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Abstract

Honey bees (Apis mellifera) provide a system for studying social and food-related behavior. A caste of workers performs age-
related tasks: young bees (nurses) usually feed the brood and other adult bees inside the nest, while older bees (foragers)
forage outside for pollen, a protein/lipid source, or nectar, a carbohydrate source. The workers’ transition from nursing to
foraging and their foraging preferences correlate with differences in gustatory perception, metabolic gene expression, and
endocrine physiology including the endocrine factors vitellogenin (Vg) and juvenile hormone (JH). However, the
understanding of connections among social behavior, energy metabolism, and endocrine factors is incomplete. We used
RNA interference (RNAi) to perturb the gene network of Vg and JH to learn more about these connections through effects
on gustation, gene transcripts, and physiology. The RNAi perturbation was achieved by single and double knockdown of
the genes ultraspiracle (usp) and vg, which encode a putative JH receptor and Vg, respectively. The double knockdown
enhanced gustatory perception and elevated hemolymph glucose, trehalose, and JH. We also observed transcriptional
responses in insulin like peptide 1 (ilp1), the adipokinetic hormone receptor (AKHR), and cGMP-dependent protein kinase
(PKG, or ‘‘foraging gene’’ Amfor). Our study demonstrates that the Vg–JH regulatory module controls changes in
carbohydrate metabolism, but not lipid metabolism, when worker bees shift from nursing to foraging. The module is also
placed upstream of ilp1, AKHR, and PKG for the first time. As insulin, adipokinetic hormone (AKH), and PKG pathways
influence metabolism and gustation in many animals, we propose that honey bees have conserved pathways in
carbohydrate metabolism and conserved connections between energy metabolism and gustatory perception. Thus,
perhaps the bee can make general contributions to the understanding of food-related behavior and metabolic disorders.
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Introduction

Honey bees (Apis mellifera), with their complex social structure,

remarkably plastic physiology and well-studied food-related

activities, provide a model for connections between behavior

and metabolism. Honey bee workers are essentially sterile female

helpers that perform different tasks based on their age. In the first

2–3 weeks of adult life, workers called nurses care for the brood

and other nestmates, construct wax combs and clean the nest. In

roughly their 4th week of life, workers go through a behavioral

transition and begin foraging outside the nest [1]. As foragers,

workers can bias food-collection toward proteins (pollen) or

carbohydrates (nectar). The transition to foraging behavior is

associated with changes in gustatory perception [2], food

consumption, hormone levels [3–5] and expression of genes

associated with nutrient sensitivity and metabolism in workers [6–

8]. Therefore, studies of honey bee behavioral physiology and

genetics may reveal information of general interest in food-related

behavior.

Gustatory perception is a predictor of honey bee behaviors such

as how quickly a worker transitions from nursing to foraging (i.e.,

her age at foraging onset) and her foraging bias toward nectar vs.

pollen (sources of carbohydrate vs. protein/lipid) [9,10]. A

worker’s gustatory perception, or responsiveness, can be quantified

by a standard method that involves monitoring her reflex response

to an ascending series of sucrose concentrations [11]. Workers that

respond to low sucrose concentrations have high gustatory

responsiveness, and they forage at younger ages and collect more

pollen and less nectar than bees with low gustatory responsiveness

[9]. Gustatory sensitivity can also be an indicator of the bee’s

energy status: a worker bee with higher gustatory responsiveness is

hungrier [12], and consumes more food (B. Rascon, G.V.

Amdam, unpublished data) and dies faster under starvation

conditions (M. Speth, G.V. Amdam, unpublished data) compared

to a worker with lower gustatory responsiveness.

The social behaviors of honey bees are associated with complex

energetic physiologies, suggesting that food consumption and food-

related behavior are linked to energy homeostasis. Nurse bees,
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which feed on pollen and produce highly proteinaceous food

secretions, have more abdominally stored proteins [13,14] and

lipids than foragers [15]. Experimental depletion of these stores

triggers foraging behavior [16,17]. The expression of insulin

pathway genes [6] and the adipokinetic hormone (AKH) gene [18] also

differs between the two behavioral stages. Similar differences are

found between foragers with different food preferences: compared

to nectar foragers, pollen foragers have higher 3-phosphoinositide-

dependent kinase 1 (PDK1) transcript levels in the fat body (a

functional homolog to the liver and white fat of vertebrates) [19].

PDK1 is a central kinase in the conserved insulin/insulin-like,

epidermal growth factor, and target of rapamycin (TOR) nutrient

signaling pathways [20], and PDK1 has been genetically linked to

foraging behavior [21]. Moreover, down-regulation of the insulin

receptor substrate (IRS) gene in the fat body encourages foragers to

collect more pollen and less nectar. This result provides a causal

link between nutrient sensing and foraging preference in honey

bees [8].

Established explanatory models of the nurse to forager

transition of honey bees focus on the endocrine factors juvenile

hormone (JH) and vitellogenin (Vg). JH is secreted from paired

corpora allata neurohemal organs posterior to the honey bee brain

[22], and affects development, maturation, and social behavior.

Topical application of JH on nurse bees increases their gustatory

responsiveness and causes an early transition to foraging [3,4,23].

Vg is a yolk protein precursor produced by the fat body [24,25].

Vg has several functions in workers, including immune responses

[26], oxidative stress resistance [27], and the production of

proteinaceous secretions by nurses [28]. Vg operates in a feedback

loop with JH, and appears to slow foraging onset by suppressing

JH titer [16]. Down-regulation of Vg in nurse bees increases JH

levels [29], enhances gustatory responsiveness [30], accelerates

onset of foraging and encourages bees to collect nectar [31].

JH and Vg covary with energy metabolism in several insect

species. In the fruit fly Drosophila melanogaster and the mosquito Aedes

aegypti, insulin/insulin-like signaling is a major metabolic regulator

that influences the production of yolk proteins like Vg [32–35] as

well as JH synthesis [36]. Changing JH levels can in turn influence

many metabolic processes (reviewed by Flatt et al. [37]). In honey

bees and mosquitoes, Vg synthesis is enhanced by protein

consumption [38] and inhibited by experimental interference of

TOR [39,40], a key energy sensing molecule (reviewed by Neufeld

[41]). The TOR pathway crosstalks with insulin/insulin-like

signaling [34] and is upstream of JH in honey bees [42].

Many studies, therefore, suggest connections between energy

metabolism and nutrient pathways involving Vg and JH that can

influence food-related behavior in honey bees (reviewed by Ament

et al. [43]). However, it is unclear whether and how these

connections are causal. For example, vg gene expression is

influenced by TOR [40], but does not respond to knockdown of

IRS, a central component of insulin/insulin-like signaling [8].

