER (Protein Analysis Through Evolutionary Relationships)

Classification System was used to carry out gene ontology (GO) analysis.
PANTHER is designed to classify proteins (and their genes) to facilitate
high-throughput analysis. Proteins of interest were classified according to
family and subfamily, molecular function and biological process. Detailed
methods of how proteins are classified have been previously described.18

Protein extraction and western blots
Frozen hippocampi were homogenized using a dounce homogenizer in
T-PER buffer (Thermo Scientific) supplemented with a protease inhibitor
cocktail tablet (Roche, Indianapolis, IN, USA) and phosphatase inhibitors.
Samples were then centrifuged at 25 000g for 30 min at 4 °C. The
supernatant was stored as the soluble fraction and used for western blot
experiments for validation of iTRAQ data.
Proteins from the soluble fraction were loaded on precast SDS–

polyacrylamide gel electrophoresis gels and run under reducing condi-
tions, after which they were transferred to a nitrocellulose membrane.
Membranes were then incubated in a 5% milk solution in T-TBS (0.1%
Tween 20, 100 mM Tris, pH 7.5; 150 mM NaCl) 1 h at 25 °C, washed and
incubated in primary antibody overnight at 4 °C. Membranes were washed
in TBS-T for 30 min and incubated in goat anti-mouse IRDye 680LT (LI-COR
Biotechnology, Lincoln, NE, USA) or goat anti-rabbit IRDye 800CW LI-COR
secondary antibodies (LI-COR Biotechnology) (1:10 000) for 1 h at 25 °C.
After final washes, membranes were imaged and analyzed using the
LI-COR Odyssey (LI-COR Biotechnology). Protein densitometry was
calculated by dividing the integrated intensity of the protein of interest
by integrated intensity of beta-actin loading control.

Antibodies
PLC-γ1, eIF4H, α-Parvin and ß-actin were obtained from Cell Signaling
Technology (Danvers, MA, USA).

RESULTS
Identification of learning-induced proteome changes
Learning-induced changes in protein expression are known to
be at the basis of memory formation and consolidation.19–21
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We sought to identify the learning-induced changes in protein
expression between 3× Tg-AD mice and NonTg mice. To this end,
we used 12–15-month-old mice (n= 4 per genotype). At this age,
the 3 × Tg-AD mice have well-documented cognitive decline,
associated with the build-up of amyloid-β deposits and neurofi-
brillary tangles (Supplementary Figure 1 and refs 10,18,22). Mice
were trained in the spatial version of the MWM for 5 consecutive
days, four training trials per day. Thirty minutes after the last
training trials, mice were killed and their hippocampi quickly
removed and frozen in dry ice. These mice that underwent
learning will hereafter be referred to as 3 × Tg-AD-L and NonTg-L
mice. Per each genotype, control mice were killed directly from
their home cage and are hereafter referred to as Naive mice, or
3 × Tg-AD-N and NonTg-N. The left hippocampi were then
processed for iTRAQ as described in Materials and methods
section and Supplementary Figure 2.
We first compared NonTg-N mice with NonTg-L mice to identify

