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Abstract
Childhood apraxia of speech (CAS) is a severe and socially debilitating form of speech

sound disorder with suspected genetic involvement, but the genetic etiology is not yet well

understood. Very few known or putative causal genes have been identified to date, e.g.,

FOXP2 and BCL11A. Building a knowledge base of the genetic etiology of CAS will make it

possible to identify infants at genetic risk and motivate the development of effective very

early intervention programs. We investigated the genetic etiology of CAS in two large multi-

generational families with familial CAS. Complementary genomic methods includedMarkov

chain Monte Carlo linkage analysis, copy-number analysis, identity-by-descent sharing, and

exome sequencing with variant filtering. No overlaps in regions with positive evidence of link-

age between the two families were found. In one family, linkage analysis detected two chro-

mosomal regions of interest, 5p15.1-p14.1, and 17p13.1-q11.1, inherited separately from the

two founders. Single-point linkage analysis of selected variants identifiedCDH18 as a pri-

mary gene of interest and additionally,MYO10, NIPBL,GLP2R,NCOR1, FLCN, SMCR8,
NEK8, and ANKRD12, possibly with additive effects. Linkage analysis in the second family

detected five regions with LOD scores approaching the highest values possible in the family.

A gene of interest wasC4orf21 (ZGRF1) on 4q25-q28.2. Evidence for previously described

causal copy-number variations and validated or suspected genes was not found. Results are

consistent with a heterogeneous CAS etiology, as is expected in many neurogenic disorders.

Future studies will investigate genome variants in these and other families with CAS.
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Introduction
Children with speech sound disorder (SSD) fall behind their typically developing peers in
acquiring speech that is easily understood by others. As extensively reviewed in the literature,
signs and symptoms of SSD include distortions, substitutions, omissions, insertions, errors on
the syllable or word level, and prosodic errors affecting rhythm and intonation [1–3]. Children
with disordered speech have difficulty expressing their thoughts in ways that are easily under-
stood by others [4] and experience negative perceptions on the part of their peers because of
their speech differences [5]. Several SSD subtypes have been proposed. One of these is child-
hood apraxia of speech (CAS), defined as a motor planning or programming disorder affecting
the speech production system. The American Speech-Language-Hearing Association (ASHA)
issued a position statement regarding CAS (http://www.asha.org/docs/html/PS2007-00277.
html) with the following phenotype definition, implicating the central nervous system as the
most likely locus of impairment:

Childhood apraxia of speech (CAS) is a neurological childhood (pediatric) speech sound
disorder in which the precision and consistency of movements underlying speech are impaired
in the absence of neuromuscular deficits (e.g., abnormal reflexes, abnormal tone). CAS may
occur as a result of known neurological impairment, in association with complex neurobeha-
vioral disorders of known or unknown origin, or as an idiopathic neurogenic speech sound dis-
order. The core impairment in planning and/or programming spatiotemporal parameters of
movement sequences results in errors in speech sound production and prosody.

The speech of children with CAS may be characterized by some errors commonly seen in
children with other forms of SSD but additionally, by unusual errors such as vowel distortions,
difficulty initiating or transitioning between articulatory gestures, lack of differentiation
between stressed and unstressed syllables or mis-stressing syllables, distorted substitutions, syl-
lable segregation (resulting in a staccato-like rhythm), schwa insertions, voicing errors, slow
rate, slow diadochokinetic rates, and/or increased difficulty with multisyllabic words [6]. Com-
pared to other subtypes of SSD, CAS is considered to be more severe, requiring intense and
specialized treatment [7, 8]. Children with CAS are at increased risk for reading/spelling disor-
ders [9–11]. According to one estimate, CAS is diagnosed in .01% to .02% of children in the
United States [12].

Disordered speech consistent with CAS can be part of syndromes of genetic etiology. In one
large multigenerational family referred to as the KE family, disruptions in the FOXP2 gene
(OMIM #605317) on chromosome (chr) 7 caused a severe speech disorder in the presence of
nonverbal oral dyspraxia and disordered language [13–15]. Structural and functional brain
changes were observed as well, characterized by reduced grey matter density in the caudate
nucleus, cerebellum, and inferior frontal gyrus [16] and reduced activation during a nonword
repetition task in the premotor, supplementary, and primary motor cortices and in the cerebel-
lum and basal ganglia [17]. A functionally related gene, CNTNAP2, plays a role in language
[18] and reading [19] ability. Approximately 18% of children with galactosemia (OMIM
#230400, OMIM #606999), a metabolic disease caused by mutations in the GALT gene (OMIM
#606999) on 9p13.3 [20], exhibit signs of CAS [21]. Variants in the ELP4 (OMIM #606985)
and PAX6 (OMIM #607108) genes on 11p13 have been associated with Rolandic epilepsy,
which is frequently accompanied by disordered speech consistent with CAS [22]. Duplications
of a region on 7q11.23 are associated with developmental delays, characteristic facial anoma-
lies, social anxieties, and severe delays in language and speech abilities, the latter consistent
with CAS [23, 24]. In five of nine individuals with subtelomeric or interstitial 12p13.33 dele-
tions and speech delays, the speech phenotype was consistent with CAS [25]. In a child with a
severe speech disorder characterized by apraxic traits as well as muscle weakness, we found a
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de novo heterozygous deletion of the BCL11A gene (B-cell CLL/lymphoma 11A, OMIM
#606557) on chr 2 [26], located within a larger microdeletion region associated with global def-
icits in motor development and muscle tone as well as growth retardation, intellectual disabil-
ity, absence of verbal communication, and/or craniofacial and skeletal dysmorphic features
[27–34]. Our case study suggests that BCL11A plays a role in aspects of motor planning/pro-
gramming and muscle tone required for speech.

There is evidence that in some cases, idiopathic CAS has a genetic etiology, but causal genes
have not yet been validated. In studies of three individuals with CAS, evidence from duplicated
or deleted DNA regions pointed to 16p11.2 as a candidate region [35, 36]. In a study of 24
unrelated children with CAS, 12 had copy-number variations (CNVs) on ten different chromo-
somes; findings included one 16p11.2 deletion [37]. One of the children had a FOXP2muta-
tion, and three of the CNV regions contained other candidate genes. In an exome variant study
in 10 unrelated individuals with CAS, variants of interest were found on chrs 3, 6, 7, 9, and 17,
where some participants had more than one of the variants [38]. Potentially deleterious vari-
ants were reported in genes suspected to cause CAS (FOXP1, OMIM #605515, CNTNAP2,
OMIM #604569) and genes associated with phenotypes frequently co-occurring with CAS
(ATP13A4, OMIM #606693, CNTNAP1, OMIM #602346, KIAA0319, OMIM #609269, and
SETX, OMIM #608465).

In two multigenerational families with familial nonsyndromic CAS, we showed that the
speech phenotype was associated with oral and hand motor deficits, especially when the tasks
required temporal integration of alternating-sequential movements. In the oral motor domain,
diadochokinetic (DDK) rapid repetition of multisyllabic tokens (/pata/, /taka/, and /pataka/)
was used to assess alternating-sequential functioning and the analogous hand task was rapidly
tapping two computer keys using two fingers in an alternating fashion. Less impaired was per-
formance on tasks requiring repetitive movement sequences in the oral domain (/pa/, /ta/, and
/ka/) and single key tapping in the hand domain [39]. For a parametric genome-wide linkage
analysis in one of these participating families, we used a measure of alternating-sequential
DDK ability obtained by subtracting standard scores of performance on monosyllabic syllable
repetition from standard scores of performance on multisyllabic syllable repetition as the input
variable, with a maximum possible LOD score of 1.78. Two new regions of interest were found,
one on 7q36.1-q36.3 (bp 143,723,666–159,138,663; LOD = 1.35) and one on 6p21.2-p12.3 (bp
36,632,927–64,590,642; LOD = 1.10) [40]. The 6p region overlapped with a recently identified
region of interest for dyslexia [41].

