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a  b  s  t  r  a  c  t

We  formulate  an  in  silico model  of  pathogen  avoidance  mechanism  and  investigate  its impact  on  defensive
behavioural  measures  (e.g.,  spontaneous  social  exclusions  and  distancing,  crowd  avoidance  and  vol-
untary  vaccination  adaptation).  In  particular,  we  use  SIR(B)S  (e.g.,  susceptible-infected-recovered  with
additional  behavioural  component)  model  to investigate  the  impact  of  homo-psychologicus  aspects  of
epidemics.  We  focus  on  reactionary  behavioural  changes,  which  apply  to  both  social  distancing  and
voluntary  vaccination  participations.  Our  analyses  reveal  complex  relationships  between  spontaneous
and  uncoordinated  behavioural  changes,  the  emergence  of  its  contagion  properties,  and  mitigation  of
infectious  diseases.  We  find  that  the  presence  of  effective  behavioural  changes  can  impede  the  persis-
tence  of disease.  Furthermore,  it was  found  that under  perfect  effective  behavioural  change,  there  are
three  regions  in the response  factor  (e.g.,  imitation  and/or  reactionary)  and  behavioural  scale  factor  (e.g.,
global/local)  factors  �–˛  behavioural  space.  Mainly,  (1)  disease  is always  endemic  even  in the  pres-
ence  of  behavioural  change,  (2) behavioural-prevalence  plasticity  is observed  and  disease  can  sometimes
be  eradication,  and  (3)  elimination  of endemic  disease  under  permanence  of  permanent  behavioural
change  is  achieved.  These  results  suggest  that  preventive  behavioural  changes  (e.g.,  non-pharmaceutical

prophylactic  measures,  social  distancing  and  exclusion,  crowd  avoidance)  are  influenced  by  individual
differences  in  perception  of risks  and  are  a salient  feature  of epidemics.  Additionally,  these  findings  indi-
cates  that care  needs  to  be taken  when  considering  the  effect  of  adaptive  behavioural  change  in  predicting
the  course  of epidemics,  and  as well  as the  interpretation  and  development  of the  public  health  measures
that  account  for spontaneous  behavioural  changes.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an  open  access  article  under  the  CC  BY-NC-ND
. Introduction

Infectious disease – ranging from well-known epidemics such
s smallpox, AIDS/HIV, SARS, influenza, Ebola to less dramatic
nknown pathogens causing significantly high infant morbidity
nd mortality – pose a constant threat to humanity. These infec-
ious diseases exert a substantial selective pressure on hosts at both
iological and cultural/social levels, resulting in different adapta-
ion mechanisms needed to mitigate and/or reduce the costs (e.g.,
ocial, economic, political, psychological) posed by these diseases
Anderson, 1992; Cavalli-Sforza and Feldman, 1981; Cox, 2002;

hrewsbury, 2005). In the last few decades, we have witnessed a
ariety of infectious disease-related behavioural and cultural trans-
ormations (e.g., advances in sanitation and hygienic practices; use
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of alkaline laundry soap, insect repellents and mosquito nest in
Africa to combat malaria, condom uses and reduction in sexual
partners, see Nesse, 2005; Neuberg et al., 2011; Bishop et al., 1991;
Chen, 2004). Many of these behavioural and cultural adaptations
have helped minimize or reduce the prevalence of many infectious
diseases in communities across the globe. One of the key challenges
in public health decision making is understanding the extent to
which individuals and communities would modify their behaviours
to detect and minimize or eliminate exposures with pathogenic
threats. As a result, understanding how behavioural patterns are
generated during epidemics as well as how behavioural responses
affect the transmission processes is important for predicting and
for designing effective public health measures.

To understand the extent to which behavioural changes help
reduce the prevalence of an infectious disease, several scholars have
recently formulated theoretical models incorporating a variety of

behavioural processes into epidemic dynamics. The impetus for this
direction owes much to various works in both medical anthropol-
ogy and health economics, specially the pioneering work of Alland
(1975), Philipson (1996) and Fine and Clarkson (1987). Alland
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1975) employed evolutionary theory to expositorily explore the
mpact of cultural hygienic practices (e.g., health-promoting and
ealth-demoting practices) in minimizing the risk of disease and
aximizing the welfare and health. Philipson (1996) investigated

he occurrence of infectious diseases, the effects of public health
nterventions designed to control them and the incentive structure
or vaccination, while the work of Fine and Clarkson provided one
f the first empirical studies of the efficacy of vaccine.