Depletion of JH by surgical removal of the corpora allata,

furthermore, does not block foraging behavior, but can decrease

flight muscle metabolic rate and alter worker flight behavior [44].

Overall, very few experiments have perturbed both Vg and JH.

Such experiments can clarify connections between these factors, as

well as implication for energy metabolism and food-related

behavior.

Here, we manipulated vg and a putative receptor to JH

separately and simultaneously in honey bee workers. We

monitored the behavioral predictor, gustatory responsiveness, as

well as starvation resistance; tested hemolymph carbohydrates and

fat body lipid levels, and screened fat body tissue for expression of

central metabolic genes. We predicted that gustatory perception,

and carbohydrate and lipid metabolism would be influenced by

the Vg-JH regulatory module. Manipulation of these two factors

was achieved by knocking down vg and ultraspiracle (usp) separately

and simultaneously in the fat body. Vg is the only Vg-encoding

gene in honey bees [45], while the usp gene product (Usp) is a

nuclear hormone receptor intimately involved in JH signaling and

a strong candidate for a JH receptor [46–48]. Although there is

more cumulative evidence for methoprene tolerant (Met) being a

JH receptor in Drosophila, the honey bee usp gene has a

documented function in JH signaling [49,50], and was used here

because JH (a terpenoid compound) cannot currently be targeted

directly by gene knockdown.

Our data show that the double knockdown of vg and usp causes a

mobilization of carbohydrates without changing the amount of

stored lipid in worker bees. This result suggests a specific

regulatory role of the Vg-JH module during the transition from

nursing to foraging in workers. Conserved metabolic pathways

(insulin, AKH and PKG) are influenced by the module, and we

propose they may link energy metabolism to gustatory perception

in honey bees like they do in many other animals.

Results

Validation of RNA interference (RNAi)–mediated gene
knockdown

Wild-type newly emerged worker bees (,24 h old) injected with

double stranded RNA (dsRNA) against vg, usp or both (double

knockdown) were contrasted to workers injected with an

established control solution of gfp dsRNA [30,51–53]. The gfp

gene encodes a green fluorescent protein (GFP) that is not present

in bee genomes. Honey bee gene knockdown protocols are

typically tested in the laboratory [27,29,54], where the JH

response to vg knockdown was also previously observed [29,54].

Consequently, knockdown and control bees were kept under

laboratory conditions to verify knockdown and measure JH.

Six days after treatments, vg and usp transcript abundances were

measured in individual samples of fat body (n = 21–22), which is

the most accessible tissue to dsRNA in adult honey bees [55]. Both

Author Summary

Communication between internal energetic state and taste
perception helps animals control food uptake and main-
tain normal life functions. Honey bees provide an animal
model for studies of food-related behavior, such as the role
of taste sensitivity in choice-making between carbohy-
drate- and protein-rich foods (nectar versus pollen for
honey bees). A young bee’s taste sensitivity to sugar
predicts when she begins foraging later in life and
influences her choice of foods. Vitellogenin (Vg), a protein
produced in the bee’s fat cells, and juvenile hormone (JH)
influence honey bee taste perception and food-related
behavior. Vg and JH are connected by a feedback loop,
and we perturbed this Vg–JH circuit using a double gene
knockdown approach. In response, bees became more
sensitive to sugar, had higher sugar levels in the blood,
and died faster during starvation, while lipid levels
remained constant. We identified that insulin like peptide
1 (ilp1), the adipokinetic hormone receptor (AKHR), and PKG
(the foraging gene) were altered in the bees’ fat cells after
the perturbation. Our study demonstrates a new role for
the Vg–JH circuit in honey bee carbohydrate metabolism,
and it places Vg–JH upstream of the three metabolic genes
that have conserved roles in food-related behaviors and
energy metabolism in many animals.

Vg–JH Affects Gustation and Metabolism in Bees
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vg and usp had been significantly down-regulated by RNAi

(Factorial ANOVA, vg mRNA: Fvg- (1, 83) = 47.8701, p,0.0001;

Fusp- (1, 83) = 1.1494, p = 0.2868; and usp mRNA: Fvg- (1, 83) = 3.117,

p = 0.0812; Fusp- (1, 83) = 40.603, p,0.0001). There was no

significant interaction between the vg and usp knockdown

treatments with regard to vg gene expression (Factorial ANOVA,

vg RNA: Fvg- & usp- (1, 83) = 0.9915, p = 0.3223), whereas significant

interaction between vg and usp RNAi on usp transcript abundance

suggests that the effect of usp RNAi on usp expression was

strengthened by simultaneous vg RNAi (Factorial ANOVA, usp

mRNA: Fvg- & usp- (1, 83) = 6.1010, p = 0.0155). Post-hoc analyses

revealed that vg single knockdowns had significantly reduced vg

transcript levels (Fisher LSD: p (vg- vs. gfp),0.0001), while the level

of usp mRNA did not change (Fisher LSD: p (vg- vs. gfp) = 0.6217)

(Figure 1). Similarly, usp single knockdowns had reduced usp

expression (Fisher LSD: p (usp- vs. gfp),0.0001), while vg remained

unchanged (Fisher LSD: p (vg- vs. gfp) = 0.9573). The double

knockdown treatment caused down-regulation of both vg and usp

(Fisher LSD, vg mRNA: p (vg-/usp- vs. gfp),0.0001; for usp mRNA:

p (vg-/usp- vs. gfp),0.0001) (Figure 1). The expression level of usp,

moreover, was significantly lower in double knockdowns than in

usp single knockdowns (Fisher LSD: p (vg-/usp- vs. usp-) = 0.0034),

while the vg mRNA level did not differ between the vg

single knockdown and double knockdown groups (Fisher LSD:

p (vg-/usp- vs. usp-) = 0.1451). These results validated our vg and usp

knockdowns, and showed that double knockdowns experienced

stronger suppression of usp than usp knockdowns. Usp RNAi

efficacy, therefore, may be enhanced when vg and usp are targeted

together (Figure 1).

Hemolymph JH titer
The workers’ JH titer was significantly affected by both vg and

usp RNAi when summing over the entire dataset from knockdowns

and controls (Factorial ANOVA: Fvg- (1, 55) = 8.0825, p = 0.0063;

Fusp- (1, 55) = 8.0825, p = 0.0429; n = 13–16). There was also a

significant interaction effect between the vg and usp knock-

down treatments on JH (Factorial ANOVA: Fvg- & usp- (1, 55) =

4.7481, p = 0.0336). A post-hoc analysis revealed that the double

knockdown caused a substantial increase in JH (Figure 2;

Fisher LSD: p (vg-/usp- vs. gfp) = 0.0004, p (vg-/usp- vs. usp-) = 0.0008,

p (vg-/usp- vs. vg-) = 0.0024). In contrast, the separate knockdowns

of vg and usp appeared to not affect the JH titer (Fisher LSD:

p (vg- vs. gfp) = 0.5524, p (vg- vs. usp-) = 0.5950, p (usp- vs. gfp) = 0.9751,

p (usp- vs. vg-) = 0.5950).

