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Major progress has been made in the past decade towards understanding of the biosynthesis of red carotenoid astax-

anthin and its roles in stress response while exploiting microalgae-based astaxanthin as a potent antioxidant for hu-

man health and as a coloring agent for aquaculture applications. In this review, astaxanthin-producing green microal-

gae are briefly summarized with Haematococcus pluvialis and Chlorella zofingiensis recognized to be the most popular 

astaxanthin-producers. Two distinct pathways for astaxanthin synthesis along with associated cellular, physiological, 

and biochemical changes are elucidated using H. pluvialis and C. zofingiensis as the model systems. Interactions between 

astaxanthin biosynthesis and photosynthesis, fatty acid biosynthesis and enzymatic defense systems are described in the 

context of multiple lines of defense mechanisms working in concert against photooxidative stress. Major pros and cons 

of mass cultivation of H. pluvialis and C. zofingiensis in phototrophic, heterotrophic, and mixotrophic culture modes 

are analyzed. Recent progress in genetic engineering of plants and microalgae for astaxanthin production is presented. 

Future advancement in microalgal astaxanthin research will depend largely on genome sequencing of H. pluvialis and 

C. zofingiensis and genetic toolbox development. Continuous effort along the heterotrophic-phototrophic culture mode 

could lead to major expansion of the microalgal astaxanthin industry.

Key Words: astaxanthin biosynthesis; Chlorella zofingiensis; genetic engineering; Haematococcus pluvialis; mass cul-
ture; photooxidative stress

INTRODUCTION

Astaxanthin (3,3′-dihydroxy-β,β-carotene-4,4′-dione) 

is a ketocarotenoid synthesized by limited numbers of 

microalgae, plants, bacteria, and fungi. In microalgae, 

unlike primary carotenoids (e.g., β-carotene, zeaxanthin, 

and lutein) which constitute structural and functional 

components of the photosynthetic apparatus, astaxan-

thin is a secondary carotenoid accumulating in cytosolic 

lipid bodies (LBs) only under environmental stress or ad-

verse culture conditions, such as high light, high salinity, 

and nutrient deprivation (Johnson and An 1991, Johnson 

and Schroeder 1996).

Astaxanthin has thirteen conjugated double bonds ar-

ranged as alternating single-double bonds. This configu-

ration confers astaxanthin strong antioxidant properties 

thereby scavenging reactive oxygen species (ROS) and 

neutralizing free radicals (Miki 1991, Vershinin 1999). Be-

cause of this, astaxanthin has been used as a nutraceu-

tical and a pharmaceutical, for example, to fight against 
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grown on glucose) and adopt a photoautotrophic, mixo-

trophic, or heterotropic culture mode (Orosa et al. 2000, 

Del Campo et al. 2004, Ip et al. 2004, Sun et al. 2008). 

The biosynthesis of astaxanthin in microalgae is usu-

ally accompanied by the transformation of the algae from 

a green vegetative form into a red cyst (Droop 1954). The 

cellular and molecular responses of H. pluvialis and C. 

zofingiensis and to stress are proposed to result, at least in 

part, from differential expression of carotenoid synthesis 

genes at the transcriptional level (Hershkovits et al. 1997, 

Li et al. 2008a, 2010). Recently, many genes responsible 

for carotenoids, particularly astaxanthin biosynthesis 

have been cloned and characterized in H. pluvialis and 

C. zofingiensis, which has provided the opportunities to 

study the pathways and regulation of carotenoid biosyn-

thesis and understand the biological role of astaxanthin 

in stress response. This review summarizes the cell biol-

ogy, physiological, and biochemical characteristics of H. 

pluvialis and C. zofingiensis, with emphasis on recent 

progress on the pathways for and the physiological role of 

astaxanthin synthesis under stress. The biotechnological 

implications of these studies are discussed and recent ef-

forts on genetic engineering of algal genes in microalgae 

and higher plants for overproduction of astaxanthin are 

described. 

HAEMATOCOCCUS PLUVIALIS

Cell biology and physiology

The life cycle of H. pluvialis consists of four types of 

distinguishable cells, including macrozooids (or zoo-

spores), microzooids, palmella, and aplanospores (or 

haematocysts) (Elliot 1934). Macrozooids are spherical, 

ellipsoidal, or pear-shaped cells with two flagella and a 

cup-shaped chloroplast. Exhibited by rapid growth and 

cell division producing 2-8 daughter cells, macrozooids 

predominate in the early vegetative growing stage of a 

batch culture under favorable culture conditions. When 

macrozooids are subjected to unfavorable environmental 

or culture conditions, they develop into a non-motile ‘pal-

mella’ form by losing their flagella while expanding the 

cell size. This process is defined as encystment. When the 

stress persists, ‘palmella’ will develop into the non-motile 

asexual aplanospores with thick and rigid cell walls. Dur-

ing the maturation of aplanospores, large amounts of 

astaxanthin accumulate, which brings a bright red color 

to the cells. It is worth noting that macrozooids of some 

H. pluvialis strains are capable of accumulating astaxan-

free-radical associated diseases like oral, colon and liver 

cancers, cardiovascular diseases, and degenerative eye 

diseases (Lorenz and Cysewski 2000, Guerin et al. 2003). 

Astaxanthin is also a common coloring agent in aquacul-

ture to impart red pigmentation in animal bodies such 

as salmon and rainbow trout (Lorenz and Cysewski 2000, 

Guerin et al. 2003).

The current world astaxanthin market is dominated by 

synthetic astaxanthin. The price for synthetic astaxanthin 

is above $2,000 kg-1, and the total market value of astaxan-

thin is over $240 M per year (Misawa 2009, Li et al. 2011). 

Synthetic astaxanthin typically contains a mixture of 3S, 

3’S; 3R, 3’S; and 3R, 3’R isoforms with a ratio of 1 : 2 : 1. In 

contrast, astaxanthin from microalgae is predominantly 

the 3S, 3’S isomer. The 3S, 3’S astaxanthin isomer is a 

preferable form as a feed additive in aquaculture because 

it imparts a higher extent of pigmentation in rainbow 

trout than the synthetic astaxanthin (Barbosa et al. 1999). 

There are growing concerns about the safety of using syn-

thetic astaxanthin for aquaculture or direct human con-

sumption and therefore natural astaxanthin represents a 

preferred and premium choice for human consumption 

(Li et al. 2011).