Although we have seen an increase in behavioural models, most
odels – within the extensive literature on epidemiological stud-

es of infectious diseases and dynamics – have focused on the
ubtleties of host–pathogen interactions and transmission mecha-
isms, and those addressing preventive behaviours are relatively
mall. The majority of these models have focused primarily on
accination demands and strategies (Philipson, 1996; Basu et al.,
008; Bauch et al., 2003; Bauch and Earn, 2004; Bauch, 2005;
reban et al., 2007; Breban, 2011; Perisic and Bauch, 2009; Fu
t al., 2010; Galvani et al., 2007; Ndeffo Mbah et al., 2012; Reluga
t al., 2006; Reluga, 2010; Plotkin, 2006; d’Onofrio et al., 2008).
ecently, other behavioural changes have been studies, including

nformation transmission, social distancing and exclusion such as
uarantine and crowd avoidance, participation in antiviral treat-
ent and others (Epstein et al., 2008; Chen, 2004, 2009; Kiss et al.,

010; Funk et al., 2010; Reluga, 2010; van Boven et al., 2008;
erra et al., 2011; Poletti et al., 2011; Del Valle et al., 2005). These
odels have relied mostly on the use of differential equations for-
alism and have been limited to deterministic compartmental
odels, differential game-theoretical approaches, dynamic pro-

ramming, inductive reasoning games and stochastic modelling of
ehavioural responses to global information. In particular, mod-
ls incorporating spontaneous behavioural changes in response
o epidemics use imitation in a game-theoretical sense to induce
ehavioural changes in mean-field or differential equation set-
ing. These approaches rely on the cost-benefit considerations of
he perceive risks of infection. For instance, Poletti and colleagues
mployed such approach in Poletti et al. (2011) to investigate
he risk perception on the 2009 H1N1pdm influenza. Also, mod-
ls incorporating behavioural contagion processes in conjunction
ith epidemiological dynamics on theoretically and/or empiri-

ally derived networks have recently been put forth. In particular,
he co-evolution of information diffusion as a proxy for effective
reventive behavioural changes and epidemiological contagion
as been investigated by Funk and colleagues, (e.g., see Funk
t al., 2009, 2010 for a review on different investigations on the
mpacts behavioural changes on epidemiological dynamics). How-
ver, these models, as in other deterministic game-theoretical
ormulation, rely on a rational construction of agents utilizing
ayoff maximization (e.g., homo-economicus perspective) to trig-
er preventive behaviours including vaccinations (Fu et al., 2010;
deffo Mbah et al., 2012; Perisic and Bauch, 2009; Epstein et al.,
008; Kelso et al., 2009). In Fu et al. (2010) and Ndeffo Mbah et al.
2012), the authors used game-theoretic approach within an in
ilico to explore the effect of cost-benefit of imitation of vaccina-
ion patterns. In particular, they illustrated the importance of local
nformation on behavioural changes (e.g., imitational behaviours)
nd its impact on the transmission dynamics.

In this paper, we use an approach that relies on homo-
sychologicus perspective to incorporate behavioural component

nto epidemiological model. In particular, we combine previ-
usly separate effects of local and global information as causal
eterminants of preventive behaviour in an in silico model.

nstead of relying on the rational utility-maximizing precepts of

ame-theoretical constructs to determine adoption of preven-
ive behaviour, we utilize a behaviourally enhancement threshold
ased on homo-psychologicus assumptions and mechanisms that
espond to the type of information perceived by each individual
s 14 (2016) 45–53

agent (Curtis et al., 2004, 2011; Duncan et al., 2009; Mortensen et al.,
2010; Oaten et al., 2009; Welling et al., 2007). Applying dual-path
influence theory (Bandura, 2001; Pryor et al., 2004), which posits
that a personal agency and social structure operate as interdepen-
dent determinants in an integrated causal structure, we define a
causal structure as the sequence of cognitive steps leading to pre-
ventive behavioural adaptations. In the proceeding sections, we
outline the methods use to generate network, to spread disease on
the network, to establish behavioural dynamics and its contagion
process, and to simulate the model outcomes.