changes in protein levels that are related to learning and memory.
A total of 3183 proteins were identified and, of these, 321 satisfied
the arbitrary cut-off criterion of a 1.2-fold change in levels
between NonTg-L and NonTg-N. The 1.2-fold cut-off is a value
routinely used in data analyses of iTRAQ data.23–25 Of the 321
proteins that met this first criterion, 192 had a P-valueo0.05
(Figure 1). To determine whether the same proteins were also
differently regulated by learning in 3 × Tg-AD mice, we repeated
the same experiments comparing the steady-state levels of the
hippocampal proteome between 3× Tg-AD-N mice and 3 × Tg-AD-
L mice. We detected 3184 different proteins in the hippocampi of
3 × Tg-AD mice. Of these, 133 satisfied the 1.2-fold change in
proteins levels. All of these had adjusted P-valueso0.05 between
3× Tg-AD-N and 3× Tg-AD-L mice (Figure 1). We postulated that
some of the 192 proteins whose levels changed after learning in
NonTg mice might be involved in memory formation and
consolidation. Therefore, we asked which of these 192 proteins
were not differentially expressed when compared 3 × Tg-AD-N
and 3 × Tg-AD-L mice. We found that of these proteins, 28
were also found to have altered levels between 3× Tg-AD-N and
3× Tg-AD-L mice (Supplementary Table 1). This yielded a total of
164 unique proteins whose levels were altered following learning
in the hippocampus of NonTg mice, and not in 3 × Tg-AD mice
(Figure 1). The top 20 of these proteins are shown in Table 1 and
the complete list is in the Online Supplementary Material. We also
identified 105 unique proteins whose levels were altered following
learning in the hippocampus of 3 × Tg-AD mice but not in NonTg
mice. The complete list of these proteins is in the Online
Supplementary Material. We hypothesize that some of the 164
proteins that are differentially expressed following learning in
NonTg mice but not in 3 × Tg-AD mice may contribute to the
memory deficits in 3 × Tg-AD mice.

Functional classification of proteins regulated in hippocampus
during learning and memory
To gather insight into the biological functions of the 164 proteins
found to have altered expression during learning in the
hippocampi of NonTg mice but not in those of 3 × Tg-AD mice,
we conducted GO analysis using the PANTHER classification
system database. The PANTHER classification system classifies
proteins and their respective genes, by molecular function,
biological process, cellular component and protein class to
facilitate high-throughput analysis of a large set of proteins/
genes.26,27 GO analysis of the 164 proteins of interest showed that
these proteins represent numerous and diverse classes of proteins
(Figure 2). The largest proportion of the protein class identified
represents nucleic acid-binding proteins, suggesting that regula-
tion of gene expression may be disproportionately affected during
learning and memory in 3 × Tg-AD mice. Consistent with this
observation, we also found that some of the 164 differentially

regulated proteins are part of the transporter and enzyme
modulator proteins, suggesting that the proteins with altered
levels during spatial learning may have an important role in
protein/RNA trafficking, as well as changes in metabolism. This is
further supported when viewing our proteins of interest by their
biological process classification, as the highest percentage of
proteins are involved in metabolic processes. The next highest
percentage of biological process classifications is cellular process,
which includes regulation of cell cycle, cell growth, cell commu-
nication and cell proliferation, further indicating that these
proteins regulated during learning and memory are disproportio-
nately linked to processes involving growth. The classification of
these proteins by cellular component indicates that the majority
reside in organelles. Last, the classification of the 164 proteins of
interest by their molecular function further corroborates the idea
that the majority of these proteins are involved in metabolism,
transport, regulation of growth and regulation of gene expression
as the majority of them have catalytic activity function or binding
activity (Figure 2). Taken together, these results indicate that the
proteins significantly affected during learning by AD-like pathol-
ogy are involved in gene expression, metabolism, cell growth and

Figure 1. Representation of how iTRAQ data were processed and
analyzed. We identified 3183 proteins that were differentially
regulated in NonTg-N and NonTg-L groups (a) and 3184 proteins
that were differentially regulated in 3 × Tg-AD-N and 3× Tg-AD-L
groups (b). Of these, 321 proteins met the first criterion and 192 met
both criteria in the NonTg group. 133 proteins met the first criterion
and all of them met the second criteria in the 3 × Tg-AD group. In
the volcano plots, each dot represents a protein. In black are the
proteins that did not meet either criterion. In blue are the proteins
that met only the first criterion, Po0.05. In red are those proteins
that met only the second criterion of a 1.2-fold change. In purple are
those proteins that met both criteria. Proteins that met both criteria
in both groups of mice were eliminated to determine which
proteins are affected by learning events in NonTg hippocampi, but
are not affected in 3 × Tg-AD hippocampi. This led to the
identification of 164 proteins with learning-induced changes in
the hippocampi of NonTg mice, but not in 3 × Tg-AD mice. AD,
Alzheimer's disease; NonTg, non-transgenic.
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protein transport. The altered regulation of these protein classes
would significantly impact the synthesis and regulation of proteins
required for memory consolidation during a spatial learning
training exercise such as MWM.28