Astaxanthin can be produced in various amounts by 

a number of microalgae including Botryococcus braunii 

(up to 0.01% astaxanthin by dry weight [dwt]) (Grung et 

al. 1994), Chlamydocapsa spp. (0.04% astaxanthin by dwt) 

(Leya et al. 2009), Chlamydomonas nivalis (Bidigare et 

al. 1993, Remias et al. 2005), Chlorella zofingiensis (0.7% 

astaxanthin by dwt) (Bar et al. 1995, Orosa et al. 2000), 

Chlorococcum sp. (0.7% astaxanthin by dwt) (Liu and Lee 

2000, Ma and Chen 2001), Chloromonas nivalis (0.004% 

astaxanthin by dwt) (Leya et al. 2009, Remias et al. 2010), 

Eremosphera viridis (Vechtel et al. 1992), Haematococ-

cus pluvialis (4% astaxanthin by dwt) (Droop 1954, Lee 

and Ding 1994), Neochloris wimmeri (1.9% astaxanthin 

by dwt) (Orosa et al. 2000), Protosiphon botryoides (1.4% 

astaxanthin by dwt) (Orosa et al. 2000), Scenedesmus 

sp. (0.3% astaxanthin by dwt) (Orosa et al. 2000, Qin et 

al. 2008), Scotiellopsis oocystiformis (1.1% astaxanthin 

by dwt) (Orosa et al. 2000), and Trachelomonas volvo-

cina (Green 1963). Of these species, the green microalga 

H. pluvialis is recognized as one of the most promising 

producer of astaxanthin in nature due to its exceptional 

ability to accumulate large amounts of astaxanthin under 

stress conditions (Boussiba 2000, Lemoine and Schoefs 

2010). Recently, C. zofingiensis has attracted some inter-

est as an alternative astaxanthin producer, due to its abil-

ity to grow rapidly (with a maximum specific growth rate 

of 1.03 d-1 and biomass concentration of 53 g L-1 when 
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red aplanospores (Boussiba et al. 1999, Han et al. 2012), 

and yet red aplanospores were photosynthetically ac-

tive with only moderate declines in the maximal photo-

synthetic rate (Pmax) and the maximum quantum yield of 

photosystem II (PSII), presumably attributable to the rel-

atively stable photosynthetic unit size and the activated 

D1 repairing mechanism (Zlotnik et al. 1993, Wang et al. 

2003, Qiu and Li 2006). Attenuated linear electron trans-

port as indicated by significantly reduced cytochrombe 

b6f content and the concomitant enhanced plastid ter-

minal oxidase (PTOX)-mediated alternative electron 

transport were considered to prevent the photosynthetic 

electron transport chain from being over-reduced when 

H. pluvialis cells are under photooxidative stress (Tan et 

al. 1995, Han et al. 2012). On the other hand, the PSI activ-

ity was significantly enhanced during the transformation 

of green vegetative cells to red aplanospores (Hagen et al. 

1993, Tan et al. 1995, Qiu and Li 2006).

CHLORELLA ZOFINGIENSIS

The unicellular microalgae Chlorella spp. have been 

widely used in basic biology research and various fields 

of biotechnology, such as animal feeds, health food and 

bioenergy production (Huss et al. 1999). C. zofingiensis 

(Chlorellaceae) has a rigid cell wall containing glucose 

and mannose, and is able to accumulate secondary ca-

rotenoids, whereas other species of Chlorella, such as C. 

vulgaris, have a glucosamine-containing cell wall and no 

capability of accumulating secondary carotenoids (Take-

da 1991).

In response to stress, C. zofingiensis accumulates astax-

anthin and canthaxanthin in the cytosolic LBs with con-

comitant degradation of chloroplast membranes (Rise et 

al. 1994, Bar et al. 1995). Degradation of thylakoids can be 

observed within 4 h when C. zofingiensis was exposed to 

high light and nitrogen deprivation, and the grana struc-

ture of the thylakoids disappeared with drastic decrease 

of thylakoid membranes after 24 h under stress. After 3 

days, the chloroplast of C. zofingiensis lost its typical 

membrane structure (Bar et al. 1995). A thin lipid-rich 

layer containing the ketocarotenoids was observed at day 

3, possibly function as a sunshade filter to reduce light 

penetration into the chloroplast and thus prevent forma-

tion of excess ROS, a mechanism also found in H. pluvia-

lis (Hagen et al. 1994, Bar et al. 1995). Like H. pluvialis, a 

very thick cell wall was observed in C. zofingiensis cells 

under stress, which was resistant to concentrated sulfu-

ric acid treatment. The close proximity of the ketocarot-

thin without forming alpanospores (Brinda et al. 2004, 

Hagen et al. 2004). If the environmental or culture con-

ditions are back to normal, aplanospores will germinate 

to form flagellated zoospores to start a new vegetative 

growth cycle. In some cases, after exposure to extreme 

adverse conditions, e.g., freezing, desiccation, or nutrient 

starvation, followed by favorable culture conditions, ga-

metogenesis may occur in aplanospores, giving rise to up 

to 64 gametes, known as microzooids. The microzooids 

appear as smaller cells (<10 µm) as compared to the zoo-

spores (20-50 µm), and exhibit high-speed motility after 

their release from gametocysts (Triki et al. 1997). 

Accumulation of astaxanthin in H. pluvialis cells is 

accompanied by profound ultrastrutral changes. One of 

the most remarkable changes is the formation of a large 

number of cytosolic LBs where bulks of astaxanthin mol-

ecules are stored. Initially, LBs appear as tiny electron-

dense spots scattered near the rough endoplasmic reticu-

lum cisternae and eventually are coalesced to form large 

mature LBs (Lang 1968, Santos and Mesquita 1984). 

Flagellated zoospores of H. pluvialis exhibit a volumi-

nous extracellular matrix, resembling the typical Vovoca-

lean multilayered architecture with a tripartite crystalline 

layer between two separate layers of gelatinous matrices. 

The tripartite crystalline layer is connected to the cyto-

plasma membrane by fine radiating strands, which is only 

observed in the genus of Haematococcus. Encystment of 

the flagellated zoospores into non-motile palmella cells 

is characterized by the formation of the primary cell wall 

within the extracellular matrix (Hagen et al. 2008). The 

primary cell wall can be stained with calcofluor white, in-

dicative of the presence of β-1,4-glycosidic linkages. Fur-

ther formation of red aplanospores is concurrent with the 

development of secondary cell wall, which contains 3% 

acetolysis-resistant materials suggested to be algaenan, 

an aliphatic biopolymer with great resistance to chemi-

cals (Damiani et al. 2006, Hagen et al. 2008). Recently, the 

proteomes of H. pluvialis cell wall at different develop-

mental stages were characterized, suggesting possible 

involvement of cellulose synthesis in the primary cell for-

mation (Wang et al. 2004b). 