2. Materials and methods

We  investigate the impact of reactionary behavioural change
and its contagion dynamics on epidemiological processes and
quantities. We  focus on homo psychologicus aspects, rather than
homo economicus, of behavioural change and provide in silico results
on epidemic duration. Here both behavioural and epidemiological
contagion processes have been abstracted from realistic settings
where behavioural dynamics, such as spontaneous social exclu-
sion and distancing, crowd avoidance, voluntary vaccination and
facemask wearing (to a lesser extent), in the presence of infec-
tious diseases play significant roles in understanding the course of
epidemics. We  develop an SIRBS-type model on a quasi-static socio-
spatial network, where we  associate each node, in the population
of size N, with three epidemiological and one behavioural state
(see Fig. 1a). That is, the population is compartmentalized into four
classes, where individuals can be susceptible (S), infected (I), recov-
ered (R) or behaviourally removed (B). Susceptible individuals can
be infected by infectious neighbours and can subsequently recover
from the disease. Entry into the behavioural class is conditioned on
the perceived risk or effective behavioural enhancement cue K and
internal psychological threshold � (see the schematics in Fig. 1b and
Section 2.3 for details). Although Fig. 1a shows a model structure
similar to a SIRS-type model with either vaccination or partially
resistant compartment in literature (see for example Hadeler and
Van den Driessche, 1997; Alexander et al., 2004; Reluga et al.,
2007), the mean-field approximation of the model summarised by
schematics shown in Fig. 1a will yield a model with Filippov type
dynamical system (or discontinuous piecewise differential equa-
tions). In that, the behavioural compartment is conditioned on a
state-dependent threshold function. In the next sections, we  out-
line the different processes implemented in the in silico model.

2.1. Network model

We  model the contagion process on a contact network
where vertices represented individuals and edges denote con-
tacts between members. An edge represents contact between
vertices that can allow direct transmission of either infectious
agents or behavioural memes  or both. Here we use a half-Gaussian
socio-spatial network for its flexibility to generate a wide vari-
ety of network structures ranging from highly clustered lattices,
small world phenomena to globally connected random network
arrangements with a high degree of heterogeneity. To construct
the network, we uniformly distribute node/agent or vertices on
a square patch/lattice and connect two  vertices based on their
locations, given rise to a spatial network structure. Agents are con-
nected using half-Gaussian distribution with width D described
by:

〈k〉
(

d2
ij

)

p(k, D) :=

2�D2
exp −

2D2
, (1)

where p(k, D) is the probability that two nodes will be connected, dij
is the distance between nodes i and j, and 〈k〉 is the average number
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Fig. 1. Schematic representation of epidemiological and behavioural contagion models: (a) the sketch shows the flow diagram of disease model in which individuals move
between compartmental groups at rates indicated by the arrows. The arrows show the flow directions (see the text). (b) The graph provides a visual representation of
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ehavioural contagion process and illustrates the computation of behavioural enh
ubsets  of neighbours of the focal vertex with status X  (see the text for details).

f contacts or degree. The parameter D is the spatial length-scale
nd measures the socio-spatial preferential vicinity. The parame-
er D tunes how much preference is given to nearest individuals,
nd control the local and/or long-range interaction between indi-
iduals. In addition, D serves as a proxy for clustering coefficient,

here low D exhibits local structures with high clustering coef-
cient (e.g., D = 2 generates networks with clustering coefficient
C = 0.075, CC denotes the clustering coefficients which measures
he degree to which nodes tend to cluster) and high D provides

ig. 2. Network generation and properties: graphs with two  different D values (a) D = 2
urpose  of visual aesthetic. Plots (c, d) are some of the relevant network property statistics
f  the edge and the clustering coefficients. In all these graphs, we  assume an average num
inks  shows that low D is more local while large values of D exhibit long-range contacts (in

 = 2 has smaller average length than that of the network with D = 10. The results were a
t  al. (2010) and Cherif et al. (2009).
ent cues. On the graph, the focal vertex is indicated by � and grey shadings show

global connections with low clustering coefficient (e.g., D = 10 gen-
erates networks with clustering coefficient CC = 0.015; see Keeling,
1999, 2000 and references therein for further discussion and
detailed characterization of socio-spatial network generated by
half-Gaussian distribution). Hence the network exhibits more long-

range contacts for high D while short-range contact and locally
clustered structures are observed for small D (see Fig. 2). We  gen-
erate a network using this half-Gaussian distribution with N = 2500
vertices such that a parametrized average density is achieved while