Pathway analysis of proteins regulated in hippocampus during
learning and memory
To determine the specific cellular pathways in which our proteins
of interest play significant roles, we used the online proteomics
tool Consensus Path Database (mouse) enrichment analysis
function. This database integrates protein–protein interaction
networks using data originating from 16 public resources.29

Enrichment analysis using the 164 proteins with learning-induced
changes in protein levels in NonTg hippocampi resulted in the
finding that these proteins are significantly enriched in RNA-
processing pathways such as processing of intron-containing pre-
mRNA (Po0.001), mRNA splicing (Po0.001) and mRNA proces-
sing (Po0.01), as well as gene expression and metabolism
pathways (Table 2). To further identify the protein networks most
affected during learning by AD-like pathology, we used the
STRING v10. This web-based database and tool maps protein–
protein interaction networks based on known and predicted
protein–protein interactions.30 Figure 3 shows the protein net-
works resulting from STRING analysis confidence view of the 164
input proteins. The thicker lines represent stronger protein–
protein associations. The largest and most prominent network
includes several modules of high-confidence interactions, all
falling under the umbrella of gene expression. For example, one
cluster within this network contains a group of heterogeneous
nuclear ribonucleoproteins (that is, hnrnpf, hnrnpul1, hnrnpa0)
that function in pre-mRNA processing such as transport from the
nucleus and spliceosome formation. Another module of high-
confidence associations contained within the largest network,
resulting from STRING analysis, is a group of proteins involved in
initiation of protein translation, consisting of Eif3h, Eif4b, Rps9 and
Rpl30. A different network includes several proteins involved in
synaptic membrane regulation, such as proteins involved in ion-
channel regulation (that is, Slc12a2, Wnk1) and synaptic vesicle
exocytosis (Rims1). Another smaller network of note resulting from
STRING analysis includes proteins involved in synthesis and
regulation of phosphatidylinositol phosphates (that is, Pip4k2b,

Plcg1). Last, the inclusion of three associated proteins (Arfgap3,
Mrpl38 and Mrpl40) involved in mitochondrial protein synthesis
suggests that learning-induced increases in metabolic needs may
be affected by AD pathogenesis.
To validate the proteomics data obtained by iTRAQ, we

measured learning-induced changes in three randomly chosen
proteins, α-Parvin, eIF4H and PLC-γ1, by western blot in the
hippocampi of NonTg-N and NonTg-L mice. We found that the
steady-state levels of α-parvin and PLC-γ1 were significantly
increased by learning in the hippocampi of NonTg mice (Po0.05),
as detected by western blot. In contrast, the levels of eIF4H were
not statistically significant between NonTg-N and NonTg-L
(Supplementary Figure 3). These western blots data were
consistent with changes detected with iTRAQ (gray bars in
Supplementary Figure 3).

DISCUSSION
In an effort to identify key cellular networks most affected by AD
pathogenesis during learning and memory, we employed a
quantitative proteomic approach, iTRAQ, to find learning-
induced changes in hippocampal protein level that are unique
between NonTg and 3× Tg-AD mice. The overexpression of the
two transgenes in 3 × Tg-AD mice may be sufficient to alter the
expression of proteins within the networks we identified in our
analyses. However, the expression of proteins that are differen-
tially regulated solely because of the tau and APP transgenes
would not change between 3× Tg-AD-N and 3× Tg-AD-L. In other
words, our analytical approach greatly reduces the identification
of false positive hits driven solely by the presence of the
transgenes in 3 × Tg-AD mice.
We identified 162 proteins that were differentially expressed

after learning in NonTg mice but not in 3 × Tg-AD mice. We used
them as input for GO analysis, as well as pathway overrepresenta-
tion analysis, to identify the key cellular processes and protein
networks where these proteins of interest are enriched. Top hits
for GO analysis revealed that learning-induced alterations to the
hippocampal proteome are overrepresented by regulators of gene
expression, metabolism, cell growth and protein transport.
Consistent with GO analysis results, pathway analysis using
protein interaction databases and bioinformatic web-tools
showed that these proteins of interest were significantly enriched