The most noticeable response of H. pluvialis to ad-

verse culture conditions is to synthesize and accumulate 

large amounts of astaxanthin in the form of mono- and 

di-esters. While the initial astaxanthin synthesis utilizes 

the existing β-carotene as a precursor, produce a bulk 

of astaxanthin esters will depend on de novo β-carotene 

synthesis (Schoefs et al. 2001). 

Nearly 50% reduction in chlorophyll content occurred 

during the transformation of green vegetative cells into 
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that IPI2 is responsible for synthesis of the secondary ca-

rotenoids, whereas the IPI1 is responsible for primary ca-

rotenoid synthesis in the chloroplast of H. pluvialis (Sun 

et al. 1998). 

Phytoene synthase (PSY) catalyzes the first committed 

step for carotenoid biosynthesis through condensation of 

two 20-carbon geranylgeranyl pyrophosphate molecules 

to form a 40-carbon phytoene, the precursor for all other 

carotenoids (Cunningham and Gantt 1998). Two classes 

of PSY were found in certain green algae like Ostrecoccus 

and Micromonas, while some other green algae like C. 

reinhardtii and C. vulgaris only possess one class of PSY 

(Ttran et al. 2009a) One copy of PSY gene has been cloned 

and characterized from a number of microorganisms in-

cluding H. pluvialis (Steinbrenner and Linden 2001) and 

C. zofingiensis (Cordero et al. 2011). The Haematococcus 

PSY has an N-terminal extension similar to a chloroplast 

targeting sequence, indicating that PSY is likely to be tar-

geted to the chloroplast in H. pluvialis (Steinbrenner and 

Linden 2001). 

Through a series of dehydrogenation reactions, two 

structurally similar enzymes, phytoene desaturase (PDS) 

and ζ-carotene desaturase (ZDS) convert the colorless 

phytoene into red lycopene. Specifically, PDS catalyzes 

the first two dehydrogenation reactions to form phyto-

fluene and ζ-carotene, whereas ZDS catalyzes two further 

reactions converting ζ-carotene to neurosporene and ly-

copene (Cunningham and Gantt 1998). These dehydro-

genation reactions extend the conjugated carbon-carbon 

double bonds to form the chromophore of carotenoids. 

These FAD-containing enzymes require PTOX and plas-

toquinone (PQ) as electron acceptors (Carol et al. 1999, 

Wu et al. 1999). The PDS and two PTOX genes (i.e., PTOX1 

and PTOX2) have been cloned and characterized in H. 

pluvialis (Grunewald et al. 2000, Wang et al. 2009, Li et al. 

2010). High light illumination and nitrogen deprivation 

increase the transcripts of PDS and PTOX simultaneously 

in H. pluvialis, suggesting that PDS and PTOX may act in 

concert to dehydrogenate phytoene and remove excess 

electrons under stress, thereby preventing over-reduc-

tion of the photosynthetic electron transport chain and 

the formation of excess ROS (Grunewald et al. 2000, Wang 

et al. 2009, Li et al. 2010). Western-blot and immunogold 

labeling experiments showed that PDS is located exclu-

sively in the chloroplast in H. pluvialis (Grunewald et al. 

2000).

The cyclization of lycopene catalyzed by lycopene 

β-cyclase (LCY-b) and lycopene ε-cyclase (LCY-e) is a 

branching point in the carotenoid biosynthesis (Cunning-

ham and Gantt 1998). LCY-b catalyzes two β-cyclization 

enoids layer to the cell wall suggested that the secondary 

carotenoids may be used as substrates for synthesis of 

sporopollenin in the cell walls (Bar et al. 1995). 

The secondary carotenoids accumulated in C. zofingi-

ensis under stress are canthaxanthin and astaxanthin in 

the forms of free, monoesters and diesters of the pigments 

(Rise et al. 1994). Canthaxanthin, free astaxanthin and 

monoesters were detected within 4 h flowing nitrogen 

deprivation and high light stress, while astaxanthin dies-

ters appeared at 12 h. After 3 days, the main secondary 

carotenoids accumulated in the cell were canthaxanthin 

(ca. 25%) and astaxanthin monoesters (ca. 50%) (Bar et al. 

1995). Interestingly, C. zofingiensis grown heterotrophi-

cally can also accumulate significant amounts of astax-

anthin (Ip and Chen 2005b). A survey of different carbon 

sources showed that glucose, mannose, fructose, sucrose, 

galactose and lactose can be used by C. zofingiensis, of 

which glucose and mannose were the best carbon sourc-

es for growth and astaxanthin biosynthesis in the dark. A 

high astaxanthin yield of 32 mg L-1 was achieved in a feed-

batch culture of this organism (Sun et al. 2008).

ASTAXANTHIN BIOSYNTHESIS PATHWAYS 

Biosynthesis of astaxanthin in Haematococcus 
pluvialis 

Isopentenyl pyrophosphate (IPP) is the precursor for 

carotenoid synthesis (Lichtenthaler 1999). Two distinct 

pathways for IPP biosynthesis have been found in higher 

plants: the mevalonate pathway in the cytosol and the 

non-mevalonate 1-deoxy-D-xylulose-5-phosphate path-

way in the chloroplast (DOXP pathway or MEP pathway) 

(Lichtenthaler et al. 1997). In unicellular green microal-

gae H. pluvialis and Chlamydomonas reinhardtii, IPP is 

believed to be synthesized solely from the non-mevalon-

ate DOXP pathway (Disch et al. 1998). Subsequently, the 

isopentenyl pyrophosphate isomerase (IPI) catalyzes the 

isomerization of IPP to dimethylallyl diphosphate (Lich-

tenthaler 1999). Introduction of a heterologous IPI gene 

in Escherichia coli enhanced the accumulation of carot-

enoids, supporting a role of IPI in regulating carotenoid 

biosynthesis (Kajiwara et al. 1997, Wang et al. 1999). Two 

cDNAs of IPI, IPI1 and IPI2 have been cloned and char-

acterized in H. pluvialis (Sun et al. 1998). Transcripts of 

both IPI genes increased in response to oxidative stress, 

but only IPI2 was up-regulated at the translational level. 

Moreover, only IPI2 protein was detected in mature red 

cysts in which astaxanthin was accumulated, suggesting 
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mechanism would be necessary for astaxanthin forma-

tion (Grünewald et al. 2001).