It was previously shown that vg knockdown can increase the JH

level in honey bees [29,54]. Therefore, we also did a targeted

analysis to evaluate whether this effect could be visible in our data.

We used a Student’s t-test to compare the JH level of the vg and usp

single knockdowns with that of the gfp controls. The test suggested

that usp RNAi did not affect JH (Student’s t-test: t (1,27) = 0.0705,

p = 0.9443), while vg RNAi caused a significant increase in the

hormone titer (Student’s t-test: t (1, 25) = 20.7512, p = 0.0461).

This response to vg down-regulation supports the repeatability of

previous experiments and the hypothesis that vg can suppress JH

[29,54]. The significant interaction we detected between the vg

and usp knockdown treatments further suggests that the release of

JH which follows after vg knockdown becomes enhanced by

simultaneous usp RNAi.

Sucrose responsiveness
After the initial validation of RNAi efficacy in the laboratory, we

moved forward to testing gustatory responsiveness, metabolic

biology, physiology, and gene expression in the field. Natural

honey bee colonies were preferred for these experiments since the

Figure 1. Single and double gene knockdown mediated by
RNAi. For validation, RNA was obtained from the fat body tissue of 7-
day old bees (Mean 6 s.e., n = 21–22). The abbreviations vg-, usp-, vg-/
usp- and gfp indicate vg single knockdown, usp single knockdown, vg
and usp double knockdown, and gfp control, respectively. By vg RNAi,
vg expression was significantly reduced without a change in usp. By usp
RNAi, usp was significantly reduced without change in vg. Both vg and
usp transcripts were reduced by vg and usp double knockdown and the
reduction of usp in double knockdowns was bigger than with the single
usp. Different letters above bars denote significant differences between
treatment groups (p,0.05).
doi:10.1371/journal.pgen.1002779.g001

Figure 2. Gene knockdown effect on hemolymph JH titer. The
circulating JH level significantly increased in vg single knockdown bees,
as well as in vg and usp double knockdowns (Mean 6 s.e., n = 13–16).
Double knockdowns (vg-/usp-) had the highest JH titers among all
treatment groups (p,0.05).
doi:10.1371/journal.pgen.1002779.g002

Vg–JH Affects Gustation and Metabolism in Bees
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sensory and metabolic traits of workers can be sensitive to social

and nutritional factors that are difficult to fully account for in the

laboratory [6,56]. Single and double gene knockdowns were

prepared like before, and the workers were transferred to colonies

after dsRNA injection.

After six days, the knockdowns (vg-, usp-, vg-/usp-) and controls

(gfp) were retrieved and exposed to water and a series of sucrose

concentrations in the laboratory to measure their proboscis

extension response (PER) [57,58]. Individual bees were assigned

a gustatory response score (GRS) based on a standard protocol

[59]. We found the main effects of vg and usp RNAi had significant

impact on GRS (Factorial ANOVA: Fvg- (1, 207) = 3.879,

p = 0.0497; Fusp- (1, 207) = 6.695, p = 0.0104; n = 33–65). Unlike

the JH results, there was no interaction effect between vg and usp

RNAi on GRS (Factorial ANOVA: Fvg- & usp- (1, 207) = 1.829,

p = 0.1777). Our post-hoc analysis (Figure 3) revealed that the

GRSs of the vg and usp single knockdowns were similar to that of

controls (Fisher LSD: p (vg- vs. gfp) = 0.6296 and p (usp- vs. gfp) =

0.3315). The double knockdown workers, on the other hand,

had elevated GRSs (Fisher LSD: p (vg-/usp- vs. gfp) = 0.0027,

p (vg-/usp- vs. usp-) = 0.0310, p (vg-/usp- vs. vg-) = 0.0116). These results

show that honey bee gustatory responsiveness is heightened when

vg and usp are knocked down together, and suggest a joint effect in

the regulation of this sensory modality by Vg and JH.

Starvation resistance
To obtain a relative measure of the workers’ metabolic reserves

[60], we quantified their starvation resistance immediately after

the GRS assay. Mortality was recorded every 3 hours.

Survival during starvation was significantly affected by RNAi

(Figure 4; Chi-square = 14.1060, df = 3, p = 0.0028, n = 31–60).

The double knockdown bees survived significantly shorter

than the controls and single knockdown groups (Cox’s F-Test: p

(vg-/usp- vs. gfp) = 0.0033, p (vg-/usp- vs. vg-) = 0.0022 and p (vg-/usp- vs. usp-)

= 0.0405), while the survival of single knockdowns and controls

was not statistically different (Cox’s F-Test: P (vg- vs. gfp) = 0.3532

and p (usp- vs. gfp) = 0.0968). These findings suggest that the vg and

usp double knockdown phenotype has a different metabolic biology

than the other treatment groups. Such differences might include

an increased mobilization rate and/or reduced amounts of

metabolic reserves like circulating carbohydrates [61,62] and

abdominal lipid stores in the double knockdowns, causing them to

be more susceptible to starvation.

Circulating carbohydrates in hemolymph and lipid
reserves in fat body

We next measured the bees’ blood (hemolymph) levels of

glucose and trehalose [61] and the amount of lipids in their fat

bodies to obtain more detailed information about their metabolic

reserves. We found a significant main effect of vg RNAi on the

glucose and trehalose titers of the bees (n = 21–23) (Figure 5A–5C;

Factorial ANOVA: glucose, Fvg- (1, 74) = 4.4310, p = 0.0387;

Fusp- (1, 74), = 2.0672, p = 0.1547; Fvg- & usp- (1, 74), = 3.5384,

p = 0.0639; trehalose, Fvg- (1, 74) = 5.6163, p = 0.0204; Fusp- (1, 74),

= 1.1438, p = 0.2883; F vg- & usp- (1, 74), = 1.0946, p = 0.2989). In

contrast, the fat body lipid content was unchanged by RNAi

(Figure 6; Factorial ANOVA: Fvg- (1, 60), = 0.2328, p = 0.6312;

Fusp- (1, 60), = 0.2447, p = 0.6226; F vg- & usp- (1, 60), = 2.0314,

p = 0.1593; n = 18–19).