Together, these findings are consistent with a heterogeneous CAS etiology. Here, we posit
that speech development is complex and can be influenced by several genetic and environmen-
tal factors with varying levels of impact in the same individuals. Discovery of genetic risk fac-
tors of high impact may be more successful in families than in unrelated individuals because
these factors are likely to be shared by affected members of the same family.

We recently described phenotypic aspects in a multigenerational family, here referred to as
“Family A”, with familial CAS [42]. Most of the individuals with current or past CAS did not
produce their first word until age 3 years whereas first words typically emerge around the first
birthday. Their speech was difficult to understand by others until they reached age 5 to 7 years, a
milestone typically reached by age 4 years. Most of the affected family members required a mini-
mum of three years of speech therapy to acquire intelligible speech. Performance on tasks with
high sequential processing loads including multisyllabic DDK testing [43, 44], nonword imita-
tion [45–47], rapid automatic naming [48], nonword decoding [49, 50], and spelling [51] differ-
entiated between family members with and without a history of CAS, whereas there were no
group differences in tasks with low sequential processing loads. A qualitative analysis of errors
during real word and nonword imitations showed that the adults with a history of disordered
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speech produced more phoneme sequencing errors, compared to those without such a history.
These findings were interpreted as consistent with a deficit in sequential processing that was not
limited to motor programming but also manifested in linguistic and cognitive tasks. Results
were replicated in adults from five other families with familial SSD including CAS [52].

The affectation pattern in Family A is consistent with a genetic etiology of CAS. The purpose
of the present study, hence, was to investigate this hypothesis using a set of complementary
methods. Similar methods were used to investigate the same hypothesis in a second multigener-
ational family with familial CAS, here referred to as Family B, and results were compared.

Materials and Methods

Participants and Behavioral Measures
This study was conducted with the approval of the University of Washington’s institutional
review board. Adults gave written consent, parents gave written permission for their minor
children to participate in the study, and additionally, school-age children gave written assent
and preschool-age children gave oral assent. Extensive family history interviews were con-
ducted with the participating adults in each family to obtain background information regarding
presence of an SSD diagnosis and history of speech therapy services for the interviewed persons
themselves as well as other family members. In addition, each adult filled out a questionnaire
regarding her/his educational, developmental, and health history. Parents provided details
regarding the developmental history of each of their children. Copies of any available written
assessment reports were obtained. Affectation status was assigned based on this information
and, for young children who had not yet been professionally assessed for the presence of SSD,
additionally on performance on standardized and nonstandardized speech measures. In a few
cases where sufficient evidence was not available, unknown affectation status was assigned.

Family A consists of 24 members in three generations with a familial SSD consistent with
CAS (Fig 1; note that the text refers to individual ID numbers with the family identifier as a
prefix for clarity). All participants are of European descent, with a small admixture of Japanese
descent in six of the participants. Phenotypes and DNA were available for two founders, four
adult offspring and their spouses, and 13 grandchildren, 11 of whom could be classified with
respect to CAS affectation. The oldest grandchild, A-301, was unable to contribute DNA or
participate in the testing; only his developmental history was available. The proband, ID A-
304, age 10 years at the time of testing, had a history of severe CAS requiring intense and pro-
longed speech therapy. The grandfather, ID A-101, reported receiving speech services as an ele-
mentary school student whereas the grandmother, A-102, did not report receiving such
services. Both grandparents reported individuals biologically related to them with difficulties in
the area of speech and language acquisition. No written records were available regarding the
grandparents’ speech development. Two of their four participating adult offspring (A-206,
A207) had received speech services for five or more years during their early elementary and
middle school years. Of the 14 grandchildren, four (A-304, A-305, A-310, A-311) had previ-
ously been given a diagnosis of CAS and were currently receiving speech therapy or had com-
pleted their course of speech therapy, two (A-312, A-314) were diagnosed based on the speech
testing conducted as part of this study, two (A-301, A302) had been diagnosed with a mild
speech delay not consistent with CAS as preschoolers, one was too young (15 months) to be
diagnosed unambiguously, and five had never received an SSD diagnosis of any type. Details
regarding the behavioral findings have been reported previously [42].

Family B also has a history of familial CAS. The family consists of 39 members in five gener-
ations, all of European descent except for six individuals with an admixture of African Ameri-
can descent (Fig 2). DNA was available for 14 participants (B-202, B-204, B-205, B-206, B-301,
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B-302, B-303, B-308, B-311, B-404, B-405, B409, B-410, B-505). Questionnaire and interview
information was available for these participants and also for B-506 and B- 507. All of these par-
ticipants except B-206, B-405, and B-410 participated in behavioral testing.

The proband, B-403, was 14 years old at the time of testing. He was born at term after an
uncomplicated pregnancy and delivery and passed regularly scheduled health, vision, and hear-
ing checks throughout the preschool years. He began receiving speech and expressive language
services at age 2;5 due to severe delays in these areas. His diagnosis of CAS at this time was
based on severely impaired articulation skills in the presence of severe oral apraxia, not further
described in the assessment report. At age 3;8, speech testing with the Structured Photographic
Articulation Test II (SPAT-II) [53] resulted in a standard score of 66 (population mean = 100,
SD = 30; 1st percentile, far below normal limits), consistent with a severe SSD. His consonant
inventory was extremely restricted, consisting of only /d, b, m, n/. Oral motor testing showed
deficits in imitating tongue movements. Language testing using Clinical Evaluation of Lan-
guage Fundamentals-Preschool (CELF-P) [54] showed an Auditory Comprehension standard
score of 95 (37th percentile, within normal limits) and an Expressive Comprehension standard
score of 50 (1st percentile, far below normal limits). At age 5;8, the proband underwent an
occupational therapy evaluation that revealed severe fine motor deficits, especially in grasping
and eye-hand coordination skills, qualifying him for services in this area, whereas his gross

Fig 1. Family diagram for Family A. Square shape = male, circle shape = female, black fill = affected, white fill = unaffected,? = affectation status unknown,
arrow = proband, HCS = Illumina HumanCytoSNP-12v2, HCE/1-0 = Illumina HumanCoreExome-12v1-0_B. Numbers underneath each symbol are individual
IDs. Boxes around an ID identify individuals with SNP array data. Filled boxes indicate IDs that also have whole exome sequence data.

doi:10.1371/journal.pone.0153864.g001
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motor development was found to be within normal limits. Upon entering school, the proband
showed difficulty with reading and spelling. For instance, at age 8;10, when tested with the
Woodcok-Johnson Tests of Achievement III [55], he obtained a standard score of 63 in Broad
Written Language and 64 in Broad Reading (both 1st percentile). The ASHA technical report
on CAS lists a small consonant inventory, poorer expressive than receptive language skills, oral
apraxia, fine motor deficits, and difficulty with written language as frequently co-occurring
conditions (http://www.asha.org/docs/html/PS2007-00277.html). Testing at age 14 showed
severe difficulty with nonword imitation [45–47], especially in the form of rearranged pho-
neme sequences. During diadochokinetic testing, his syllable durations for the monosyllables
/pa/, /ta/, and /ka/ were longer than expected for his age, indicative of slow syllable production
speed (z = -1.11, -1.84, and -1.13, respectively), but excessively long for the trisyllable /pataka/
(z = -4.32), indicative of severe difficulties with motor planning of complex sequences.
Increased difficulty with multisyllabic diadochokinetic tasks, compared to monosyllabic tasks,
was reported in our previous studies of children and adults with CAS histories [39, 42, 52, 56].

Fig 2. Family diagram for Family B. Square shape = male, circle shape = female, black fill = affected, white fill = unaffected,? = affectation status unknown,
arrow = proband, HCE/1-1 = Illumina HumanCoreExome-12v1-1_B. Numbers underneath each symbol are individual IDs. Boxes around an ID identify
individuals with SNP array data. Filled boxes indicate IDs that also have whole exome sequence data.

doi:10.1371/journal.pone.0153864.g002
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A similar history of SSD and delays in written language was also reported by his mother, B-
302, and another relative, B-311, whereas B-409 reported a history of SSD only in the absence
of difficulties with written language, and B-405, a history of difficulties with written language
in the absence of SSD. Two family members, B-101 and B-201, both deceased, were reported to
have had severely disordered speech during childhood but written records were not available
for them or any other members in generations I and II.