Heterologously expressed Haematococcus BKT1 was 

not able to use dihydroxy carotenoid zeaxanthin as a sub-

strate, indicating that the oxygenation steps likely pre-

cede hydroxylation steps (Lotan and Hirschberg 1995). 

In vitro assay of BKT and β-carotene hydroxylase (CrtR-

b, synonym Chy-b) further confirmed that astaxanthin 

synthesis in H. pluvialis is preferably preceded with the 

addition of keto groups, followed by the hydroxylation 

reactions (Fraser et al. 1998, Schoefs et al. 2001). Astax-

anthin in H. pluvialis is proposed to be synthesized from 

the hydroxylation of canthaxanthin catalyzed by CrtR-b 

(Fig. 1). CrtR-b gene has been isolated in H. pluvialis (Lin-

den 1999). A linear relationship between the increase of 

CrtR-b transcripts and astaxanthin concentration was 

observed in the H. pluvialis wild type and the astaxan-

thin-hyper-accumulating mutant (MT 2877), suggesting 

a transcriptional control of CrtR-b over astaxanthin syn-

thesis (Li et al. 2008b). BKT and CrtR-b have been often 

proposed as rate-limiting steps in astaxanthin synthesis. 

Genetic manipulation of their genes in algae and plants 

for enhanced astaxanthin production is further discussed 

in the BIOTECHNOLOGICAL IMPLICATIONS section. 

Regulation of carotenogenesis in Haematococ-
cus pluvialis 

Most Haematococcus carotenoid synthesis genes are 

up-regulated at the transcriptional level in response to 

various stressors (e.g., high light, excess ferrous sulfate 

and excess sodium acetate) (Li et al. 2008b). The extent 

to which the individual stressor affecting carotenogenesis 

gene expression follows the order as: low light < low light 

+ ferrous sulfate < low light + sodium acetate < high light 

+ ferrous sulfate/sodium acetate < high light + ferrous 

sulfate + sodium acetate (Li et al. 2008b). Interestingly, 

when multiple factors were applied simultaneously to H. 

pluvialis, for example, high light + salt stress + iron stress, 

the transcripts of carotenoid synthesis genes were lower 

than and the maximum expression levels of those genes 

were delayed compared to that induced by the individual 

stressors applied separately or two stressors together at 

the early stage of stress (Li et al. 2008b). A plausible in-

terpretation was that H. pluvialis and other microalgae 

possess both “house-keeping” defense mechanisms and 

stressor-specific defense mechanisms. For example, the 

carotenogenesis for production of astaxanthin and other 

secondary carotenoids is largely induced under high light 

stress, whereas various enzymatic defense reactions may 

reactions at each end of lycopene to form β-carotene, 

which is an end product for photosynthesis in plants and 

algae, as well as a precursor for keto-carotenoids in the 

chloroplast and cytosol. LCY-e catalyzes ε-cyclization of 

lycopene to ζ-carotene, which is subsequently cyclized by 

LCY-b to form α-carotene (β,ε-carotene), a precursor for 

lutein synthesis (Cunningham et al. 1996). A LCY-b gene 

has been cloned in H. pluvialis and was observed that its 

transcripts increased concomitantly with the formation 

of β-carotene and astaxanthin at increased intensities of 

red or blue light (Steinbrenner and Linden 2003). 

Oxygenation of β-carotene at the 4 position by 

β-carotene ketolase (BKT, synonym CrtW) gives rise to 

echinenone and canthaxanthin (Fig. 1). In H. pluvialis, 

three different BKT genes have been cloned, including 

BKT1 (Lotan and Hirschberg 1995), BKT2 (Kajiwara et 

al. 1995), and BKT3 (Huang et al. 2006a). Under stress, 

the multiple BKT genes were up-regulated and when to-

tal BKT mRNAs reached a certain threshold, H. pluvialis 

began to synthetize astaxanthin (Huang et al. 2006a). 

Immuno-localization study indicated that BKTs were 

localized in both the chloroplast and cytosolic LBs in H. 

pluvialis, although ketolase activity was detected only 

in the cytosolic LB preparation (Grünewald et al. 2001). 

Since PDS is an early enzyme in the pathway that is locat-

ed exclusively in the chloroplast (Grunewald et al. 2000), 

it was proposed that transport of carotenoid precursors 

from the chloroplast to cytosolic LBs by a yet unknown 

β-Carotene

Echinenone

Canthaxanthin

Adonirubin

Astaxanthin

β-Cryptoxanthin

Zeaxanthin

Adonixanthin

Pathway 1

BKT

CrtR-b

CrtR-b

CrtR-b

CrtR-b

BKT

BKT

BKT

Pathway 2

Fig. 1. Primary astaxanthin biosynthesis pathways in Haemato-
coccus pluvialis (pathway 1) and Chlorella zofingiensis (pathway 2). 
Enzymes are named according to the designation of their genes. BKT, 
β-carotenoid ketolase; CrtR-b, β-carotenoid hydroxylase. Modified 
and reproduced from Li (2007) with permission from the University 
of Hong Kong.
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enzymatic activity of converting zeaxanthin to astaxan-

thin via adonixanthin (Huang et al. 2006b). When the BKT 

inhibitor diphenylamine was applied, C. zofingiensis ac-

cumulated zeaxanthin while H. pluvialis accumulated 

β-carotene (Wang and Chen 2008), suggesting that C. 

zofingiensis synthesizes astaxanthin through zeaxanthin 

(Fig. 1, Pathway 2). 

Various environmental factors may differentially regu-

late carotenogenesis in C. zofingiensis. High irradiance 

triggered up-regulation of PDS, BKT, CrtR-b genes in C. 

zofingiensis, with most significant increase in CrtR-b 

transcripts, leading to the accumulation of canthaxan-

thin, zeaxanthin and astaxanthin (Li et al. 2009). Under 

salt stress, only BKT gene was up-regulated and can-

thaxanthin and astaxanthin were accumulated (Li et al. 

2009). When fed with sugars, C. zofingiensis accumulated 

astaxanthin in dividing cells. Glucose and mannose were 

the best carbon sources to sustain growth and astaxan-

thin production in C. zofingiensis, followed by fructose, 

sucrose and galactose, whereas lactose was the poor-

est carbon source for C. zofingiensis (Sun et al. 2008). In 

heterotrophically grown C. zofingiensis, carotenogenesis 

was regulated through the phosphorylation of glucose 

by hexokinase, which was essential for up-regulation of 

CrtR-b and synthesis of zeaxanthin, whereas the signals 

from the mitochondrial alternative pathway may medi-

ate up-regulation of BKT and synthesis of astaxanthin (Li 

et al. 2008a). 