.0 and (b) D = 10.0, where the total number of agents have been set to N = 600 for
 and illustrate the use of D as a tuning parameter that affects both the average length
ber of contacts 〈n〉=7 and (c) degree distributions are similar, and the probability of
set). (d) The average length of edges is different for all the networks. Network with

dopted from Keeling (1999), Read and Keeling (2003),  Cohen et al. (2007), Janssen
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Table 1
Epidemic and behavioural parameters: the table shows initial conditions and param-
eter values used in the initialization process.

Variable Description Initial values

N Population number 2500
S  Susceptible group 2495
I  Infectious group 5
R  Recovered group 0
B  Behaviourally removed group 0

Parameters Description Values

〈k〉 Average degree 5
D Length scale 10

 ̌ Transmissibility 0.1
� Self-recovery rate 0.01
ı Loss of immunity 0.001
� Natural mortality 0.001
� Internal behavioural threshold U(0, 1, 0.5)a

Kl Local behavioural enhancement cue 0
Kg Global behavioural enhancement cue 0
K Effective behavioural enhancement cue 0
˛ Behavioural scale factor  ̨ ∈ [0, 1]
� Response factor � ∈ [0, 1]

m
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εb Behavioural efficacy 1

a Uniform distribution with range [0,1] and average 0.5.

aintaining the appropriate distribution. Here we use D = 10 and
k〉=5 (see Table 1).

.2. Spread of infection

The spread of disease follows the standard SIRS model with
eed-Frost stylized infection dynamics to describe the transmis-
ion process (Abbey, 1952; O’Neill, 2003), where at each time step a
usceptible can become infected with probability pk : =1 − (1 − ˇ)k.
ere k is the number of neighbours who are infected and  ̌ is

ransmissibility rate, � ∈ (1, 0). Similarly, behaviourally removed
ndividuals can get infected based on the effectiveness of the chosen
ehavioural practices/changes. They can be infected with probabil-

ty p̃k := 1 − (1 − (1 − ε)ˇ)k, where ε is the effectiveness of chosen
ehavioural change. Note that when ε = 1 behavioural change is
00% effective and behaviourally removed individuals are com-
letely protected, and ε = 0 behaviourally removed individuals are
ompletely susceptible to infection and the chosen behavioural
hange is ineffective. Also, infected individuals recover with prob-
bility � and become temporarily immune. After some period,
ndividuals who have recovered lose immunity and become suscep-
ible again with probability ı (see Fig. 1a). At any time, individuals
an leave each class at a rate �, either due to natural mortality
r other means of removal. We  have assumed that infected and
ecovered individuals do not participate in behavioural changes.
or the sake of simplicity and consistency, individuals who leave
he systems are automatically reintroduced into the system but
ith different links to maintain constant total population N, hence
aking the network behave quasi-statically. Here dead individuals

re not just reincarnated into the system. Rather, a neighbour i of
he dead agent moves into its place, and neighbour j of i moves into
’s location, and so on. It should be noted that we are not reshuf-
ing the whole network structure, rather the process is equivalent
o rewiring the edges of dead individuals when re-introduced into
he population on each birth-death event. Then a susceptible indi-
idual is introduced into the network, preventing the introduction
f spatial correlation between death and birth process while main-
aining computational costs. Table 1 summarises the value used

n the simulation. Here the values have been chosen such that the
ynamics are calibrated to produce an endemic state in the absence
f behavioural change. Although mean-field models usually pro-
uce endemic equilibrium states that are commensurable with the
s 14 (2016) 45–53

epidemic parameter values provided the initial conditions be in a
given region of attraction, the in silico models can sometimes yield a
multi-modal steady-state distribution (e.g., bi-stability), where the
trajectories can leave a given region of attraction (e.g., boundary
crossing of stability regions). Herein, we have fixed the epidemic
parameters to explore the impact of behavioural components on
the epidemiological quantities such as the average length of out-
breaks.