Because of her concerns that the severe speech disorder could be of genetic origin, the pro-
band’s mother had sought genetic testing for the proband and herself five years prior to partici-
pating in this study. According to the clinical report, a microarray analysis of 622 loci using
1,887 BAC clones was performed on DNA derived from peripheral blood. Two interstitial
duplications, separated by a normal intervening sequence, were detected on 15q26.3 ([CTD-
3210F22, RP11-947PI-631H11]x3, [RP11-262p8, RP11-654A16]x2, [RP11-20G13, CTD-
3221M10]x3), summing to 2 Mb in size. The centromeric duplication contains the entire
FAM169B gene and the telomeric one, part of theMEF2A gene. Fluorescence in situ hybridiza-
tion (FISH) analysis using two BAC clones from the two regions (CTD-3210F22, RP11-20G13)
showed a pattern consistent with duplication. The same duplication was also found in the
mother’s DNA using microarray analysis. The clinical significance of this abnormality could
not be determined at the time of the clinical report.

Family A provided more direct phenotypic observations and fewer missing samples, com-
pared to Family B. Therefore, the main focus of this study was placed on Family A and data
from Family B were used for purposes of comparison.

Genetic and Statistical Methods
Overview. Complementary genomic approaches were selected because the genetic etiolo-

gies of CAS cases in the literature to date include not only a point mutation [13, 14, 37] but
also deletions and duplications [26, 35–37]. To investigate the presence of single, relatively rare
alleles in the families, we conducted linkage analysis. To detect duplications and/or deletions,
we performed copy-number variation (CNV) analysis. Identity-by-descent (IBD) analysis was
used to investigate more common segregating variants in Family A, where the grandfather had
received speech therapy during childhood but the possibility of childhood speech difficulties in
the grandmother could not be ruled out completely. Whole exome sequencing (WES) followed
by variant filtering was performed in both families to identify candidate variants. Because of
greater statistical power to detect linkage in Family A, compared to Family B, selected candi-
date variants were genotyped and checked for segregation in Family A only.

Genotyping and Sequencing. DNA was extracted from peripheral blood using standard
laboratory procedures. The samples passed quality control checks for sample swaps and incor-
rectly specified parentage. Because of the phenotypic overlaps with the previously described KE
family where a point mutation in the FOXP2 gene caused a severe speech and language disor-
der [13, 14], this gene was ruled out by exclusion mapping [57] prior to genome-wide analysis
procedures.

The University of Washington (UW) Center for Mendelian Genomics (CMG) provided sin-
gle nucleotide polymorphism (SNP) genotypes based on three arrays, as well as WES. In Family
A, genotypes for eight participants (Fig 1) were obtained using the Illumina HumanCytoSNP-
12v2 array (henceforth HCS) with 298,563 markers. Genotypes for these and eight additional
participants (Fig 1) were obtained using the Illumina HumanCoreExome-12v1-0_B array
(henceforth HCE/1-0) with 538,448 markers. In Family B, all 14 available DNA samples (Fig 2)
were genotyped using the Illumina HumanCoreExome-12v1-1_B (henceforth HCE/1-1) with
542,585 markers.
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In Family A, DNA samples from two cousins, ID A-304 and A-312, both with a diagnosis of
CAS and highly informative based on position in the family pedigree, and samples from the
two grandparents were selected for WES (Fig 1). Similarly, B-202, B-311, and B-404 were
selected for WES in Family B (Fig 2). Following methods previously described in detail [58],
the NimbleGen in-solution SeqCap EZ Exome Library v2.0 (Roche, Basel, Switzerland) was
used to capture the exome and adjoining regions, following the manufacturer’s instructions.
Short-read sequencing was done on an Illumina HiSeq 2000 platform.

For Family B, to evaluate whether the previously reported duplications on 15q26.3 segre-
gated with the disorder, one probe within each of the duplicated regions (Hs02820990_cn,
located within FAM169B at bp 98,981,473, and Hs01667266_cn, located withinMEF2A at bp
100,250,891), and two control probes (Hs03312008_cn at bp 97,806,447 and Hs05387770_cn
at bp 101,256,220) were typed in seven strategically selected samples.

Statistical Analyses. Prior to the SNP-based linkage analyses in the two families, power
analysis with 1,000 simulations was conducted using the SLINK package [59, 60]. Under the
assumed model of autosomal dominant inheritance, there was one case of nonpenetrance in
Family A (A-202) and one in Family B (B-308). As in other genome-wide family-based studies
with similar mode of inheritance and evidence for reduced penetrance [61], we assumed
parameters of penetrance = 0.50 in the two high-risk genotypes and 0.01 in the low-risk geno-
type. A simple reduced penetrance model similar to this that allows for sporadic cases works
well in situations where the penetrance is unknown but incomplete, outside information to
inform the parameters further is not available, and the genotype-phenotype relationship is
likely to have at least some complexity [62]. In Family A, the resulting maximum log odds
(LOD) score in the power analysis at theta = 0 was 2.75 with the grandfather coded as affected
and the grandmother, as unaffected, and 2.45 with both grandparents coded with unknown
affectation status. The maximum LOD score in Family B was 2.21. Although both these max-
ima are below the traditional LOD score requirement of 3 for declaring strong evidence of
autosomal linkage [63], this threshold was designed to be conservative, and is actually overly
conservative [64, 65]. In addition, with current easy access to sequence data, the original con-
cern about cost of follow-up no longer carries the same concern as it did when the original
threshold was proposed.

The SNP markers were checked for genotyping errors using the PLINK [66] and PEDSTATS
[67] packages and SNPs with genotyping errors were removed from the analysis. Files were for-
matted for MCMC linkage analysis and an ideal set of SNPs was chosen for a marker panel with
the Pedigree-Based Analysis Pipeline (PBAP) [68], targeting marker spacing of 0.5 centimorgan
(cM), minor allele frequency (MAF)> 0.2, and LD between markers< 0.04. Minor allele fre-
quencies (MAFs) for the SNP arrays were based on the 1000 Genomes Project Europeans
(http://www.1000genomes.org). Genetic locations (cM) were obtained from the Rutgers Maps,
Build 134 [69] to establish marker order. These positions were then converted to positions
based on the Haldane map function to comply with the requirements of the analysis methods.
Affectation status for the grandparents in Family A was conservatively set to unknown; two
additional models, each with one grandparent coded as affected, were run. MCMC-based link-
age analysis was conducted with the gl_auto and gl_lods programs of the MORGAN 3.2 package
[70–72]. The gl_lods program calculates LOD scores based on the phenotype information, pen-
etrance model, and the inheritance vectors that are estimated by gl_auto for each marker given
the available pedigree constellation, the marker data, and the genetic map. For gl_auto, the run
conditions were 100,000 total run iterations, 15% burn-in iterations, and 2,000 saved iterations.
Chromosomal regions retained for further analysis were required to have LODmax scores> 1.
The approximate 95% confidence interval (CI) about the peak was defined as the region
between the boundaries about the peak where LOD = LODmax− 1 [73].
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For CNV analyses in the two families, two sources of input were used. First, genotypes from
the exomes were entered into the Copy Number Inference from Exome Reads (CoNIFER)
package [74]. For CoNIFER-based CNV discovery, reads from each exome were split into up
to two consecutive 36mers and mapped using the single-end mode of mrsFAST [75], then
aligned to the hg19 reference genome. Reads per kilobase per million (RPKM) values were cal-
culated and targets with a median RPKM of 1 were excluded. Standardized RPKM values were
calculated and a single value decomposition (SVD) algorithm was applied. The output from
this analysis, SVD-ZRPKM, was used as the normalized relative copy number of a given exon
in a sample. To exclude naturally occurring regions that are duplicated or repeated in the
genome, CNVs were filtered using a 50% reciprocal overlap mask. The second source of input
for CNV analysis was the set of 16 Illumina HCE/1-0 (Family A) and 14 Illumina HCE/1-1
(Family B) SNP genotypes. Here, we calculated CNVs with two software packages, PennCNV
[76] and cnvHap [77]. PennCNV uses a hidden Markov model (HMM) approach, incorporat-
ing several types of information including total signal intensity, allelic intensity ratio at each
marker, distance between SNPs, and allele frequencies. To avoid biased results, we did not use
pedigree information [78]. Like PennCNV, cnvHap uses an HMM approach but additionally
incorporates chromosome-wide haplotypic information and cluster-based models of allele fre-
quencies at each marker position. Specifically regarding the previously reported deletion
regions on chrs 2 and 16 [26, 35–37], Illumina HCE/1-0 and HCE/1-1 genotypes from two
affected members per family were examined for presence of heterozygous genotypes.