Two possible types of signals from the mitochondrial 

alternative pathway may regulate carotenogenesis in C. 

zofingiensis: ROS and organic acids from the tricarboxylic 

acid cycle (TCA) cycle. Chemically generated ROS induce 

carotenogenesis and astaxanthin formation in C. zofingi-

ensis (Ip and Chen 2005a, Li et al. 2009). Singlet oxygen 

specifically induced CrtR-b whereas hydroxyl radical up-

regulated PDS and BKT, suggesting their distinct roles 

in regulating carotenogenesis in C. zofingiensis (Ip and 

Chen 2005a). In corroboration, the fatty acid synthesis 

genes SAD (coding for stearoyl acyl carrier protein) and 

BC (coding for biotin carboxylase) seemed to be associ-

ated with ROS (Liu et al. 2012). On the other hand, TCA 

cycle acids such as citrate may act as a signal at the gene 

expression level to induce mitochondrial alternative 

pathway respiration to facilitate carotenogenesis (Van-

lerberghe and McIntosh 1996). In C. zofingiensis, citrate 

was shown to induce BKT expression and astaxanthin 

synthesis independent of ROS formation, suggesting that 

the mitochondrial alternative pathway mediates BKT ex-

pression through modulation of TCA cycle with citrate as 

a signal molecule (Li et al. 2008a). 

be triggered by salinity or excess iron ion. When multiple 

stressors were applied to H. pluvialis, multiple stress 

protection mechanisms may all be activated and work 

in concert, each contributing partially to overall cell pro-

tection and to a less extent carotenogenesis. However, 

because the enzymatic defense systems mainly serve as 

short-team cellular defense mechanisms in H. pluvialis 

(Wang et al. 2004a), as the stress persists, the cells would 

have to depend more upon the long-term defense mech-

anism, -carotenogenesis, for survival, which explained 

why an delayed expression pattern of carotenogenesis 

genes with greater expression levels occurred in the cul-

tures treated with the multiple stressors (Li et al. 2008b).

ROS play a role in regulation of carotenogenesis in H. 

pluvialis. Treatment with ROS-generating compounds 

such as methylviologen, methylene blue and Fe2+, in-

creased PDS and CrtR-b expression in H. pluvialis. They 

also induced astaxanthin synthesis independent of de 

novo protein synthesis (Kobayashi et al. 1993, Stein-

brenner and Linden 2001), suggesting ROS mediate 

stress response and carotenogenesis in H. pluvialis at a 

post-translational level (Steinbrenner and Linden 2003). 

Unlike PDS and CrtR-b, however, treatment with various 

transcriptional and translational inhibitors suggested 

that BKT gene expression was dependent on de novo pro-

tein synthesis (Vidhyavathi et al. 2008). Considering PDS 

is shown to be located in the chloroplast, whereas BKT 

activity is found in the cytosolic LBs, this discrepancy can 

be explained by the distinct subcellular localization of in-

dividual carotenoid biosynthetic enzymes.

Pathways and regulation of carotenogenesis in 
Chlorella zofingiensis

C. zofingiensis has the identical β-carotene synthesis 

pathway found in H. pluvialis, but may take a different 

route to make astaxanthin (Fig. 1) (Li 2007). Recently, 

the genes involved in biosynthesis of astaxanthin in C. 

zofingiensis have been cloned and characterized, includ-

ing PSY (Cordero et al. 2011), PDS (Huang et al. 2008), 

LCY-b (Cordero et al. 2010), LCY-e (Cordero et al. 2012), 

BKT (CrtO) (Huang et al. 2006b), CrtR-b (Chy-b) (Li et 

al. 2008a). Under high-light conditions, PSY, PDS, BKT, 

CrtR-b genes were up-regulated, whereas the mRNA lev-

els of LCY-b and LCY-e remained constant, leading to for-

mation of secondary carotenoids (Li et al. 2009, Cordero 

et al. 2012). 

Functional analysis of C. zofingiensis BKT demon-

strated that this enzyme not only converted β-carotene 

to canthaxanthin via echinenone, but also exhibited high 



Han et al.   Astaxanthin in Microalgae

137 http://e-algae.kr

pression (Fey et al. 2005). Recently, a transcriptomic anal-

ysis has identified over 2,000 genes regulated under high 

irradiance conditions, providing therefore more candi-

date genes for further study of the crosstalk between pho-

tosynthesis and carotenogenesis gene expression in H. 

pluvialis (Kim et al. 2011).

In addition to the regulation at the gene expression 

level, metabolic coupling between carotenoid and photo-

synthetic electron transport may be present in H. pluvia-

lis. The electrons produced in the sequential desaturation 

reactions catalyzed by PDS and ZDS can be delivered to 

the PQ pool, which is in turn oxidized by PTOX (Fig. 2). 

Two genes encoding PTOX (PTOX1 and PTOX2) in H. plu-

vialis have been cloned and PTOX1 was found to be co-

regulated with the carotenoid biosynthesis genes under 

various environmental stress conditions (Li et al. 2008b, 

2010, Wang et al. 2009). Functional analysis of PTOX of 

Chlamydomonas also suggested that PTOX1 was respon-

sible for regenerating oxidized PQ for phytoene desatura-

tion (Houille-Vernes et al. 2011). 

Crosstalk between astaxanthin and fatty acid 
biosynthesis pathways

In H. pluvialis, over 90% astaxanthin molecules are 

esterified with fatty acids (Yuan et al. 1997). Oleic acid is 

Crosstalk between astaxanthin synthesis path-
way and photosynthetic electron transfer chain

In H. pluvialis, the nuclear carotenoid biosynthetic 

genes were suggested to be regulated by the redox state of 

the PQ pool at the photosynthetic electron transfer chain, 

as carotenoid biosynthesis genes are up-regulated under 

high PSII excitation pressure (PQ reduced) (Steinbrenner 

and Linden 2003), and the inhibition of photosynthesis by 

photosynthetic electron transport inhibitor DCMU abol-

ished the up-regulation of the PSY gene induced by high 

light (Steinbrenner and Linden 2001). However, how the 

signal of redox state of the photosynthetic electron trans-

port chain can pass the chloroplast envelope and regulate 

nuclear gene expression is not known. It was proposed 

that protein phosphorylation cascade may be a possible 

mechanism to mediate this retrograde signaling process 

(Chandok et al. 2001, Chen et al. 2004). Furthermore, the 

chlorophyll biosynthesis precursors, Mg-protoporphyrin 

IX and Mg-protoporphyrin-methylesters, were proposed 

to play a role in chloroplast-to-nucleus retrograde signal-

ing (Nott et al. 2006). 