Table 1. Top 20 proteins showing greatest learning-induced change in expression levels unique to NonTg mice

UniProt ID Gene symbol Gene name Normalized
P-values

FC in NonTg-L relative
to NonTG-N

Learning-induced
regulation

Q8BHB9 Clic6 Chloride intracellular channel protein 6 0.000999001 3.405049197 Up
A2AJI0 Map7d1 MAP7 domain-containing protein 1 0.002997003 2.614151998 Up
P02802 Mt1 Metallothionein-1 0.002997003 2.505045838 Up
Q9ER35 Fn3k Fructosamine-3-kinase 0.006993007 2.301152791 Up
Q99J77 Nans N-acetylneuraminic acid synthase 0.001998002 2.179955834 Up
Q9CQ10 Chmp3 Charged multivesicular body protein 3 0.007992008 2.175759902 Up
Q3UGX3 Nat8l N-acetylaspartate synthetase 0.001998002 2.148748441 Up
Q8BQ30 Ppp1r18 Phostensin 0.005994006 2.028196723 Up
Q60673 Ptprn Receptor-type tyrosine-protein phosphatase-like N 0.002997003 2.02741379 Up
Q5U3K5 Rabl6 Rab-like protein 6 0.002997003 2.025783874 Up
Q7TN79 Akap7 A-kinase anchor protein 7 isoform gamma 0.002997003 2.025783874 Up
Q8K2M0 Mrpl38 39 S ribosomal protein L38, mitochondrial 0.010989011 1.941987474 Up
Q3UJB9 Edc4 Enhancer of mRNA-decapping protein 4 0.011988012 1.905276998 Up
Q9ESW4 Agk Acylglycerol kinase, mitochondrial 0.028971029 �1.621647401 Down
Q52KI8 Srrm1 Serine/arginine repetitive matrix protein 1 0.018981019 �1.559280245 Down
Q91WK2 Eif3h Eukaryotic translation initiation factor 3 subunit H 0.026973027 �1.479532814 Down
Q8C0L9 Gpcpd1 Glycerophosphocholine phosphodiesterase GPCPD1 0.038961039 �1.431324152 Down
Q9WV52 Plek2 Pleckstrin-2 0.044955045 �1.37844914 Down
Q9JLV1 Bag3 BAG family molecular chaperone regulator 3 0.046953047 �1.31003492 Down

Abbreviation: NonTg, non-transgenic.
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in regulation of gene expression networks such as mRNA
translation initiate on, pre-mRNA transport and splicing, as well
as pathways within metabolic networks such as mitochondrial
protein synthesis and regulation of phosphatidyl inositols. Taken
together, these results indicate that gene expression pathways,
specifically regulation of pre-mRNA transport and splicing, as well
as initiation of translation, play a prominent role in the learning
and memory pathways affected by AD pathogenesis.
Of the GO and pathway analysis results reported above, the

most prominent and overrepresented cellular networks affected

by AD pathology involve a host of RNA-processing events,
including formation of spliceosome with intron-containing pre-
mRNA, transport of mRNA out of the nucleus and initiation of
mRNA translation for protein synthesis. Consistent with our
finding, strong published evidence indicates that alterations in
protein translation may contribute to the pathogenesis of AD.31

We, and others, have previously shown that the mammalian target
of rapamycin, a master regulator of protein translation,32 is
upregulated in human AD brains.18,33–35 These alterations in
protein translation may lead to the changes of proteins involved

Table 2. Pathways enriched by proteins identified with learning-induced hippocampal level changes

Pathway name Pathway set size Candidates contained P-value Pathway source

Processing of capped intron-containing pre-mRNA 144 7 (4.9%) 3.38× 10− 4 Reactome
mRNA splicing 112 6 (5.4%) 5.46× 10− 4 Reactome
D-my-inositol-5 phosphate metabolism 19 3 (15.8%) 6.44× 10− 4 MouseCyc
mRNA processing 163 7 (4.3%) 7.12× 10− 4 Reactome
PIP metabolism 54 4 (7.4%) 1.46× 10− 3 MouseCyc
Gene expression 720 14 (2.0%) 4.52× 10− 3 Reactome