In Family A only, IBD analysis was performed using the HCS genotypes and the BEAGLE
software package, Version 3.3.2 [79]. The SNP base calls were normalized to the forward geno-
mic reference strand and converted to PLINK [66] format with the participants coded as unre-
lated. The unphased genotypes of 165 unrelated HapMap3 Caucasians (CEU) were merged by
PLINK with the genotypes of the eight participants. Duplicated SNPs and SNPs with inconsis-
tent locations were deleted. The genotypes of the participants and the HapMap3 Caucasians
were phased as unrelated subjects in BEAGLE. The fastIBD routine of BEAGLE was then used
to estimate the shared haplotype frequencies among all pairs, inputting default parameters.
Ten haplotype pairs were sampled for each participant during each iteration of phasing. Very
rare shared haplotypes between pairs (a threshold of a fastIBD score of 1.0e-10) are likely to be
identical by descent. The results of ten independent FastIBD analyses were combined. Exclu-
sive regions of haplotype sharing unique to affected participants were compared to the results
from linkage analyses. Specifically, a region shared exclusively by the six affected grandchildren
selected for SNP typing was required to be shared in all 15 pairwise comparisons. To determine
IBD sharing with one of the grandparents, the region in question was required to be shared by
the grandparent and all six selected grandchildren.

Selected variants in Family A were tested for segregation using single-marker parametric
linkage analysis based on the same parameters as the genome-wide multipoint linkage analysis,
here using MERLIN [80] with customized bit size to accommodate the pedigree size. This step
was repeated for two additional models, one with the grandfather but not the grandmother
coded as affected, and one with the reverse affectation assignment.

Exome Variant Annotation, Filtering, and Single-Variant Genotyping. Exome variants
were annotated using ClinVar (http://www.ncbi.nlm.nih.gov/clinvar) and Seattle Seq 137
(http://snp.gs.washington.edu/SeattleSeqAnnotation137/HelpHowToUse.jsp), Variant Effect
Predictor, Release 76 [81, 82], and searched with GEMINI [83]. All DNA physical map loca-
tions reported in this study refer to the hg19 reference genome. In the exome sequences, an
important filtering criterion was position within regions implicated in linkage analysis. Because
of the assumption of autosomal dominant inheritance, heterozygous variant genotypes were
prioritized. In Family A, the possibility that the children inherited causal variants from either
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of the two grandparents was considered. Based on the assumption that the causative change is
relatively rare in the population, allele frequencies in control exomes obtained to date by the
National Heart, Lung and Blood Institute’s (NHLBI) Exome Sequencing Project (ESP) (http://
evs.gs.washington.edu/EVS/) and the 1000 Genomes project for European as well as all popula-
tions were consulted to prioritize MAFs of 15% or lower. To maximize reliability, variants with
read depths< 10 and variants that failed quality control by GATK [84] were excluded. The
average read depth of the retained variants was 73.5. Variants were further evaluated with
respect to their functions (e.g., missense, coding-synonymous), using the in-house Genome
Variation Server, and predicted functional effects (e.g., benign, possibly damaging), using Poly-
Phen [85] and the Combined Annotation Dependent Depletion (CADD) scores [86].

Genotyping of selected candidate variants was done using polymerase chain reactions in a
thermal cycler (DNA Engine Tetrad 2; MJ Research) followed by Sanger sequencing using an
ABI 3130xl DNA Analyzer for capillary electrophoresis and ABI BigDye fluorescent dye termi-
nator cycle sequencing kits (Applied Biosystems, Grand Island, NY). In one case, (NIPBL vari-
ant), ExoSAP-IT purified PCR products were submitted to Genewiz (Seattle, WA) for Sanger
sequencing on ABI 3730xl DNA Analyzers. To obtain genotypes of two variants from C4orf21,
ExoSAP-IT purified PCR products from all available Family B members were submitted to
GenScript (Piscataway, NJ) for sequencing on 3730xl DNA Analyzers.

For exome variant filtering and single-marker linkage analysis, we considered not only vari-
ants in the regions with positive evidence for linkage but also variants in previously reported
candidate regions for CAS [13–15, 18–24, 26, 35–38] including regions implied in reading/spell-
ing disorders due to reported comorbidities with CAS [9–11]. For exome variant filtering, vari-
ants shared by all affected individuals in one or both families were considered most plausible.

Web Resources
BEAGLE
https://faculty.washington.edu/browning/beagle/b3.html#beaglev4
cnvHap
http://www.imperial.ac.uk/people/l.coin
CoNIFER
http://conifer.sourceforge.net
GEMINI
http://faculty.washington.edu/wijsman/software.shtml
MORGAN
https://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
PBAP (Pedigree Based Analysis Pipeline)
http://faculty.washington.edu/wijsman/software.shtml
PEDSTATS
http://csg.sph.umich.edu/abecasis/Pedstats/download/
PennCNV
http://penncnv.openbioinformatics.org/en/latest/
PLINK
http://pngu.mgh.harvard.edu/~purcell/plink/download.shtml

Results

Linkage Analysis
In Family A, MCMC linkage analysis using PBAP and MORGAN resulted in two regions of
interest with peak LOD scores> 1 (Table 1 and Figs 3 and 4). With both grandparents coded
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Table 1. Regions of interest with LOD > 1 in both families.

Fam. Chr. Phys. Pos. Band cM LODmax # Genes in
Region

95% CI (bp) 95% CI
(Band)

cM # Genes in CI
Region

A 5 15,117,438–
63,394,447

p15.1-q12.3 34.3–
77.2

2.45
(2.75*)

340 15,117,438–
24,806,593

p15.1-p14.1 34.3–
44.4

60

A 17 12,582,787–
28,550,814

p13.1-q11.1 35.5–
56.1

1.79
(2.09**)

341 12,582,787–
28,550,814

p13.1-q11.1 35.5–
56.1

341

B 1 95,781,217–
154,626,705

p21.3-q21.3 118.8–
149.9

2.02 779 99,733,964–
109,352,915

p21.1-p13.2 121.7–
129.3

79

B 4 109,931,951–
131,629,960

q25-q28.3 112.4–
128.1

1.97 186 111,267,671–
131,013,140

q25-q28.2 113.8–
128.1

163

B 4 155,182,784–
175,836,048

q31.3-q34.1 149.7–
169.9

1.46 156 162,595,918–
175,443,156

q32.1-q34.1 155.6–
169.1

100

B 6 138,299,093–
147,799,122

q23.3-q24.3 140.8–
148.3

1.15 76 138,599,285–
147,799,122

q23.3-q24.3 142.5–
148.3

73

B 10 32,584,506–
56,662,603

p11.22-q21.1 60.2–
74.3

1.42 276 32,584,506–
54,037,188

p11.23-q11.22 60.2–
71.8

266

B 12 101,877,346–
115,526,747

q23.2-q24.21 115.1–
135.5

1.98 193 104,311,731–
105,281,654

q23.3-q24.11 117.7–
120.3

15

B 13 19,263,735–
23,953,924

q11-q12.12 0–11.91 1.87 101 19,263,735–
23,953,924

q11-q12.12 0–10.5 101

B 17 75,839,026–
80,986,540

q25.3 130.7–
143.8

1.44 143 75,839,026–
80,986,540

q25.3 130.7–
143.8

143

B 21 14,827,698–
16,611,077

q11.2 5.4–10.2 2.03 40 14,827,698–
16,611,077

q11.2 5.4–10.2 40

* Family A grandfather coded as affected

** Family A grandmother coded as affected

doi:10.1371/journal.pone.0153864.t001

Fig 3. Linkage results for chr 5. Solid black line = Family A with both grandparents coded as affectation
unknown; dashed black line = Family A with grandfather coded as affected; solid gray line = Family B.