Besides the redox state of PQ, other photosynthetic 

signals such as ROS, trans-thylakoid pH gradient and the 

stoichiometry of PSI and PSII may also contribute to the 

photosynthetic regulation of carotenogenesis gene ex-

Fig. 2. Multiple roles of the astaxanthin biosynthesis in protecting microalgae against oxidative stress. Astaxanthin biosynthesis pathway 
functions to 1) reduce subcellular oxygen levels via synthesis of oxygen-rich astaxanthin and its esters; 2) convert photosynthetically evolved 
oxygen into water via a coupled electron transport from carotenoid desaturation steps (phytoene desaturase [PDS] and ζ-carotene desaturase 
[ZDS]) to the plastoquinone pool to plastid terminal oxidase (PTOX), whereas astaxanthin itself; 3) serves as a “sunshade” to reduce excess light 
illumination on the photosystems; 4) functions as a powerful antioxidant against reactive oxygen species. PS, photosystem; PQ, plastoquinone. 
Modified and reproduced from Li (2007) with permission from the University of Hong Kong.
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equally or more susceptible to high light stress than 

astaxanthin-free vegetative cells (Fan et al. 1998). These 

authors suggest that the multiple intermediate reactions 

in astaxanthin synthesis pathway may consume exces-

sive electrons and thus prevent over-reduction of the 

photosynthetic electron transport chain and reduce the 

production of ROS. As such, astaxanthin was proposed as 

an end-product rather than the protective agent itself in 

the stress response process (Fan et al. 1998). 

More recently, Li et al. (2008b) proposed that astaxan-

thin biosynthesis exerts multilevel protective roles against 

photooxidative stress. In addition to the protective roles 

summarized above, astaxanthin biosynthesis protects H. 

pluvialis cells from stress through the consumption of 

molecular oxygen (Li et al. 2008b). Up to 10% of molecular 

oxygen evolved from photosynthesis under stress is con-

sumed by astaxanthin synthesis via two distinct routes: 

1) use oxygen as a substrate for ketocarotenoids forma-

tion and 2) convert oxygen generated from photosynthe-

sis and electrons from the carotenoid desaturation steps 

to water by PTOX connected to the PQ pool. Decrease in 

subcellular molecular oxygen concentration reduces the 

substrate available for oxygen dependent ROS forma-

tion, as is the case for the alternative oxidase which re-

duces the O2 concentration and prevents electrons from 

reducing O2 to O2
-1 (Mittler 2002). Re-oxidation of the PQ 

pool by PTOX may further relax the photosynthetic elec-

tron transport chain and reduce ROS formation (Li et al. 

2008b). The multiple roles of the astaxanthin biosynthesis 

in protecting microalgae against oxidative stress are sum-

marized in Fig. 2 (Li 2007).
In addition to the ability to accumulate large amounts 

of astaxanthin, microalgae such as H. pluvialis have 

evolved other mechanisms for ROS scavenging, for ex-

ample, by the antioxidative enzyme defense system. Pro-

teomics analysis revealed several superoxide dismutases 

(SOD), peroxidases, and catalases were up-regulated in 

response to photooxidative stress (Wang et al. 2004a, Tran 

et al. 2009b). Transcriptomic analysis revealed that the 

up-regulation of SOD, catalase, and glutathione peroxi-

dase genes occurred under high light and nutrient starva-

tion conditions (Eom et al. 2006, Kim et al. 2011, Wang et 

al. 2011). All the antioxidative enzymes studied showed a 

transient up-regulation pattern and then reverted to the 

basal or below basal level, suggesting that the enzyme de-

fense system is an early response mechanism to oxidative 

stress, and as stress persists, the cells will adopt astaxan-

thin biosynthesis and accumulation as a long-term de-

fense mechanism (Wang et al. 2004a). 

the major fatty acid species that is conjugated to astax-

anthin molecules (Holtin et al. 2009). A linear correlation 

between the cellular fatty acid content and astaxanthin 

content in H. pluvialis under stress conditions has been 

reported in several independent studies (Zhekisheva 

et al. 2002, Chen 2007), leading to a hypothesis that the 

biosynthesis of astaxanthin and fatty acids are coupled in 

this organism. This hypothesis was further supported by 

the fact that with the addition of the fatty acid synthesis 

inhibitor cerulenin or the carotenoid synthesis inhibitor 

norflurazon, both astaxanthin and fatty acid biosynthesis 

were abolished (Schoefs et al. 2001, Chen 2007). Astax-

anthin esterification must be the reaction that links the 

two pathways. Acyl-CoA, the presumable substrate for 

astaxanthin esterification, when in excess, may feedback-

inhibit acetyl-CoA carboxylase, a rate-limiting enzyme 

for fatty acid synthesis (Ohlrogge and Jaworski 1997). 

Presumably, the inhibition of astaxanthin synthesis by 

norflurazon may result in building up relatively excess 

amounts of acyl-CoA which may in turn inhibit fatty acid 

synthesis through a feedback inhibition mechanism. 

Likewise, the enzymes responsible for astaxanthin syn-

thesis may also be under feedback control when fatty acid 

biosynthesis is inhibited by cerulenin. Astaxanthin esteri-

fication, the key point for flux control, needs to be further 

characterized at the gene, enzyme and subcellular levels.

Physiological role of astaxanthin biosynthesis

In algae and higher plants, ROS are mainly generated 

through photosynthesis in chloroplasts (Asada 2006). Un-

der stress conditions, e.g., high light, nutrient starvation, 

and high salinity, the imbalance between generation and 

detoxification of ROS within the chloroplast may cause 

photooxidative stress. 

Astaxanthin was proposed to act as a “sunshade” to 

reduce the penetration of blue light into the chloroplast, 

thereby reducing photooxidative damage of the photo-

systems by excessive light (Hagen et al. 1994). Astaxan-

thin could also act as a physical-chemical barrier to pre-

vent DNA, RNA, enzymes and membrane lipids from ROS 

attack (Hagen et al. 1993, Kobayashi et al. 1997, Kobayashi 

and Sakamoto 1999). Astaxanthin esters were shown to 

scavenge ROS, e.g., the superoxide anion radicals (O2
-) 

and singlet oxygen (1O2) and thus may act as an antioxi-

dant agent against ROS (Kobayashi et al. 1997, Kobayashi 

and Sakamoto 1999). 