A post-hoc analysis revealed that double knockdowns had a

higher glucose titer than the controls and both single knockdowns

(Fisher LSD: p (vg-/usp- vs. gfp) = 0.0241, p (vg-/usp- vs. vg-) = 0.0245,

p (vg-/usp- vs. usp-) = 0.0106), as well as a higher trehalose titer than

the controls and the usp single knockdowns (Fisher LSD: p (vg-/usp-

vs. gfp) = 0.0262, p (vg-/usp- vs. usp-) = 0.0219) (Figure 5). Neither of the

single knockdowns significantly affected the glucose (Fisher LSD:

p (vg- vs. gfp) = 0.9451 and p (usp- vs. gfp) = 0.8224) or trehalose titer

(Fisher LSD: p (vg- vs. gfp) = 0.4495 and p (usp- vs. gfp) = 0.9661). A

similar pattern held when using a combined measure of major

sugar contents in the blood, with significant main effect of vg RNAi

(Factorial ANOVA: Fvg- (1, 74) = 7.4914, p = 0.0078; Fusp- (1, 74),

= 2.1354, p = 0.1482; Fvg- & usp- (1, 74), = 2.7208, p = 0.1033;

n = 21–23) and the strongest influence of the double knockdown

(Post-hoc, Fisher LSD: p (vg-/usp- vs. gfp) = 0.0074, p (vg-/usp- vs. vg-)

= 0.0304, p (vg-/usp- vs. usp-) = 0.0042).

Collectively these findings suggest that the combined knock-

down of vg and usp has consequences for worker carbohydrate

metabolism, measured as the mobilization of the major sugars to

the blood. It is possible that vg is the main driver of these changes

since usp manipulation had no discernable effects in single

knockdowns. The effect of vg RNAi on circulating carbohydrate

levels would thus be enhanced by usp RNAi in honey bees.

Responses in associated gene networks
The fat body is the primary storage organ for metabolic reserves

in bees and most insects in general [63]. To evaluate how relevant

gene networks in this tissue responded to vg and usp knockdown,

we did a targeted expression test of insulin like peptide 1 (ilp1) and 2

(ilp2), which encode the proposed ligands of the insulin receptors of

honey bees [6]. Additional measures were taken of cGMP-dependent

protein kinase (PKG, also called the ‘foraging gene’ or Amfor), JH

esterase (JHE), adipokinetic hormone gene (AKH) and its receptor

(AKHR). PKG is associated with feeding behavior [64] and

gustatory responsiveness [65] in Drosophila, division of labor in

honey bees [66,67], as well as energy metabolism and food intake

in vertebrates [68,69]. Expression of JHE, which encodes the

primary JH-degrading enzyme in honey bees [52], was measured

to determine whether the elevated JH titers in double knockdowns

were associated with this gene. AKH (JN983824) and AKHR play

conserved roles in glucose and lipid homeostasis. AKH encodes a

Figure 3. Gene knockdown effect on sucrose responsiveness in
7-day-old bees. The gustatory responsiveness score (GRS) was
measured in the laboratory using the bees’ proboscis extension
response (PER). High GRS shows that bees responded to low sucrose
concentrations, indicating a high gustatory sensitivity. Double knock-
down bees (vg-/usp-) showed significantly increased gustatory respon-
siveness (Mean 6 s.e., n = 33–65, p,0.05).
doi:10.1371/journal.pgen.1002779.g003
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peptide hormone (adipokinetic hormone, AKH), which is a

glucagon analog primarily secreted by the corpora cardiaca (CC)

complex at the base of the honey bee brain. We therefore

examined levels of AKH and AKHR in the head capsule in addition

to levels in the fat body.

We found a significant main effect of vg RNAi on ilp1 (Factorial

ANOVA: Fvg- (1, 60) = 5.3938, p = 0.0236), while its gene expression

remained unchanged after usp RNAi (Fusp- (1,60) = 1.0064, p = 0.3198;

Fvg- & usp- (1, 60), = 0.1744, p = 0.6777; n = 16). Compared to single

knockdowns and controls, the double knockdown bees expressed

less ilp1 (Figure 7; post-hoc, Fisher LSD: p (vg-/usp- vs. gfp) = 0.0219,

p (vg-/usp- vs. vg-) = 0.3191, p (vg-/usp- vs. usp-) = 0.0574). The main effect

of vg RNAi had no significant influence on PKG expression, while

usp RNAi showed a tendency to reduce PKG (Factorial ANOVA:

Fvg- (1, 53) = 1.7569, p = 0.1907; Fusp- (1,53) = 2.8860, p = 0.0952;

Fvg- & usp- (1, 53), = 2.3039, p = 0.1350; n = 16). Our post-hoc analysis

revealed that PKG mRNA levels were significantly reduced in

double knockdowns (Figure 7; Fisher LSD, p (vg-/usp- vs. gfp) = 0.0389,

p (vg-/usp- vs. vg-) = 0.0348, p (vg-/usp- vs. usp-) = 0.0582). In contrast, none

of the RNAi treatments affected the expression of either ilp2

(Factorial ANOVA: Fvg- (1, 58) = 0.4949, p = 0.4846; Fusp- (1,58) =

1.8074, p = 0.1841; Fvg- & usp- (1, 58), = 1.1661, p = 0.2847; n =

16)(Figure 7) or JHE (Factorial ANOVA: Fvg- (1, 60) = 0.4528,

p = 0.5036; Fusp- (1,60) = 0.1323, p = 0.7173; Fvg- & usp- (1, 60), =

0.17460, p = 0.6763; n = 16) (Figure 7).

Although honey bee AKH is a predicted gene (Genbank:

GB30028-RA) [70], several AKH splice variants (likely with

different functions) are verified in insects such as Tribolium [71]

and Bombyx [72].We cloned this gene to learn its architecture in A.

mellifera, and our analysis validated a single AKH preprohormone

transcript (Figure S1, GenBank: JN983824), which we used in our

expression screen. RNAi did not affect AKH in fat body (Figure 8:

Factorial ANOVA: Fvg- (1, 44) = 0.0342, p = 0.8542; Fusp- (1, 44) =

0.1180, p = 0.7329; Fvg- & usp- (1, 44), = 0.0219, p = 0.8829, n = 12) or

head (Factorial ANOVA: Fvg- (1, 43) = 0.0920, p = 0.7626; Fusp- (1, 43) =

1.9350, p = 0.1714; Fvg- & usp- (1, 43), = 0.1650, p = 0.6883; n = 11–12).