doi:10.1371/journal.pone.0153864.g003
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as having unknown affectation status, a region of interest with LODmax = 2.45, the maximum
score possible under this model, was seen at the 95% CI region of 5p15.1-p14.1 (bp
15,117,438–24,806,593), containing 60 genes. When the linkage analysis for this chromosome
was run under the assumption that the grandfather but not the grandmother was affected, con-
sistent with the IBD results described below, LODmax increased to 2.75, again the estimated
maximum score given this model. When both grandparents were coded with unknown affecta-
tion status, evidence for linkage with LODmax = 1.79 was found at the 95% CI region of
17p13.1-q11.1 (bp 12,582,787–28,550,814), where 341 genes are located. When the linkage
analysis was run under the assumption that the grandmother was affected but not the grandfa-
ther, as supported by the IBD results for this region, LODmax increased to 2.09. S1 Fig shows
linkage results for all autosomes in both families.

In Family B, linkage analysis resulted in 9 linkage regions with LOD> 1 (Table 1, S1 Fig).
The regions on chrs 1, 4 (q25-q28.3), 12, 13, and 21 are more plausible than the other regions
based on the size of the region and LOD scores approaching the estimated maximum scores in
this family.

Regions with LOD scores� -2 are considered exclusionary, under the assumption of the
correct penetrance mode. Several regions and genes previously identified as loci of interest for
CAS overlapped with such regions, as follows: DCDC2 (Family B), KIAA0319 (Family B), part
of the previously reported 6p21.2-p12.3 region of interest [40] (Family B), FOXP2 (Family B),
CNTNAP2 (both families), part of the previously reported 7q36.1-q316.3 region of interest [40]
(both families), GALT [20] (both families), part of the 16p11.2 deletion region [35–37] (Family
A), and CNTNAP1 [38] (both families). Several regions of interest in one family coincided with
LOD scores� -2 in the other family (S1 Fig).

Fig 4. Linkage results for chr 17. Solid black line = Family A with both grandparents coded as affectation
unknown; dashed black line = Family A with grandmother coded as affected; solid gray line = Family B.

doi:10.1371/journal.pone.0153864.g004
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Copy-Number Variation (CNV)
In Family A, CNV analysis based on the four exomes using CoNIFER [74] and the HCE/1-0
SNP array genotypes obtained from the same four samples and 12 additional ones, using
PennCNV [76] and cnvHap [77] did not result in any deletions or duplications that segregated
with the speech disorder. In the HCE/1-0 SNP genotypes from two affected family members,
A-304 and A-311, the regions previously reported deleted in individuals with CAS on 2p16.1
[26] and 16p11.2 [35–37] contained 33.3% and 46.7% heterozygous genotypes, respectively, in
the 2p16.1 region and 5.7% and 10.9%, respectively, in the 16p11.2 region.

In Family B, the 15q26.3 duplication encompassing the FAM169B gene that had been previ-
ously identified in the proband and his mother was confirmed with our probes as well as with
the PennCNV, cnvHap, and CoNIFER procedures. The probes and results from PennCNV
and cnvHap also identified this duplication in B-202 (affected), B-206 (affectation unknown),
and B-301 (unaffected) but not in B-204 (affectation unknown) and B-311 (affected). The sec-
ond microdeletion involving part of theMEF2A gene was not confirmed with any of our CNV
methods.

No CNVs shared by the affected family members were identified with PennCNV, cnvHap,
or CoNIFER. HCE/1-0 SNP genotypes from two affected participants, B-403 and B-311, con-
tained 41.2% heterozygous genotypes in the BCL11A region. In the 16p11.2 region, they con-
tained 4.5% and 11.9% heterozygous genotypes, respectively.

Identity-by-Descent (IBD) Analysis
In Family A, regions shared IBD as estimated with BEAGLE were observed only in two regions,
5p15.2-p14.1 and 17p12-q11.2. In these regions, there was IBD-sharing by all 15 pairwise com-
parisons of the six grandchildren selected for HCS SNP genotyping and simultaneously one of
the grandparents. The region on chr 5 mutually shared IBD by all 6 grandchildren ranged from
bp 14,776,897 to 25,340,617, a region nearly identical to the 95% CI region of interest obtained
with linkage analysis. Pairwise comparisons between each of the grandparents and the six
grandchildren resulted in matches between the grandfather and each of the six grandchildren
between bp 3,265,689 and 25,390,490, and no matches between the grandmother and any of
the six grandchildren. On chr 17, pairwise IBD sharing among the six selected grandchildren
showed a region common to all 15 pairs, ranging from bp 12,348,755 to 29,783,244, again
nearly identical to the results from linkage analysis. The grandfather shared this region with
none of the grandchildren but the grandmother shared a region ranging from bp 9,614,556 to
29,943,842 with all six grandchildren.

Exome Variants in Regions of Interest Based on Linkage Analysis
In Family A, the 95% CI region of interest on chr 5 contained 15 variants, of which the grandfa-
ther carried three in the heterozygous state (S1 Table). Of these, the only variant shared exclu-
sively by the grandfather and both grandchildren was rs17285716 in CDH18 (Cadherin 18
Type 2, OMIM #603019) (Table 2). This variant has a MAF of 0.18 in 1000 Genomes Europe-
ans (0.10 in all populations combined) and a CADD score of 9.71. Two common variants car-
ried by the grandfather, rs11750538 inMYO10 (Myosin X, OMIM #601481) and rs162848 in
FAM134B (Family with Sequence Similarity 134, Member B, OMIM #613114), were shared
not only by both grandchildren but also the grandmother; theMYO10 variant was additionally
shared by B-311. The extended region with non-negative LOD scores (Table 1) contained nine
additional variants with MAF� 0.15 that were exclusively shared by the grandfather and the
two grandchildren. In addition, one rare variant located in the IL7R gene (Interleukin 7 recep-
tor, OMIM �146661) was shared by the grandfather, the two grandchildren, and all three
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exomes in Family B. Three variants shared by the grandfather and the two grandchildren were
also seen in one or two of the Family B exomes. In the entire chr 5 region of interest, no vari-
ants were seen exclusively in the grandmother and the two grandchildren.

Within the 95% CI region of interest on chr 17, the grandmother carried 111 variants in the
heterozygous state. Of these, 7 variants had MAF� 0.15 and were shared with both grandchil-
dren but not the grandfather. None of these 7 variants were found in Family B. In this region of
interest, no variants were shared by the grandfather and the grandchildren but not the
grandmother.

In Family B, within the 95% CI regions of interest, 40 variants had MAF� 0.15. Of these, 16
were shared only by the three Family B exomes; none segregated in the exomes of both families.
Also of these 40 rare variants, seven were located in one of the more compelling regions of inter-
est, which was 4q25-q28.2 for five of them and 1p21.1-p13.2 for the other two (Table 2). Two of
the chr 4 variants were rs76187047 and rs61745597, both located in the C4orf21 gene (Chromo-
some 4 Open Reading Frame 21, no OMIM number) and not found in Family A. An alias for
C4orf21 is ZGRF1 (Zinc finger, GRF-type containing 1). The rs76187047 variant is a missense
variant with a high CADD score of 25.3. It occurs in<1% of Europeans and all populations.
The other C4orf21 variant is equally rare, also has a missense function, and has a CADD score
of 7.6. The rs61732241 variant in the SYNPO2 gene (Synaptopodin-2, no OMIM number) on
chr 4 is not extremely rare and was also seen in two Family A exomes. The rs12499000 variant
in the PRDM5 gene (PR Domain-containing protein 5, OMIM #614161) was only seen in the
Family B exomes; it is not rare in Europeans. The rs6848868 variant in the KIAA1109 gene
(OMIM �611565) was also seen in one of the Family A grandchildren. The two chr 1 variants
were only rare in all populations combined and also shared by a subset of the Family A exomes.
Table 2 lists segregating variants in the 95% CI in the most compelling regions based on linkage
analysis. S1 Table lists all segregating variants in the regions of interest.