The photoprotective role of astaxanthin has been chal-

lenged since astaxanthin-rich cysts of H. pluvialis were 
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An alternative strategy for enhancing astaxanthin pro-

duction in microalgae is through random mutagenesis. 

Through chemical mutagenesis, several Haematococ-

cus mutants with improved phenotypic traits have been 

generated, and one such example is Haematococcus 

astaxanthin-hyper-accumulating mutant strain MT 2877 

(Hu et al. 2008). In the early vegetative growth stage, MT 

2877 was identical to the wild type with respect to cell 

morphology and physiology. However, the mutant grew 

faster under stress conditions with about 100% more vi-

able cells. MT 2877 also accumulated 100% more astax-

anthin, leading to a 4-fold increase in volumetric astax-

anthin productivity compared to the wild type (Hu et al. 

2008). Earlier, two H. pluvialis cell wall deficient mutants, 

MT 537 and MT 2978, have been generated by chemi-

cal mutagenesis (Wang et al. 2005). Haematococcus wild 

type cells possess thick and rigid cell walls that reduce 

considerably the bioavailability of astaxanthin to human 

and animals if whole Haematococcus cells are consumed 

without cell disruption by chemical or physical means. 

The cell wall mutants were demonstrated to significantly 

improve the bioavailability of astaxanthin. Production 

of astaxanthin using the cell wall mutants may also re-

duce downstream processing costs whereby eliminat-

ing or minimizing the cell wall disruption step which is 

otherwise required for wild type Haematococcus (Wang 

et al. 2005, Hu et al. 2006). Some mating-based breed-

ing techniques can also be applied to Haematococcus to 

improve existing or introduce new desirable traits, given 

that many Haematococcus strains vary in photosynthesis 

efficiency, growth, astaxanthin content, and susceptibil-

ity to oxidative stress or parasite attack. Any efforts along 

this line would be valuable.

Effects of environmental factors on growth and 
astaxanthin production

Growth and carotenogenesis of H. pluvialis are regulat-

ed by various environmental factors, such as light, tem-

perature and nutrients. The maximal specific growth rate 

of H. pluvialis is 0.054 h-1, corresponding to a doubling 

time of 12-13 h. Such a high growth potential occurs only 

under favorable growth conditions, e.g., low light irradi-

ance (20-50 µE m-2 s-1), optimal temperature (25-28°C) 

and replete nutrients (Fan et al. 1994). On the contrary, 

high light, high temperature, and nutrient deprivation 

(e.g., nitrogen and phosphorus) induce astaxanthin syn-

thesis while retarding cell division. High light is one of the 

most effective factors to stimulate astaxanthin synthesis 

and thus is often applied to increase astaxanthin produc-

BIOTECHNOLOGICAL IMPLICATIONS

Metabolic engineering for enhanced carotenoid 
production

Many higher plants exhibit enzymatic activity of carot-

enoid hydroxylase but not β-carotene ketolase, and as a 

result, they produce 3-hydroxy carotenoids (e.g., lutein 

and zeaxanthin) but no 4-ketocarotenoids such as astax-

anthin. Introduction of a Haematococcus β-carotene ke-

tolase gene (BKT) into a tobacco plant resulted in moder-

ate accumulation of astaxanthin (ca. 840 μg g-1 dwt) in the 

nectary tissue (Mann et al. 2000). A similar effort was made 

with a carrot plant, resulting in a comparable amount (ca. 

916 μg g-1 dwt) of astaxanthin in root tissues (Jayaraj et 

al. 2008). Expression of a Chlamydomonas BKT into Ara-

bidopsis led to the accumulation of greater amounts of 

astaxanthin (up to 2,000 μg g-1 dwt) in leaves of the trans-

genic plant, whereas the expression of C. zofingiensis BKT 

only resulted in 240 μg astaxanthin g-1 dwt (Zhong et al. 

2011). A greater amount of astaxanthin (1,600 μg g-1 dwt) 

in leaves of a transgenic tobacco was also obtained when 

the Chlamydomonas BKT was introduced (Huang et al. 

2012), suggesting that the catalytic capacity of BKT is spe-

cies-specific (Zhong et al. 2011). A much greater amount 

of astaxanthin (5,440 μg g-1 dwt) was obtained in tobacco 

leaves when a BKT and a CrtR-b gene from a marine bac-

terium Brevundimonas sp. were co-transformed into the 

plant plastid genome (Hasunuma et al. 2008). 

Lack of dominant selectable markers has hindered the 

genetic engineering of astaxanthin production in mi-

croalgae. Recently, a stable nuclear transformation sys-

tem has been established in H. pluvialis (Steinbrenner 

and Sandmann 2006) and in C. zofingiensis (Huang et al. 

2008). A modified version of PDS gene in H. pluvialis and 

C. zofingiensis has been developed as a dominant select-

able marker and was transformed into these two species 

through biolistic transformation (Steinbrenner and Sand-

mann 2006, Huang et al. 2008, Liu et al. 2009). Agrobac-

terium-mediated transformation has also been reported 

toexpress foreign genes in Haematococcus (Kathiresan et 

al. 2009). The newly developed genetic transformation 

tools for H. pluvialis and C. zofingiensis will provide met-

abolic engineering opportunities for overproduction of 

astaxanthin in these two and perhaps other microalgae. 

One possible application is to enhance astaxanthin pro-

duction in H. pluvialis or C. zofingiensis by overexpressing 

PSY and CrtR-b genes, which previously have been shown 

to be possible rate-limiting steps for astaxanthin synthe-

sis in H. pluvialis (Li et al. 2008b, 2010).
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(Boussiba et al. 1992, Olaizola 2000, Fábregas et al. 2001, 

Aflalo et al. 2007). 

During the first two days of the red-stage, considerable 

cell death (or photo-bleach) occurs, primarily to flagel-

lated zoospores, due to their higher susceptibility to pho-

tooxidative stress than non-motile palmella cells (Harker 

et al. 1996a, Sarada et al. 2002, Han et al. 2012). To prevent 

or reduce cell mortality caused by high light and nutri-

ent deprivation, the initial cell concentration in the cul-

ture must be optimized (Wang et al. 2013). The highest 

astaxanthin productivity of 17.5 mg L-1 d-1 was obtained 

at the red stage where an optimal initial biomass density 

of 0.8 g L-1 dwt was applied to an outdoor glass column 

photobioreactor (Wang et al. 2013). Greater tolerance of 

palmella than zoospores to photooxidative stress resulted 

in more than 10-fold increase in astaxanthin productivity 

(Choi et al. 2011). 