2.3. Behavioural change

Behavioural changes involved in the reduction of infection risks
usually depend on individual vulnerability to infection, and the
necessary cues required to activate behavioural responses are sen-
sitive to any information that suggests increased vulnerability to
disease transmission. As illustrated in the recent behavioural reac-
tions to 2009/H1N1pdm (Poletti et al., 2011; Cowling et al., 2010;
Liao and You, 2014), this information may  come from either inter-
nal sources (e.g., phobias, worries and chronic anxieties, greater
disgust) or external sources (e.g., news, context-specific perceptual
reminders of the epidemiological threats) regardless of the veracity
of individual subjective vulnerability or perception. As a result, the
activation of disease avoidance behavioural changes is influenced
by the subjective perception. For example, if individuals perceive
themselves to be more vulnerable to the spread of disease, they
are more likely to be perceptually sensitive to cues suggesting the
heightened risks and to participate (sometimes exaggeratedly) to
aversive responses.

In order to incorporate behavioural dynamics, we condition
entry into behaviourally removed class by the level of effective
behavioural enhancement cue K and internal subjective vulner-
ability factor/threshold �. Here we  assume � to be constant and
uniformly distributed U(0, 1) for the sake of simplicity. At each
time step, the subjective vulnerability factor � is compared with
the effective behavioural enhancement cue K which combines both
behavioural and epidemiological cues from the environment, and is
related to the perceived risk of infection. The effective behavioural
enhancement cue K is given as a convex combination of two  dual-
influence components weighted by  ̨ and 1 − ˛, where K is given
as:

K = (˛)Kg + (1 − ˛)Kl (2)

Kg = (�)
[

	∗(I)
	∗∗(I)

]
+ (1 − �)

[
	∗(B)
	∗∗(B)

]
(3)

Kl = (�)

[ ∑
j
∗(I)j∑
j
∗∗(I)j

]
+ (1 − �)

[ ∑
j
∗(B)j∑
j
∗∗(B)j

]
(4)

where 	∗(X) denotes the total population size with either epi-
demiological or behavioural status X, and 	∗∗(X) is complement
of 	∗(X). That is, 	∗∗(X) represents the total number of the pop-
ulation that are not in the epidemiological or behavioural class
X. Similarly, 
∗(X) denotes the subset of neighbours with a spe-
cific epidemiological or behavioural status X, and 
∗∗(X) is its
complement. Furthermore,  ̨ is the behavioural scale factor and
measures the extent to which behavioural cues are globally or
locally perceived. For instance, when  ̨ = 0, behavioural change
is influenced mostly by local behavioural enhancement cue fac-
tor Kl and when  ̨ = 1 the global behavioural enhancement cue
Kg affect the course of behavioural adaptation. In addition, both
local and global behavioural cues Kl and Kg are determined by
response factor � such that when � = 1 behavioural change is due

primarily to reaction to infectious individuals and imitation of
behaviourally removed population when � = 0. Fig. 1b shows how
behavioural enhancement cue factors are determined. For exam-
ple, if the focal vertex � has X  status neighbours, then 	∗(X) =
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Fig. 3. Behavioural and epidemic dynamics: the data show the effects of behavioural scale factor and inclination factors on the average duration of the epidemics, average
behavioural enhancement cues and perceived risks, and prevalence of behavioural response. All results are determined from average of 154,350 simulations. (a) The average
length of epidemic measures duration of epidemics before its extinction and quantifies the permanence of disease in the population. Here the average length of epidemic
has  been scaled and is given as T∗

T∗
max

. (b) Perceived risk is measured as average effective behavioural enhancement cues. (c) This figure shows the prevalence of behavioural

change  in the population under different behavioural parameters. Here  ̨ and � are behavioural parameters that respectively quantify the behavioural scale factor (e.g., local
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Here we show that effective behavioural changes can substan-
tially be sufficient to eradicate the disease (see Figs. 3–5). Data in
Figs. 3–5 summarise the results of the study investigated herein,

Fig. 4. Behavioural parametric outcome space: the diagram illustrates the three
regions where different behavioural and epidemiological dynamics are observed
r  global behavioural dynamics) and the inclination to either react to new cases o
esponses such as social distancing and/or exclusion, crowd avoidance, and volunt
aximum values.