Table 2. Exome variants in the regions of interest based on linkage analysis results in 95%CI regions and regions with strongest evidence.

Fam. Chr. Gene rs ID hg19 Position MAF (1KG EUR) MAF (1KG All) CADD Carrier in Other Family

A* 5 CDH18 rs17285716 19,591,174 0.18 0.1 9.71

A** 17 NCOR1 rs61754982 16,004,888 <0.01 <0.01 4.79

A** 17 FLCN rs3744124 17,124,815 0.03 0.1 0.08

A** 17 TOM1L2 rs143069395 17,786,070 <0.01 <0.01 8.65

A** 17 EPN2 rs55883526 19,216,576 0.01 0.01 1.11

A** 17 KSR1 rs2293180 25,909,816 0.12 0.17 9.37

A** 17 TNFAIP1 rs145418568 26,671,614 0.01 <0.01 0.15

A** 17 RPL23A rs2288595 27,052,358 0.07 0.11 1.59

A** 17 NEK8 rs200972000 27064924 <0.01 <0.01 15.47

B 1 VCAM1 rs3176878 101,203,698 0.15 0.13 0.01 102, 312

B 1 COL11A1 rs17127270 103,405,892 0.18 0.12 0.38 101. 304

B 4 C4orf21 rs76187047 113,506,711 0.01 0.02 25.30

B 4 C4orf21 rs61745597 113,544,993 0.01 0.02 7.57

B 4 SYNPO2 rs61732241 119,952,955 0.11 0.04 8.81 101, 304

B 4 PRDM5 rs12499000 121,706,201 0.27 0.14 10.32

B 4 KIAA1109 rs6848868 123,150,286 0.08 0.03 10.64 312

* Consistent with inheritance from the grandfather

** Consistent with inheritance from the grandmother

doi:10.1371/journal.pone.0153864.t002
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Exome Variants in Other Regions of Interest
In 17 previously reported regions or genes of interest for CAS [13–15, 18–24, 26, 35–38], vari-
ants with MAF� 0.15 shared by one grandparent and both grandchildren in Family A or all
three exomes in Family B were only seen in the 6p21.2-p12.3 region of interest, the 7q11.23
duplication region, the 7q36.1-q38.3 region of interest, and the Senotaxin (SETX; OMIM #
608465) gene on chr 9. Most of the variants in 6p21.2-p12.3 were seen in the Family B exomes,
whereas the variants in the 7q11.23 duplication region were seen in Family A. One variant,
rs386701097 in the Polycystic and Hepatic Disease 1 (PKHD1; OMIM # 606702) gene, was
seen in all exomes except the grandmother in Family A. S2 Table lists variants segregating in
the exomes of either of the two families and carriers in the other family.

Selected Candidate Variants
In the single-marker linkage analysis in Family A, the highest LOD score, 2.45, was obtained
for rs17285716 in the CDH18 gene in the 95% CI region of interest on chr5p15.1-p14.1 when
both grandparents were coded as unknown affectation status and 2.75 when the grandfather
was coded as affected (Table 3). AMYO10 variant in the 5p region of interest had a LOD score
of 1.24 regardless of the affectation coding of the grandparents. A variant in the NIPBL gene
(Nipped-B-Like; OMIM �608667) in the extended 5p region of interest had a LOD score of
1.14 when the grandfather was coded as affected. The second highest LOD score, 1.49, was
obtained for two variants on chr 17, rs61754982 (Nuclear Co-receptor Repressor 1, NCOR1;
OMIM #600849) and rs3744124 (Folliculin, FLCN; OMIM #607273), with an increase to
LOD = 1.79 when the grandmother, who carries the variants, was coded as affected. Also in the
linkage region on chr 17 and inherited from the grandmother, an unannotated variant at posi-
tion 27,064,924 in the NEK8 gene (Never in Mitosis A-Related Kines 8, OMIM #609799) had a
LOD score of 1.20, increasing to 1.50 when the grandmother was coded as affected. Variants in
the SMCR8 gene (Smith-Magenis Syndrome Chromosome Region, candidate 8; no OMIM #)
and the GLP2R (Glucagon-Like Peptide 2 Receptor, OMIM #603659)) gene also showed
increased LOD scores when the grandmother was coded as affected. Two variants from genes
outside the regions of interest, Ankyrin Repeat Domain 12 (ANKRD12, OMIM # 610616) and

Table 3. Family A LOD scores from single-marker analysis for variants with LOD > 1. See S3 Table for all tested markers.

Chr.
Band

Gene rs ID CADD hg19
Position

Rationale LOD (Grandp. Aff.
Unknown)

LOD (Grandf.
Aff.)

LOD (Grandm.
Aff.)

5p15.1 MYO10 rs396514 8.27 16,794,916 Linkage ROI 1.24 1.24 1.24

5p14.3 CDH18 rs17285716 9.71 19,591,174 Linkage ROI;
exomes

2.45 2.75 0.88

5p13.2 NIPBL NA 10.98 37,064,663 Linkage ROI 0.87 1.14 -0.09

12p13.33 CACNA1C rs216008 10.35 2,721,137 Cand. gene for
dev. dis.

0.90 -0.23 1.19

17p13.1 GLP2R rs1113915 (intron) 9,770,685 Linkage ROI 1.06 -0.42 1.35

17p11.2 NCOR1 rs61754982 4.79 16,004,888 Linkage ROI;
exomes

1.49 -0.03 1.79

17p11.2 FLCN rs3744124 0.08 17,124,815 Linkage ROI;
exomes

1.49 -0.03 1.79

17p11.2 SMCR8 rs8080966 9.13 18,220,674 Linkage ROI 0.96 -0.31 1.25

17q11.2 NEK8 NA 15.47 27,064,924 Linkage ROI 1.20 -0.28 1.50

18p11.22 ANKRD12 rs116726679 0.60 9,255,539 Dyslexia cand.
gene

1.09 1.38 -0.34

doi:10.1371/journal.pone.0153864.t003
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Calcium Channel, Voltage-Dependent, L Type, Alpha-1C subunit (CACNA1C, OMIM
#114205), also showed increased LOD scores> 1 when the grandmother or the grandfather
were coded as affected, respectively. The ANKRD12 variant has predicted downstream effects
and the CACNA1C variant is synonymous. The average number of risk alleles across these 10
variants in the affected and unaffected members, respectively, was 11.25 (range: 9,12) and 4.8
(range: 3, 7), not counting the grandparents and the obligate carrier.

In Family B, the C4ord21 variants, both of which are rare and deleterious, were linked and
found in all affected family members, one unaffected member, and three members of unknown
affectation, one of whom, B-405, had a history of difficulties with written language. The average
number of risk alleles among the affected and unaffected members, respectively, was 2 (no vari-
ation) and 0.4 (range: 0, 2).

Table 3 summarizes the results from Sanger genotyping and single-marker linkage analysis
for all markers with single-marker LOD scores> 1 in Family A. S3 Table shows results for all
tested markers. Tables 4 and 5 summarize the number of risk alleles in the Family A and B
members, respectively, by variant and affectation status.