However, we detected significant main effects of both vg and usp

RNAi on fat body AKHR levels (Factorial ANOVA: Fvg- (1, 44) =

6.7029, p = 0.0130; Fusp- (1, 44) = 1.8.5670, p = 0.0054; n = 12). The

interaction effect between vg and usp RNAi was also significant in the

case of AKHR (Factorial ANOVA, Fvg- & usp- (1, 44), = 34.3282,

p,0.0001). Here, a post-hoc analysis showed AKHR was elevated

in double knockdowns compared to single knockdowns and gfp

controls (Fisher LSD, p (vg-/usp- vs. gfp) = 0.0003, p (vg-/usp- vs. vg-),0.0001,

p (vg-/usp- vs. usp-),0.0001), while vg (Fisher LSD, p (vg- vs. gfp) = 0.0255,

p (vg- vs. vg-/usp-),0.0001) and usp single knockdowns (Fisher LSD,

p (usp- vs. gfp) = 0.0440, p (vg- vs. vg-/usp-),0.0001) reduced AKHR

compared to the controls and double knockdowns. Perhaps the

negative effect that vg and usp RNAi each has on AKHR expression

causes a compensatory response in the double knockdowns that

Figure 4. Gene knockdown effect on starvation resistance. After quantification of gustatory responsiveness (Figure 3), the bees were
monitored for 3 days under starvation stress. Survival was recorded every 3 h. The single knockdown of the vg or usp gene did not affect the survival
of the worker bees, whereas double knockdown (vg/usp) significantly shortened worker life span (n = 31–60, p,0.05).
doi:10.1371/journal.pgen.1002779.g004
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otherwise would experience an additive suppression of the AKHR

gene. Head levels of AKHR were not affected in our experiments

(Figure 8; Factorial ANOVA: Fvg- (1, 44) = 1.3263, p = 0.2557;

Fusp- (1, 44) = 2.0433, p = 0.1600; Fvg- & usp- (1, 44), = 1.0529,

p = 0.3105; n = 12), but double knockdowns showed a tentative

reduction relative to controls (Fisher LSD, p (vg-/usp- vs. gfp) = 0.0748).

In summary, our transcript screen determined that several genes

relevant to metabolic biology responded in fat body after

combinations of vg and usp knockdown. The strongest responses

were detected after double gene knockdown.

Discussion

Here, we used a single and double gene knockdown strategy to

study how Vg and JH can affect the sensory, metabolic and

behavioral biology of honey bee workers. Double gene knockdown

was previously reported for honey bee larvae [42], while our work

(this paper) represents the first successful protocol for adult bees.

Suppression of the putative JH receptor usp did not induce

measurable changes in sucrose responsiveness and worker

physiology, while the suppression of vg caused a subtle but

significant increase in JH (previously observed by Guidugli et al.

[29]). The simultaneous knockdown of vg and usp, in contrast,

Figure 5. Gene knockdown effect on hemolymph glucose and trehalose. Hemolymph titers of (A) glucose, (B) trehalose and (C) combined
glucose and trehalose. The titers in vg or usp single gene knockdown bees did not change compared to gfp control bees. In double knockdown bees
(vg/usp), the glucose titer was significantly increased (Mean 6 s.e., n = 21–23, p,0.05), the trehalose titer showed a tentative increase (p = 0.0566)
and the cumulative titer of glucose and trehalose was significantly elevated (p,0.05).
doi:10.1371/journal.pgen.1002779.g005

Figure 6. Gene knockdown effect on fat body lipid reserves.
Abdominal lipid content was measured in the same bees that were
used to measure hemolymph carbohydrate levels. Lipid content was
not affected by the single or double knockdown of vg and usp (Mean 6
s.e., n = 18–19, p,0.05).
doi:10.1371/journal.pgen.1002779.g006
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increased sucrose sensitivity, reduced starvation resistance, height-

ened glucose, trehalose and JH in hemolymph, and altered the

expression of a set of nutrient signaling genes in the fat body. The

same amount of dsRNA was used in all our experimental

treatments, which rules out the possibility that the effects of

double knockdown represent a simple dose-response to the

injected material.

Our results may contradict the previous finding that vg RNAi

affects sucrose responsiveness [30]. These two experiments,

however, were performed in different environments (Davis

California vs. Tempe, Arizona, USA) with bees of different ages

(5 vs. 7 days old). Environmental factors such as season,

temperature and nectar availability can affect gustatory sensitivity,

as does worker age [56]. Therefore, we cannot conclude that the

studies are fully comparable. It is possible that vg RNAi has

measurable sensory effects in some conditions and ages, but not

others. In comparison, the simultaneous suppression of vg and usp

had a dramatic effect on sucrose responsiveness. The outcome

may be related to the strongly elevated JH level of the double

knockdowns, since JH application can lead to elevated gustatory

sensitivity [56]. Further experimentation is required to test this

hypothesis.

Despite the open questions, our experiments were successful in

perturbing a regulatory module of honey bee biology and behavior

that relies on Vg and JH [16,31]. This perturbation had

consequences that inform about connections between Vg and

JH, and about relationships between this module, metabolic

biology, sucrose sensory perception and foraging behavior in

honey bee workers.

The relationship between Vg and JH in honey bee worker
behavioral physiology

Our study targeted the Vg and JH feedback loop of honey bee

workers that is central to the bees’ transition from nursing to

foraging. The basic ability of Vg and JH to mutually suppress each

other was confirmed in previous experiments, but their exact

relationship is poorly defined. We determined that Vg must reduce

JH other than by accelerating its degradation given that levels of

JHE, encoding the primary JH-degrading enzyme in honey bees

[52], were unaffected by RNAi. Instead, our study suggests that Vg

may inhibit JH production. This proposition can be tested in

future studies focused on the regulation of JH synthesis. Moreover,

we found a significant interaction effect of vg and usp RNAi on usp

transcript abundance and the JH titer, which suggests that the

Figure 7. Gene knockdown effect on metabolically associated genes in the fat body. Relative expression of (A) Insulin-like peptide 1 (ilp1),
(B) Insulin-like peptide 2 (ilp2), (C) cGMP-dependent protein kinase (PKG) and (D) Juvenile hormone esterase (JHE). The double knockdown of vg and usp
resulted in reduced ilp1 and PKG transcripts levels (Mean 6 s.e., n = 16, p,0.05).
doi:10.1371/journal.pgen.1002779.g007
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increase in JH induced by vg RNAi is accelerated by simultaneous

usp knockdown. Perhaps this result points to a compensatory

response to a quantitative reduction in the JH receptor. Similar

compensation is a common mechanism to overcome impaired

function of receptors in mammals [73,74]. Possibly, such

compensation was not observed after usp single knockdown

because vg remained at control levels in these bees, continuing to

suppress JH.