Figure 2. Pie chart depicting the functional classification of differentially regulated hippocampal proteins during learning and memory
between NonTg and 3× Tg-AD mice. The iTRAQ-identified changes in the hippocampal proteome were characterized using gene ontology
(GO) analysis. Subcellular and functional categories were based on the annotations of GO using the PANTHER Classification System for the
categories of Biological process, Molecular function, Protein class and Cellular component.
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in AD pathogenesis and learning and memory. To this end,
previous studies have shown that the mRNA transcripts of IEGs
involved in learning and memory consolidation, such as Arc, are
regulated by localized transport at dendritic compartments of
active synapses.36 This targeted sequestration of IEG mRNA
transcripts at dendritic compartments allows for rapid down-
stream IEG expression in the nucleus of a neuron activated by
behavioral events, such as MWM training.37 This makes the
transport of mRNAs, as well as mRNA translation machinery, to
dendritic compartments crucial for synaptic plasticity required for
learning and memory consolidation. Together, our data suggest
that the development of neuropathology in the hippocampi of
3 × Tg-AD mice may affect the learning-induced differential
regulation of these RNA-processing pathways and thus impede
IEG mRNA expression and downstream signaling cascades that
ultimately cause deficits in learning.

In addition to events that affect mRNA transport and translation
of initiation, RNA splicing is also a major pathway overrepresented
within protein–protein networks of our proteins of interest. Indeed,
a report of a proteomics study analyzing the insoluble proteome
of human AD brains revealed a significant enrichment of RNA
spliceosome proteins, in particular the U1 small nuclear
ribonucleoprotein.38 Comparisons of RNA splice variants between
human AD brains to control cases showed dysregulated RNA
processing, including unspliced RNA species, within AD brains. This
could potentially lead to accumulation of unspliced transcripts that
are involved in cellular pathways key to memory consolidation.
The findings reported here point to several major protein

networks significantly altered in the hippocampus due to the
AD-like pathology exhibited by 3 × Tg-AD mice. These networks
involving synaptic membrane ion channels, mitochondrial protein
synthesis and most prominently RNA processing, transport and

Figure 3. STRING v10.0 protein–protein interaction network based on input of 164 proteins of interest. Enrichment data were generated using
the iTRAQ-identified network of learning-induced changes in proteins differentially expressed in the hippocampus between NonTg and
3× Tg-AD mice during learning and memory. The database maps input proteins to enrich known pathways based on the following active
prediction method criteria: interactions in other existing public databases, experimental data, gene fusion, neighborhood proteins and text
mining. Colored nodes indicate input proteins. Stronger association of protein–protein interaction is represented by thicker lines connecting
protein nodes. Node size is indicative of amount of protein structure information. Proteins within this interaction network that comprise a
network of strong interactions and significantly enrich the major RNA splicing pathway (Po0.001) are Hnrnpa0, Hnrnpf, Hnrnpul1, Srrm1 and
Ptbp1. Also within this interaction network are input proteins significantly enriched to RNA translation initiation (Po0.01). These proteins, in
part, consist of Eif3h, Eif4b, Rps9 and Rpl30.
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translation present avenues for future studies to further elucidate
the precise molecular mechanisms responsible for learning deficits
in AD pathogenesis. One opportunity for further investigation
presented by these data are the investigation of the RNA profiles
of 3 × Tg-AD mice during learning and memory events in
comparison to NonTg mice. Specifically, examining splicing
alterations within mRNA transcripts of genes involved in APP
processing, tau phosphorylation, autophagy and proteasomal
degradation pathways between NonTg and 3× Tg-AD mice would
be an important comparison to examine. Further study of synaptic
membrane dynamics is also warranted, specifically looking at
transport of IEG mRNA to dendritic compartments.
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