Discussion
The purpose of this study was to investigate the genetic etiology of a severe form of speech
sound disorder, childhood apraxia of speech (CAS), in two multigenerational families. We
used complementary approaches and compared the results from the two families to each other
and to previously described findings in individuals with CAS. Results are consistent with differ-
ent genetic etiologies in the two families as well as a heterogeneous etiology more broadly,
because previously reported candidate genes were not confirmed in either of the two families.

In Family A, linkage analysis resulted in two regions of interest located at 5p15.1-p14.1 and
17p13.1-q11.1, both of which overlapped partially with regions that provide exclusionary

Table 4. Number of risk alleles in Family Amembers.

ID Aff. MYO10 CDH18 NIPBL CACNA1C GLP2R NCOR1 FLCN SMCR8 NEK8 ANKRD12
rs396514 rs17285716 NA rs216008 rs1113915 rs61754982 rs3744124 rs8080966 NA rs116726679

101 (GF) 1 1 1 0 0 0 0 1 0 1

102 (GM) 1 0 0 1 2 1 1 2 1 0

206 Aff. 1 1 1 1 1 1 1 1 1 1

207 Aff. 1 1 1 1 1 1 N/A 1 1 1

304 Aff. 1 1 1 1 1 1 1 1 1 1

305 Aff. 1 1 1 1 1 1 1 1 1 1

310 Aff. 1 1 1 1 2 1 1 1 N/A 1

311 Aff. 1 1 0 1 1 1 1 1 1 1

312 Aff. 1 1 1 1 2 1 1 1 1 1

314 Aff. 1 1 1 2 1 1 1 2 1 1

202 Unaff.; OC 0 1 1 1 1 1 N/A 2 1 1

201 Unaff. 1 0 0 1 0 0 0 0 0 1

204 Unaff. 1 0 0 0 1 1 1 1 1 1

205 Unaff. 2 0 0 1 1 0 0 0 0 0

208 Unaff. 2 0 0 1 0 0 0 1 0 0

303 Unaff. 1 0 0 0 0 1 1 1 1 1

309 Unaff. 2 0 0 1 2 0 0 0 0 0

302 Unk. 0 0 0 1 0 0 N/A 1 0 2

313 Unk. 2 0 0 2 2 1 1 1 1 1

doi:10.1371/journal.pone.0153864.t004
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evidence in Family B. The results from linkage models with one or the other of the grandpar-
ents coded as affected, IBD testing, exome variant analysis, and genotyping the candidate vari-
ants in the whole family suggest that affected individuals in the family inherited the
5p15.1-p14.1 region from the grandfather and the 17p13.1-q11.1 region, from the grand-
mother. According to the family interviews, the grandfather but not the grandmother had
undergone speech therapy as a child, although both had biological relatives with difficulty in
the area of speech and language. It is therefore plausible to suspect that the region of interest
on chr 5 harbors one or more variants influencing speech development, whereas the region of
interest on chr 17 may harbor variants influencing other inherited traits in the family or may
represent a false positive result. Alternatively, it is possible that variants in the 17p13-q11.1
region or both of these regions influenced speech development in the affected family members.
The comparison of risk alleles in both regions and additional candidate loci in the affected and
unaffected members of the family shows that the affected group had more than twice as many
risk alleles as the unaffected group. This finding is consistent with multiple factors influencing
the phenotype, possibly with additive effects, similar to findings in other neurological disor-
ders. The unaffected obligate carrier had the risk allele of most of these loci; the reasons for her
lack of speech difficulties are not clear.

In the single-marker linkage analysis, the highest obtainable LOD score of 2.75, as esti-
mated by power analysis with one grandparent coded as affected, was seen for only one tested
variant, rs17285716 in the CDH18 gene located in the 5p15.1-p14.1 region of interest. This
variant is synonymous but has a high conservation score based on 100 vertebrates basewise
conservation score by Phylop and a high GERP score based on 35 mammalian alignments,
and its scaled CADD score of 9.71 places it close to the top ten percent of variants in pathoge-
nicity. Synonymous variants have been implicated in other disorders, for instance in a par-
kinsonian disorder where a synonymous variant was associated with exon skipping [87].
CDH18 is specifically expressed in the central nervous system and is thought to influence
synaptic adhesion, axon outgrowth, and axon guidance, thus regulating the development of
the central nervous system [88–90]. The Allen Human Brain Atlas (AHBA; http://human.
brain-map.org/) [91] shows maximum CDH18 expression levels throughout the cerebellar

Table 5. Number of risk alleles in Family Bmembers.

ID Affectation C4orf21 C4orf21
rs61745597 rs76187047

404 Aff. 1 1

302 Aff. 1 1

409 Aff. 1 1

311 Aff. 1 1

303 Unaff. 0 0

205 Unaff. 0 0

505 Unaff. 1 1

410 Unaff. 0 0

301 Unaff. 0 0

308 Unaff.; OC 1 1

204 Unkn. 1 1

206 Unkn. 0 0

405 Unk. OC 1 1

202 Unk. OC 1 1

doi:10.1371/journal.pone.0153864.t005
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cortex. A DECIPHER (https://decipher.sanger.ac.uk) [92] search yielded 44 syndromic cases
with CNVs involving CDH18 including a case with apraxia, speech and language develop-
ment, hyperactivity, intellectual disability and a 2.95 Mb duplication partially involving
MY010 and CDH18, and a case with attention deficit hyperactivity disorder, speech apraxia,
and a 6.96 Mb deletion ranging from DNAH5 to part of CDH18. Speech and language pheno-
types were noted in two additional cases with CDH18 CNVs.

It is possible that CHD18 influences speech development by acting in concert with other,
functionally related genes via regulatory mechanisms. The functional network of CDH18
includes 15 cadherin genes (CDH1 through CDH13, CDH17, and CDH24), all influencing cell
adhesions, as well as three cadherin-associated protein genes, CTNNA1, CTNNB1, and
CTNND1); four of these genes are expressed in the cerebellum. The 5p region of interest har-
bors two of the cadherin genes, CDH12 (OMIM #600562) and CDH10 (OMIM #604555), as
well as theMYO10 gene, where one variant had a single-marker LOD score of 1.24 regardless
of affectation status of the grandparents, both of whom are carriers.MYO10 encodes a protein
that belongs to the myosin superfamily and is expressed in epithelia-rich tissues [93]. Its pro-
tein product is expressed in many tissue types; in the central nervous system, the AHBA shows
high gene expression levels in the basal ganglia and the thalamus.MYO10 plays a role in axon
development, neurite outgrowth, and radial neuron migration in the developing cortex and
cell-matrix adhesion [94]. One variant in the NIPBL gene on 5p13.2 has no dbSNP rs number
and is extremely rare in the population, found neither in the deep population sequencing ESP
(n = 6,503) nor in 1000 Genomes. NIPBL codes for a protein necessary for the cohesion of sis-
ter chromatids during mitosis [95] and is disrupted by some translocations in Cornelia-de-
Lange syndrome [96]. This gene is expressed in many tissue types including brain. The AHBA
shows maximum expression levels in the basal ganglia, cerebellum, and corpus callosum.

Additional support for the 5p15.1-p14.1 region of interest is found in the autism literature,
where common variants in this region have been implicated [97, 98]. Autism spectrum disor-
der and CAS co-occur in proportions of cases greater than expected by chance [99].