Usp proteins are also binding partners of the ecdysone receptor

(EcR) in insects (reviewed in [75]). Ecdysteroids were not

monitored in our experiment, as titers are generally very low in

adult worker bees and several studies suggest a loss-of-function of

the ecdysteroids in adult eusocial insects [76]. Recent research, on

the other hand, suggests that ecdysteroids can influence some

aspects of bee behavior [19,77] We cannot exclude that our usp

knockdown affected such relationships, as they were not specifi-

cally tracked in the experiments.

Metabolic biology of the nurse to forager transition
The metabolic biology of honey bee nurses and foragers differ.

In nurses, the fat body is biased toward lipid and protein

metabolism, whereas carbohydrate metabolism dominates the fat

body of foragers [18]. Similarly, we observed a mobilization of

sugars in double knockdowns, which are like foragers had an

elevated level of JH [78] and an increased susceptibility to

starvation [15]. Previous studies, moreover, have suggested that

the AKH pathway is active in foragers [18,43], and we observed

an increase in AKHR expression in double knockdowns. Therefore,

we believe that the simultaneous knockdown of vg and usp in

worker honey bees provides an informative model for the role of

the Vg-JH module in the nurse to forager transition.

What we have learned from testing this model is that although

carbohydrate and lipid metabolisms change concurrently during

the transition from nursing to foraging [17,18], the regulation of

the two systems can be decoupled. In our experiment, abdominal

lipid stores were not significantly affected by double knockdown;

these stores were equal between all treatment groups. This finding

suggests that the regulation of lipid metabolism occurs largely

independently of the Vg-JH relationship. In contrast, our results

place carbohydrate metabolism downstream of the Vg-JH

regulatory module. We propose, therefore, that the double

knockdown phenotype, which diverged from the other treatment

Figure 8. Gene knockdown effect on adipokinetic hormone (AKH) and adipokinetic hormone receptor (AKHR) genes in worker fat body
and head. Relative expression of (A) AKH, (B) AKHR in the fat body, and (C) AKH, (D) AKHR in the brain. While AKH remained unaffected, the double
knockdowns of vg and usp had significantly elevated AKHR transcript levels in fat body compared to control. The vg and usp single knockdowns, in
contrast, had lower levels of AKHR in the fat body (Mean 6 s.e., n = 12, p,0.05).
doi:10.1371/journal.pgen.1002779.g008
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groups for many characteristics including starvation resistance, is

not explained by altered lipid metabolism but by altered

carbohydrate metabolism. We speculate that an increased

carbohydrate metabolism driven by the Vg-JH module can be a

central feature in the maturational development of honey bee

foragers. It is generally known that worker bees experience a

substantial lipid loss during the transition from nurse bee to

forager, supporting a shift from lipid- to carbohydrate metabolism

[18,43].

Responses in metabolic gene networks
Our results support previous studies that suggested roles of ilp1,

AKH and PKG in the nurse to forager transition of honey bees

[18,79]. Insulin like peptides (ilps) play conserved roles in

carbohydrate and amino acid metabolisms in vertebrates and

invertebrates. In Drosophila, brain expression of ilps (called dilp

genes) regulates trehalose and glucose levels in the hemolymph

[80–82]. Patterns of ilp expression in the brain and fat body have

been suggested to explain nutritional status and behavioral

transitions in worker honey bees [6,54]. In fat body, ilp1 correlates

positively with vg when amino acids are available to worker bees

[54], but it is not fully understood how ilps regulate worker energy

metabolism and behavior. Our results suggest that ilp1 is a nutrient

sensor gene of the honey bee fat body that can be controlled by the

Vg-JH module of worker bees. JH might up-regulate ilps produced

by the fat body of Tribolium [83], but a previous study did not find

a similar connection between JH and the expression of ilp1 in

honey bee fat body cell [54]. Thus, it is unclear how closely

connected these endocrine factors are in honey bees.

Insect AKH is produced by the corpora cardiaca, paired

neurosecretory organs connected to the JH producing corpora

allata. As a functional analog of mammalian glucagon, AKH is

responsible for mobilization of carbohydrates and lipids, and

regulates the release of nutrients such as trehalose into hemolymph

in Drosophila melanogaster [84,85]. Genetic deletion of the AKH

receptor gene (AKHR) produces obese and starvation resistant flies

[84,85], while AKHR overexpression induces mobilization of

carbohydrates, but not lipids, in both Drosophila and Manduca sexta

[86,87]. In our study, double knockdown bees are characterized

by elevated AKHR expression, starvation susceptibility and

elevated carbohydrate levels in the blood, but no changes in fat

body lipid stores. Typically, nursing honey bees have about 1.4–

2.4 mg lipid per fat body [15], and our observations are within the

same range (1.5–2.2 mg lipid per fat body). This finding of normal

lipid stores in double knockdown bees suggests that the increased

amounts of AKHR mRNA in the same animals are not linked to

lipid mobilization. Instead, the overexpression of AKHR might be

more exclusively associated with carbohydrate mobilization in

honey bees. Since AKH expression remained unchanged in the

head and fat body of double knockdowns, it is also unlikely that the

increase in AKHR mRNA was paralleled by elevated AKH titers.

Instead, it appears that fat body AKHR expression can be regulated

by the Vg-JH module in worker bees, providing a candidate

mechanism that may explain how the feedback loop propels

workers from one physiological and behavioral state to the other

[16]. Furthermore, the down-regulation of AKHR by both the vg

and usp single knockdown supports placement of AKHR down-

stream of vg and usp, and highlights the complexity of AKHR

regulation.

PKG, or Amfor, is associated with foraging behaviors [79,88] in

both Drosophila and honey bees. Studies on PKG mutant flies

suggest that PKG is involved in carbohydrate metabolism and

affects AKH expression [88]. However, whether PKG is involved in

energy metabolism is incompletely understood in honey bees. We

find that PKG expression covaries with changes in honey bee

gustatory responsiveness and metabolic biology, and we provide

the first evidence that places PKG downstream of the Vg-JH

feedback relationship. Specifically, we find PKG and ilp1 are down-

regulated in the fat body in response to the simultaneous

knockdown of vg and usp. This directional change is opposite to

patterns seen in the brain, where an up-regulation has been linked

to the transition from nursing to foraging behavior. Studies suggest

the honey bee brain has metabolic patterns that are distinct from

those of other tissues including the fat body (reviewed by Ament et

al. [43]). The opposite expression patterns of ilp1 and PKG in the

brain [6,66] and fat body (this study) exemplify such tissue

specificity.