, 	∗∗(X) = 6, 
∗(X)1 = 3, 
∗∗(X)1 = 5, 
∗(X)2 = 2 and 
∗∗(X)2 = 3.
ssuming that X  denotes behaviourally removed status and � = 0,

hen Kl =
∑

j

∗(B)j∑

j

∗∗(B)j

= 5
8 and Kg = 	∗(B)

	∗∗(B) = 5
6 . Then K can easily be

btained. At each time step, Eqs. (2)–(4) are calculated for each
gents. However, here we assume that only susceptible individuals
an change behaviours. To do this, we compare the behavioural
nhancement factor K and internal threshold �. If K > �, individ-
als change behaviour where they can participate in preventive
easures such as social distancing/exclusion, crowd avoidance,

accination, and remain there while K > � is satisfied. If K ≤ �,
hey either remained in their current state if that status is suscepti-
le, or return to susceptible group if they were in behaviourally
emoved class. While individuals are in behaviourally removed
lass, they are given an efficacy factor εb ∈ [0, 1] which determines
he effectiveness of behavioural response (e.g., high values give

ore protection to individuals than lower values). Our preliminary
esults suggest that the epidemic is more sensitive in a very small
ange of behavioural efficacy εb (i.e., 0.90–1). As a result, studies
iscussed herein assume a fixed behavioural efficacy and assume
hat behavioural change provide complete protection with εb = 1.
t should also be noted that we have assumed endemic infectious
isease. However, setting the demographic terms (e.g., birth-death
arameters) to zero does not change the results drastically. We
ound that the equilibrium structure is preserved and is commensu-
able with the model parameters. These are consistent with results
n mathematical models with SIRS-type transmission dynamics.

.4. Agent-based simulations

Putting together both the epidemiological and behavioural
ynamics, we implement an in silico model using socio-spatial
ontact structure generated from half-Gaussian distribution. Our
imulation scheme consists of network generation, introduction
f infected individuals into the susceptible population, and subse-
uent iterations of both behavioural and transmission mechanisms
ntil the end of simulation time or first extinction time. Table 1
ummarises the parameter values used in the simulations, where
etwork of susceptible were generated using Eq. (1) to investigate
he effect of the contact structure on the dynamics of behavioural

hange and epidemiological process. In addition, 0.2% of the total
opulation size are initially infected with the disease. Furthermore,
e synchronously update individual status. Here we have fixed

ll parameters except  ̨ and � since the effects of epidemics and
tious individuals in the population or to imitate others participating behavioural
ccination. All quantities presented on z-axis have been scaled by their respective

contact patterns have been investigated elsewhere (Keeling, 1999,
2000; Keeling and Eames, 2005; Perisic and Bauch, 2009; Janssen
et al., 2010). While the disease parameters might affect the magni-
tude of endemicity, the qualitative dynamics do not differ. As such,
both the effects of disease parameters and contact structures on
epidemics and behavioural dynamics are not studied herein. For the
behavioural parameters investigated, we  assume that behavioural
change provides perfect protection against the disease. The results
presented below are for 154,350 simulations, where stochasticity
in the model formulation and results is due to the network con-
nections and demographic dynamics that determine it, random
initial infections and spread of the disease through the network.
The model was  implemented in NetLogo (Wilensky, 1999).

3. Results and discussion
in  the population. The behavioural space was constructed from the composite of
Fig. 3a–c. The two  white regions are equivalent to the regions in behavioural change
in Fig. 3a and c, where the disease and behavioural change always persist or, equiv-
alent disease persist and goes to extinction, respectively. The grey region is the
intermediary phase, where the dynamics exhibit prevalence elasticity.
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Fig. 5. Temporal epidemiological process in the absence of behavioural change: the plots show the temporal dynamics for (a) susceptible, (b) infected, and (c) recovered
individuals in the absence of behavioural dynamics. The bands of variation correspond to the 95% confidence interval. It is equivalent to in silico representation of SIRS.
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nd all the results in Fig. 3 have been scaled by their respective
aximum values. Under a perfect (effective) behavioural change,
e observe that disease endemicity can be affected in 59% of

ehavioural outcome space. In addition, these regions are affected
y co-influence of behavioural factors. Fig. 3a shows the aver-
ge length of epidemic as functions of the behavioural scale and
esponse factors  ̨ and �, respectively. Here the average length or
uration of the epidemic is defined as the first passage time before
he disease goes extinct in the population. That is, T∗ := inf{t ≥ 0 :
(t) = 0}. If the disease is endemic and does not go extinct during the
imulation, we set T∗ to be the final time of the simulation. Here we
imulate the model for 3500-time steps. The average length of the
pidemic in Fig. 3a has been scaled by T∗