Besides the two-stage culture mode, a single-stage cul-

tivation mode has also been tested to produce astaxan-

thin in flagellates of some H. pluvialis strains in a chemo-

stat system (Del Río et al. 2005, 2008, García-Malea et al. 

2009). Under optimal light irradiance, nutrient concen-

tration and dilution rate, algal biomass productivities of 

0.7-1.9 g L-1 d-1 were obtained, corresponding to an astax-

anthin productivity of 5.6-21 mg L-1 d-1. The technical and 

economic feasibilities of this single-stage culture mode 

for mass culture of H. pluvialis remain to be seen.

Although a number of Chlorella species and strains 

have been tested for carotenoid production on labora-

tory scales, little has been done on a large-scale (Liu et 

al. 2011).

Heterotrophic and mixotrophic culture modes. H. plu-

vialis is capable of utilize organic carbon for growth in the 

absence of light, which provides the means of heterotro-

phic and mixotrophic cultivation for astaxanthin produc-

tion. Under heterotrophic conditions, H. pluvialis grows 

at a relatively low growth rate (0.22 d-1) and accumu-

lates ca. 0.5% dwt of astaxanthin (Kobayashi et al. 1992). 

Growth and astaxanthin production can be enhanced 

under mixotrophic culture conditions. A final cell density 

of 0.9-2.65 g L-1 and a maximum astaxanthin content of 

1-2% dwt were obtained from mixotrophic cultures of H. 

pluvialis (Chen et al. 1997, Zhang et al. 1999, Wang et al. 

2004a). A heterophotric-photoautotrophic culture mode 

was also explored where heterotrophic culture produced 

algal biomass, while astaxanthin production was induced 

during photoautotrophic culture. As a result, a very high 

cellular astaxanthin content of 7% by dwt, but low astax-

anthin productivities of 4.4-6.5 mg L-1 d-1 were obtained 

(Hata et al. 2001, Kang et al. 2005).

tion (Choi et al. 2002). High temperature is rarely imple-

mented to induce astaxanthin production, as it was re-

ported to severely reduce biomass yield and thus overall 

reduced astaxanthin productivity (Tjahjono et al. 1994).

Carotenogenesis in H. pluvialis can be stimulated by a 

variety of metal ions such as Fe2+, Mn2+, and Cd2+ (Harker 

et al. 1996b). All the tested metals exerted inhibitory effect 

on cell growth except Fe2+. Fe2+ was suggested to stimu-

late ROS (especially hydroxyl radicals, HO·) production 

via the Fenton reaction, which in turn trigger astaxanthin 

synthesis (Tjahjono et al. 1994). This speculation was 

supported by several lines of evidence: EDAT-chelated 

FeCl3·6H2O (a form of iron which does not cause Fenton 

reaction) did not induce astaxanthin synthesis, whereas 

potassium iodide with a capability of scavenging HO· and 

thus abolishing Fe2+-induced astaxanthin synthesis in H. 

pluvialis (Boussiba and Vonshak 1991, Kobayashi et al. 

1993). 

Astaxanthin synthesis in H. pluvialis can also be in-

duced by salinity stress. NaCl (0.1-0.5%, w/w) was used 

to increase astaxanthin accumulation in laboratory cul-

tures (Harker et al. 1996a, Sarada et al. 2002). However, 

relatively high concentrations of NaCl (0.6-0.8%, w/w) 

may cause severe cell mortality, in particularly for flagel-

lated zoospores, which limits the implementation of this 

strategy in large-scale Haematococcus culture (Harker et 

al. 1996a, Sarada et al. 2002, Cifuentes et al. 2003).

Mass cultivation of Haematococcus pluvialis and 
Chlorella zofingiensis

Photoautotrophic culture. Photoautotrophic culture 

of H. pluvialis is carried out in open raceway ponds and 

closed photobioreactors (Olaizola 2000, Carvalho et al. 

2006, Ugwu et al. 2008). Because the culture conditions 

for maximum growth and maximum astaxanthin content 

are mutually exclusive, a two-stage batch culture mode is 

commonly adopted for mass cultivation of H. pluvialis. In 

the first stage (also called ‘green stage’ because the cells 

are green), the cells are maintained in a nutrient-replete 

growth medium and exposed to low light intensity to 

promote biomass production. When the cells enter into 

the stationary growth phase, the culture is then transited 

into the second stage (also called ‘red stage’ because the 

cells are turning red from green) where the cells are sub-

jected to high light intensity and nutrient deprivation to 

induce astaxanthin production. The reported biomass 

productivities range from 0.03 to 0.6 g L-1 d-1 at the green 

stage and from 0.01 to 0.58 g L-1 d-1 at the red stage, and 

astaxanthin productivity ranged from 0.4 to 17 mg L-1 d-1 
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pretreated by a mechanical means to disrupt the rigid 

cell walls, followed by a spray-drying process to produce 

dry biomass powder. If astaxanthin is the final product, a 

conventional solvent-based extraction method or super-

critical fluid extraction can be applied to wet or dry Hae-

matococcus biomass to obtain concentrated astaxanthin 

extracts (Bubrick 1991, Mendes-Pinto et al. 2001, Nobre 

et al. 2006, Sarada et al. 2006, Krichnavaruk et al. 2008). 

CONCLUSIONS AND PERSPECTIVES

The occurrence and accumulation of astaxanthin in 

microalgae is a strategy to cope with oxidative stress. 

Astaxanthin synthesis pathways interact with multiple 

metabolic pathways such as the photosynthetic electron 

transport, fatty acid synthesis, and ROS generation. How-

ever, the molecular mechanisms mediating the crosstalk 

between astaxanthin synthesis and related metabolic 

pathways remain elusive. Recent progress in genome se-

quencing and genetic toolbox development of microalgae 

has made it possible to further address these questions. 

The new knowledge obtained from the studies of astaxan-

thin biosynthesis and stress response will be applied for 

enhanced astaxanthin production. Until now, H. pluvialis 

is still the best producer for astaxanthin although the bio-

mass productivity is relatively low. Future efforts should 

focus on increasing biomass production of H. pluvialis or 

screening for and manipulating other fast-growing algal 

strains for enhanced astaxanthin production along with 

improved phenotypic traits for various commercial ap-

plications.
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