Conserved carbohydrate pathways and conserved
connection between gustatory perception and energy
metabolism

Relative to control workers, the double knockdown bees had

high blood levels of glucose and trehalose, normal fat body lipid

stores, low amounts of insulin like peptide (ilp1) mRNA and high

amounts of AKHR mRNA. Mammalian type 1 diabetes is similarly

characterized by high blood glucose, the absence of obesity,

reduced insulin production, and inadequate suppression of

glucagon secretion. The parallels between these phenotypes may

indicate that the regulatory system of carbohydrate metabolism

has conserved features that are shared between honey bees and

mammals. Similarities may also exist in the way that metabolic

processes are linked to gustatory perception. In mammals, key

metabolic regulators like leptin, insulin and glucagon [89,90], also

modulate sweet taste perception (reviewed by [91]) and taste

sensitivity [92]. Although similar connections are not equally well

understood in social insects, our study showed gustatory respon-

siveness changed substantially in response to vg and usp double

knockdown, and this could be a result of strongly elevated JH

levels. However, the metabolic genes ilp1, AKHR and PKG changed

in parallel, and interestingly, their homologues influence gustatory

perception in model animals like D. melanogaster and Caenorhabditis

elegans [65,84,93]. Therefore, an alternative hypothesis is that ilp1,

AKHR and PKG jointly affect gustatory perception and energy

metabolism in honey bees. Should this prove to be the case, it

would strengthen the similarities between insect and mammalian

control systems, enhancing the utility and desirability of using

honey bees to model basic mechanisms of carbohydrate metab-

olism, gustation and food-related behavior. These are areas of

increasing importance in studies of human metabolic syndromes

such as obesity and diabetes [94,95]. Reciprocally, perhaps

mammalian model systems can tell us more about metabolic

biology that is important for bee health and pollination services.

Materials and Methods

Preparation of dsRNA
The vg and usp genes were partially cloned and used as templates

in PCR. The PCR primers were established by previous studies

[50,96]. PCR products were purified using Qiaquick PCR

purification kit (Qiagen, Frederick, MD, USA). DsRNA was

synthesized using RiboMax Large Scale T7 RNA Production

Systems (Promega, Madison, WI, USA) following the manufac-

turer’s protocol. DsRNA toward green fluorescent protein (gfp)

sequence, which is not found in bee genomes, was synthesized as a

control from AF097553 template as before [96,97]. DsRNA

toward vg, usp, and gfp was purified using a phenol extraction.

Aliquots were run on a 1% agarose gel for verification of dsRNA
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size and purity. For injections, the dsRNA was diluted to10 mg/ml

in nuclease free water.

Bees for validation of RNAi in the laboratory
Wild-type bees were maintained at the Honey Bee Research

Laboratory at the Arizona State University Polytechnic Campus,

Gilbert AZ. Equal numbers of newly emerged bees from nine wild-

type colonies were mixed together, randomly assigned to four

treatment groups and marked with enamel paint (Testors

Corporation, Rockford, IL, USA). The bees were injected intra-

abdominally with 20 ug dsRNA against either gfp, vg [31], usp, or

both vg and usp. In total, about 50 bees were injected per group.

Bees were held for six days in three two-compartment cages: on

one side of a single wire-mesh screen were the treated bees, and on

the other side were 200 presumed nurses that had been brushed

from a comb of open brood cell containing larvae. This setup

ensured that the experimental bees received normal social

interactions and nourishment (Amdam et al., 2007). Bees in both

compartments had access to a 30% sucrose solution and pollen

dough (Crockett Honey, Tempe, AZ, USA). Fresh food was given

daily. Cages were incubated at 33uC and 70% RH. When bees

were 7-day old adults, their fat body and hemolymph were

collected and flash-frozen in liquid nitrogen for vg and usp

knockdown verification as well as JH titration.

Quantification of vg and usp expression
To validate the single and double gene knockdowns, fat bodies

were dissected from 7-day old marked bees, flash-frozen in liquid

nitrogen, and stored at 280uC until use. The standard Trizol

procedure (Promega, Madison, WI, USA) was used for RNA

extraction. Isolated RNA was treated with DNaseI (Ambion,

Austin, TX, USA) then expression levels were analyzed by a two-

step qRT-PCR [19]. RNA was diluted to 200 ng/ml for the

reverse transcription using TaqMan Reagents (Applied Biosys-

tems, Foster City, CA, USA). Relative transcript abundance in

each sample was measured in triplicates by real-time PCR (ABI

Prism 7500, Applied Biosystems). Actin (GenBank:XM_623378)

served as a reference gene because it has stable expressions in

different honey bee tissues [98,99] and is commonly used in gene

expression studies in honey bees [100,101]. The primer sequences

are listed in table 1. Data were analyzed using the Delta-Delta CT

method [102]. By monitoring negative control samples (without

reverse transcriptase) and melting curves, we verified that the

qRT-PCR assay was not confounded by DNA contamination or

primer dimmers [103].

Hemolymph JH titer
One ml hemolymph was collected from each individual 7-day

old bee. For every biological sample, 3 ml hemolymph was pooled

randomly from three individuals of the same treatment group.

Each biological sample was placed in 500 ml hexane and stored at

280uC prior to analysis. The gas chromatography/mass spec-

trometry (GC–MS) method of Bergot et al. [104] as modified by

Amdam et al. [105] was used to titer JH. Samples were eluted

through aluminum oxide columns successively with hexane, 10%

ethyl ether–hexane and 30% ethyl ether–hexane. Samples were

subjected to a second series of aluminum oxide elutions (30% ethyl

ether-hexane then 50% ethyl-acetate–hexane) after derivatization

with methyl-d alcohol (Sigma-Aldrich, St Louis, MO, USA) and

trifluoroacetic acid (Sigma-Aldrich, St Louis, MO, USA). Purified

samples were analyzed on an HP 7890A Series GC (Agilent

Technologies, Santa Clara, CA, USA) equipped with a

30 m60.25 mm Zebron ZB-WAX column (Phenomenex, Tor-

rence, CA, USA) and coupled to an HP 5975C inert mass selective

detector. Helium was the carrier gas. MS analysis occurred in the

SIM mode, monitoring at m/z 76 and 225 to ensure specificity for

the d3-methoxyhydrin derivative of JHIII. Total abundance was

quantified against a standard curve of derivatized JHIII. The

assay’s detection limit is 1 pg.

Bees for testing of sensory sensitivity, starvation
resistance, metabolic physiology, and gene expression

Newly emerged bees were obtained from nine wild-type

colonies and injected with dsRNA, following the same protocol

described above. Approximately 200 bees were injected per

treatment group, and thereafter introduced into three nucleus

hives containing four frames of honey, pollen and brood, one

queen, and a background population of about 5,000 wild-type

bees per colony.