max = 3500. Fig. 3a shows
hat, for high response factors �, the disease is always endemic
ven in the presence of some behavioural changes. It implies that
hen behavioural changes are driven by reactions to infectious

ndividuals, the majority of individuals who initially participated
n behavioural response leaves the behaviourally removed class as
hey replenish the susceptible class. This is illustrated in Fig. 3b–c,
here high level of response factors result in very low average

ffective behavioural enhancement cue K,  which determines the
erceived risk as shown in Fig. 3b and affects the population size of

ndividual persistently participating in behavioural changes seen
n Fig. 3c. As a result of these co-influencing factors, periodic aban-
onment of behavioural changes (e.g., social distancing and social
xclusion, crowd avoidance) contributes to the permanence of dis-
ase endemicity in the population.

Furthermore, we find that the effect of behavioural change on
he dynamics of epidemic can be organized into three categories
n behavioural outcome ˛–� space: (i) ebbed behavioural change

ith endemic disease (disease permanence), (ii) coexistence of
ehavioural change and disease with prevalence-behaviour plas-
icity, and (iii) behavioural permanence with disease eradication.
hese observations are summarised in Fig. 4. In the region where
ehavioural change is ebbed, we observe that the disease is always
ndemic despite the existence of behavioural responses. In this
egion, the behavioural response is unable to eradicate the dis-
ase due to its ebb and flow nature in which prevalence-elastic
ehaviour is seen. This type of behavioural response has been
bserved in the context of both measles and HIV in some countries
Philipson, 1996; Ahituv et al., 1996).
The remaining regions where we see behavioural characteristic
f (ii) and (iii), it was found that permanent behavioural change
an eradicate disease, which is consistent with the mathemati-
al results of (Del Valle et al., 2005) with a particular emphasis
on behavioural changes in smallpox. In the region (ii) where we
observe the coexistence of both behavioural change and ende-
micity of the disease, the disease can be eradicated provided the
epidemic threshold has been crossed. However, in this region, erad-
ication is conditioned on the number of infected individuals in the
population and epidemic parameters and has lower averaged epi-
demic duration T∗. In the third region, it was observed that when
the response factor � is low resulting in high inclination to imi-
tate neighbours either locally or globally, effective behavioural
responses can impede the spread of infectious diseases eventu-
ally leading to its eradication. However, strong global influence
may  typically lead to a rapid adoption of preventive behavioural
responses. In Fig. 4, we also observe that, for small � and large

 ̨ (e.g., globally imitational behaviour), behavioral characteris-
tic (ii) where, despite relatively high participation in behavioural
changes, disease is persistent. In this region, we  observe the for-
mation of clustering of individuals participating in behavioural
changes, specially imitational behavioural dynamics. The rela-
tive size of the disease does not necessarily decrease as more
individuals imitate because the behavioural herd immunity is rela-
tively high within/near these clusters, and further participation in
behavioural change within/near these clusters reduces the trans-
mission to a lesser extent than if the behavioural changes were
initiated in a region with small proportion of individuals engaged
in behavioural changes. Hence, individuals near or surrounded by
a large number of clusters of behaviourally removed individuals
already benefit from the herd immunity these clusters provide.
Therefore, the participation of these individuals within, near or
surrounded by these behaviourally removed clusters does not nec-
essarily decrease the size of the disease. A similar dynamic pattern
was observed in Ndeffo Mbah et al. (2012), where the authors
study the effects of imitation behaviour and contact structure on
vaccination coverage and disease dynamics. In Kiss et al. (2010)
and Funk et al. (2010), the authors obtained similar results using
multigroup (2-core groups) compartmental models and found that
disease can be eradicated under certain threshold conditions. Our
model introduces heterogeneity, both in the disease transmis-
sion process and behavioural dynamics, not considered in Kiss
et al. (2010) and Funk et al. (2010); and it does not use multi-
group formulation. Fig. 5 shows the temporal dynamics of the
model in the absence of behavioural change. It is equivalent to

the standard SIRS model. In Fig. 6, the temporal dynamics of the
model variables are illustrated in the presence of behavioural
changes in the three behavioural parametric outcome space shown
Fig. 4.
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Fig. 6. Temporal epidemiological and behavioural contagion dynamics: the plots summarise the temporal dynamics of various quantities in the presence of behavioural
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hange. Temporal dynamics of proportion of both epidemiological and behavioura
ehavioural scale factor  ̨ = 0.5 and response factor � = 0.85, and (i)–(l) behaviour
orrespond to the 95% confidence interval.