Gustatory responsiveness
The 7-day old treated bees were collected, briefly cold

anesthetized then fastened into a metal holder allowing only head

mobility [57]. After 1 h, gustatory responsiveness was tested using

the proboscis extension response (PER) [11]. The investigator was

blind to the treatment identity of the bees. Each worker was tested

by touching both antennae with a droplet of H2O followed by a

concentration series of 0.1, 0.3, 1, 3, 10, 30% sucrose, with a

10 min interstimulus interval. A PER was noted if a bee fully

extended its proboscis when a drop of water or sucrose was

touched to each antenna. The sum of elicited PERs provided a

gustatory response score (GRS) ranging between 0 (no response)

and 7 (response to all solutions including H2O) [106].

Starvation resistance
After GRS was determined, the tested bees were kept in their

holders. The holders and bees were placed in an incubator set at

34uC and 80% HR. The bees were left unfed and the number of

survivors was noted every 3 h for 3 days for survival analysis.

Circulating carbohydrates in hemolymph and lipid
reserves in fat body

A separate set of bees were collected from the three nucleus

hives for examining two major circulating carbohydrates, glucose

and trehalose, and fat body lipid content.

Table 1. Gene primers for real-time PCR.

Gene name Forward primer Reverse primer

vg (AJ517411) GTTGGAGAGCAACATGCAGA TCGATCCATTCCTTGATGGT

usp (GB16648) GCGAAGAGAAATCCTGCATC TCCCTTTCCTTGGTACGTTG

JHE (GB15327) GGGTTGCCCTACACGTAATG CGAACGGTGTGAATGGATTA

ilp1
(GB17332-PA)

CGATAGTCCTGGTCGGTTTG CAAGCTGAGCATAGCTGCAC

ilp2
(GB10174-PA)

TAGGAGCGCAACTCCTCTGT TTCCAGAAATGGAGATGGATG

PKG (GB18394) AGTGAGTTGCCTGGTGATAG TCGACGAGCTGTCTTTGTAT

AKH
(JH983824)

CGTAAGCTTCGACCAAGTTTTT CATTCGACAACTCCGATCCT

AKHR
(GB16857)

ATAATCACCACCACGGGATT GACCTTCGTTGAATCGCATA

actin
(XM_623378)

TGCCAACACTGTCCTTTCTG AGAATTGACCCACCAATCCA

doi:10.1371/journal.pgen.1002779.t001
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Carbohydrate content was examined in 1 ml hemolymph

sample collected from each individual bee at 7-days post-

emergence. Glucose titer was measured using an enzymatic

reagent assay (Sigma-Aldrich, St Louis, MO, USA), run for

15 min at 26uC. Using a spectrophotometer (Bio-Rad xMARK

Microplate spectrophotometer), A340 was measured to determine

total glucose in each sample. To measure trehalose [107], the

enzyme trehalase (Sigma-Aldrich, St Louis, MO, USA) was added

to the hemolymph sample (final concentration is 0.05 units/ml)

and the resulting solution was kept at 37uC overnight. A second

reading of A340 was subsequently taken and the amount of glucose

produced from trehalose was calculated by subtracting the amount

in the first reading from that in the final reading. The amount of

trehalose was calculated using an equation: trehalose (mg) = Glu-

cose (mg)6342.3/(180.262). Three replicates were tested for each

sample. Final concentration was determined by reference to

standard curves.

Fat bodies were collected as well as the hemolymph, and flash-

frozen in liquid nitrogen for measuring abdominal lipid content.

Each abdomen without digestive tract and sting apparatus, was

freeze-dried, homogenized in a 2:1 chloroform:methanol solution

and dried down to final volume 200 ml. A lipid assay was

performed using 100 ml of each sample, following the protocol of

Toth et al. [15]. A525 was measured and absorbance readings were

converted to mg using a curve generated from a cholesterol

standard mix. Three replicates were performed for each sample.

Responses in associated gene networks
Fat bodies and whole heads were collected from another new set

of 7-day old marked bees in the same nucleus hives which

provided bees for detecting sensory sensitivity, starvation resistance

and metabolic physiology. The samples were flash-frozen in liquid

nitrogen and stored in a 280uC freezer until use. The same

protocols for RNA extraction, reverse transcription and real-time

PCR were used which we described above. Primers are listed in

table 1.

AKH gene cloning
Total RNA isolated from whole worker heads was used for

cloning AKH. Total RNA was treated with DNaseI (Invitrogen,

Carlsbad, CA, USA) and 59 and 39 RACE experiments were

performed using the GeneRacer Kit (Invitrogen, Carlsbad, CA,

USA) according to the manufacturer’s instructions. For the 59

RACE, a degenerate primer was used in combination with the

primer supplied with the kit. For 39 RACE, a forward primer was

used in combination with the 39RACE primers supplied with the

kit. The PCR products were cloned into a T-easy vector (Promega,

Madison, WI, USA) following the instructions. Several clones were

randomly picked and verified by sequencing. Subsequent to

sequence analysis, full-length cDNA of AKH was amplified and re-

verified by sequencing.

Statistics
Gene expression data were Log transformed to approximate

normality, as verified by Bartlett and Levene’s homogeneity test. A

full factorial ANOVA was used to test overall effects of treatment

on groups, and Fisher LSD (Least Significant Difference) tests

were used for most post-hoc comparisons. A student’s t-test was

used to detect the knockdown effects on JH titer between vg or usp

single knockdowns and gfp controls. For the survival analysis, the

frequencies of dead bees vs. total number of bees were analyzed

with a Chi-square test that contrasted groups receiving different

treatment bees. Comparisons of life spans were conducted with the

Cox’s F survival test. Analyses were performed with STATIS-

TICA 6.0 (StatSoft).

Supporting Information

Figure S1 Nucleotide and deduced amino acid sequence of Apis

mellifera AKH precursor cDNA (GenBank: JN983824). The AKH

gene consists of three exons and is organized similarly to AKH

precursors of other species [108]. A signal peptide is followed by a

single mature AKH peptide (in boldface with grey shading),

followed by the glycine required for canonical amidation and

dibasic cleavage signals (GKR). After the stop codon, there are

potential polyadenylation signals (AATAAA, AATAT and

ATTTT) and an 11-nucleotide poly (A) tail. Conserved cysteines

are shaded in grey. Putative polyadenylation signal homologies are

underlined. The A. mellifera AKH peptide is nearly identical to the

Tribalism AKH1 peptide sequence QLNFSTG(D)W-amide

[71,72], differing at the 59 end from the predicted gene

GB30028-RA (Genbank).
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