. Conclusion

We  have illustrated that behavioural responses to infectious dis-
ases can reduce the prevalence and/or eradicate the disease under
ertain conditions. However, we find that reactionary behavioural
esponses are usually not sufficient enough to eradicate the disease
ue to their ebb-and-flow nature, where individuals who have ini-
ially reacted to the disease tend to periodically abandoned their
ehavioural changes. It consequently leads to behavioural plas-
icity (e.g., behaviour-prevalence-elasticity), where we  found that
ower outbreaks are observed, and behavioural response does not
ffect epidemiological threshold. Under this prevalence-elasticity
ith high response factor � (e.g., a strong inclination to react

o the number of infectious individuals), behavioural responses
end to closely follow the prevalence of infected individuals either
ocally or globally. Because the behavioural change is reactionary,

e observe ebb-and-flow dynamics, recurrence and periodicity in
he behavioural responses due to the fact that individuals usually
hange their behaviours when the prevalence is high and aban-

on them when the prevalence goes down. As a result, the disease
ersists despite the presence of effective behavioural responses.

In addition, it was shown that imitational behavioural changes
hat are persistent at high behavioural threshold tend to
s when (a)–(d) behavioural scale factor  ̨ = 0.1 and response factor � = 0.4, (e)–(h)
le factor  ̨ = 0.5 and response factor � = 0.25, respectively. The bands of variation

eradicate diseases when these behavioural responses provide
perfect protections against infectious diseases. However, these dif-
ferent epidemiological dynamics are influenced by the interplay
between the locality of behavioural scale factor and inclination
properties of behaviours. This highlights the drawback of mod-
els that rely on the aggregate information to trigger a behavioural
response and indicates the possibility of over-estimation of
behavioural changes on the epidemiological dynamics.

Although the costs associated with disease and adoption of
behavioural responses were not considered in our model, the
effects of such additional properties do not greatly impact the out-
come of the dynamics observed, and the results will be preserved as
long as the associative costs of behavioural responses are less than
those of the disease. However, if the associative costs of the dis-
ease are less than those of behavioural responses, we could, at the
very least, observe smaller or a loss of behavioural outcome space
where the permanence of behavioural change affect the persistence
of endemic disease.

Insights gained from the model can be improved greatly with a

various extension of our model. One such version could incorporate
access to prophylactic measures such as vaccination and treat-
ment. Furthermore, other models incorporating rationality could
utilise the results outlined herein when constructing agents that



5 demic

h
m
f
o
n
w
a
d
s
2
t
r
d
c
c
s
p
a
K
t

Ĩ
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ave to manage both local and global information in decision-
aking processes. Also, our analyses of the model could benefit

rom the use of empirical data measuring reactions to the threat
f infectious disease and perceived personal susceptibility or vul-
erability. The use of our model and its extensions in combination
ith disease-specific empirically derived behavioural responses

nd exploitation of internet for syndromic surveillance data (e.g.,
isease-related and health-related information such as Google
earch trends, Twitter feeds, news stories (see Ginsberg et al.,
009; Jones and Salathé, 2009) could lead to predictive models
hat substantially improve public health decision-making of cur-
ent and/or emergent and re-emergent outbreaks of infectious
iseases, and could provide a greater insight into behavioural out-
omes such as vaccine demands for vaccine-preventable diseases,
ondom use for sexually transmittable diseases and others. For sea-
onal epidemic or diseases in a periodic environment, the model
resented here could easily be extended. In particular, we can
ssume behavioural enhancement condition to be of the form
�∗ ≤ �, where �* is the constant internal cue and � is a func-

ion of state (e.g., �t+1 = HĨt≥�t
(�1�t + �̄0) + HĨt<�t

(max{�1�t, �2 Ĩ}),
 = It or Ĩ = I

I+k , H is the Heaviside function). This allows one to
ncorporate moving behavioural enhancement threshold needed
o activate behavioural response in the presence of differential risk
nd/or perceived vulnerability.
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