The second highest single-marker LOD score, 1.79, was seen for two variants in the
17p13.1-q11.1 region of interest with the grandmother coded as affected, rs61754982 in
NCOR1 and rs3744124 in FLCN. NCOR1 is involved in thyroid hormone and retinoid acid
repression [100]. The AHBA shows maximum expression levels in the basal ganglia and the
cerebellar cortex. DECIPHER lists 20 syndromic cases with CNVs involving NCOR1 including
one with truncal ataxia, one with apraxia, and one with delayed speech and language develop-
ment. FLCNmutations are implicated in Birt-Hogg-Dube syndrome [101], a disease involving
fibrofolliculomas, renal tumors, lung cysts, and pneumothorax. The AHBA shows maximum
expression levels in the dentate gyrus and the cerebellar cortex. DECIPHER lists 92 syndromic
cases with CNVs involving FLCN including 10 cases with delayed speech and language devel-
opment. Also in the linkage region on chr 17 and inherited from the grandmother, an unanno-
tated variant in the NEK8 gene had a LOD score of 1.50 when the grandmother was coded as
affected. NEK8 is expressed in various brain regions including cerebellar nuclei and is thought
to play a role in fetal organ development and polycystic kidney disease [102]. A variant within
the SMCR8 gene in the Smith-Magenis Syndrome region was also inherited from the grand-
mother. This syndrome is characterized by a diverse set of traits including mild intellectual dis-
ability, delayed speech and language abilities, distinctive facial features, abnormal sleep
patterns, and challenging behaviors. Only the speech trait fits the phenotypic profile observed
in Family A. Also inherited from the grandmother was a variant in the GLP2R (glucagon-like
peptide 2 receptor) gene, which plays a role in intestinal growth and nutrient absorption.
According to the AHBA, SMCR8 expression is widely dispersed throughout regions of the
brain whereas GLP2R is mainly expressed in cortical regions. Of five cases with CNVs
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involving GLP2R listed in DECIPHER, a 2.45 Mb deletion was associated with autism and
delayed speech and language development.

Single-marker linkage analysis resulted in LOD scores> 1 for variants in two genes outside
the regions of interest from linkage analysis. ANKRD12 is located within a dyslexia candidate
region, DYX6, on 18p11.22. It is expressed in many tissues including brain [103], most strongly
in the cerebellar cortex according the AHBA. A single-point LOD score of 1.38 when the
grandmother was coded as affected was obtained for rs116726679 within this gene. This variant
is synonymous with predicted downstream effects. CACNA1C is involved in cellular processes
including contraction and electric signaling [104]. Channelopathies associated with CACNA1C
have been observed in psychiatric disorders [105], although these were not reported for Family
A. According to the AHBA, strongest expression levels are in the thalamus. This variant is syn-
onymous. A LOD score>1 was only seen when the grandmother was coded as affected.

In Family B, the two most plausible exome variants, rs61745597 and rs76187047, are located
in the C4orf21 (ZGRF1) gene. These highly deleterious variants are linked and carried by all
affected members, the three obligate carriers (two with unknown affectation and one unaf-
fected), and only one other unaffected member; they were not found in four unaffected mem-
bers and one member with unknown affectation. One carrier with unknown speech affectation
status had a history of written language difficulties, raising the possibility of variable expressiv-
ity. C4orf21 is not yet well characterized in terms of function and functional networks. One
paralogous protein is encoded by SETX, one of the genes of interest for CAS [38]. Although
SETX is not located within a region with positive evidence for linkage, the grandfather and the
two grandchildren in Family A share a rare variant in this gene. SETX is associated with auto-
somal recessive spinocerebellar ataxia-1 and ataxia-oculomotor apraxia-2 [106]. C4orf21may
encode similar functions related to motor praxis. Similar to the most plausible genes in Family
A, C4orf21 is highly expressed in the cerebellum. Of 10 cases with CNVs involving this gene
listed in the DECIPHER database, one, a 23 Mb deletion, is characterized by craniosynostosis
and delayed speech and language.

Because CDH18, several functionally related genes, C4orf21, and other genes of interest in
both families are strongly expressed in the cerebellum, it is possible that genetic influences con-
verge on the cerebellum, producing downstream effects on speech and other behaviors. The
cerebellum plays a crucial role not only in complex motor processes but also in linguistic and
cognitive activities, observable in infants during speech perception [107] and in children and
adults during tasks requiring sequential processing such as applying syntactic rules [108, 109].
Cerebellar anomalies were implicated in functional and structural imaging studies of the KE
family with severe CAS caused by a FOXP2mutation [16, 17]. The deficits in motor sequencing
as well as those in linguistic and cognitive tasks observed in our CAS studies [39, 42, 52] are
consistent with cerebellar involvement, although brain imaging data were not collected.

Only two variants, rs2228141 in the IL7R gene, located in the 5p region of interest but out-
side the 95% CI, and rs386701097 in the PKHD1 gene in a region previously reported as a
region of interest, were shared by all relevant samples in both families (one grandparent and
both grandchildren in Family A and all Family B exomes). IL7R plays a role in the immune sys-
tem and is implicated in multiple sclerosis, whereas PKHD1 influences kidney and liver func-
tions. It is uncertain whether these variants contributed to the phenotype.

We found no evidence of causal CNVs in either of the families. In Family B, one region of a
previously identified duplication on 15q was confirmed in the proband and his mother, but
was not found in an affected family member, making it unlikely to be causal in this family.
CNVs occur frequently without any pathogenic effects [110]. In the two families, we found no
evidence for CNVs that had previously been reported to associate with CAS [23, 26, 35, 36],
and we also effectively ruled out deletions in the 2p16.1 and 16p11.2 regions by showing

Candidate Variants for Childhood Apraxia of Speech

PLOS ONE | DOI:10.1371/journal.pone.0153864 April 27, 2016 19 / 27



heterozygous genotypes in affected family members of both participating families in these
regions. Similarly, we found no evidence for most of the previously reported validated or candi-
date single nucleotide variations [13, 14, 38]. Exceptions are the SETX variant in Family A, var-
iants in regions of interest in 6p21.2-p12.3 (Family B), 7q11.23 and 7q36.1-q36.3 (Family A).
Whether or not these variants contributed to the phenotype is uncertain.

Taken together, our results are consistent with the hypothesis that the CAS phenotype,
like many other neurological phenotypes including Alzheimer’s disease and autism spectrum
disorder, is a complex and genetically heterogeneous disorder with several discoverable vari-
ants, each of which segregates and confers risks of varying levels of impact. The authors of a
recent study of an extended family with Alzheimer’s disease report multiple segregating risk
factors of high impact including ApoE4 and TREM2, where the effects of the variants were
interpreted as additive [111]. Multiple-hit risks for autism spectrum disorder have been
observed in a sporadic case [112]. In simplex cases and multigenerational families with
autism spectrum disorder, imbalances in multiple genes were found to contribute to the dis-
ease state [113]. We posit that we discovered at least one variant of high impact in each of the
two families but that there may be other factors influencing the trait. Whether or not dis-
tinctly different genetic etiologies have clinical implications for diagnosis and therapy
remains to be investigated.

Ongoing efforts to characterize the genetic etiology of CAS and other forms of speech sound
disorders will lead to early identification of infants at genetic risk and motivate the develop-
ment of effective preventative measures. Detailed knowledge of genotype-phenotype associa-
tions will also provide the basis for subtype-specific, customized therapy approaches.

Limitations and Future Directions
Learning to speak is a complex task thought to be influenced by many variables related to
genes and environment. Additional sources of variability in the phenotype of the affected fam-
ily members are their relative ages and type and duration of intervention. It is possible that
individuals who married into the family contributed additional genetic risk factors that modi-
fied the speech development in the children, potentially adding genetic heterogeneity.

The assumptions underlying the present study included relatively low allele frequencies, few
causal variants, and heterozygous genotypes exclusively shared by the affected family members.
If CAS were the result of many variants, each common and of very small effect, then our meth-
odology would be unsuitable to identify them. Similarly, it is possible that one or more causal
variants reside outside the exome in regulatory DNA regions, in which case we would have
been unable to detect them.

We obtained CNV data from two sources (exomes, SNP array) and three algorithms (CoNI-
FER, cnvHap, PennCNV). It is possible that some CNVs were missed or reported as false
positives.

Future plans include investigating these and other multigenerational families with severe
forms of speech sound disorder consistent with CAS using whole genome sequences of all
informative family members to look for segregating variants. Such studies have the potential to
identify causal variants, even in cases of polygenic etiologies where multiple genes, each of
moderate effect, shape the ability to learn to speak. In addition, we will investigate samples
from many smaller families for shared variations, as these families would not provide sufficient
statistical power for linkage analysis in individual families but pooled together, they would pro-
vide useful data toward discovery of contributing variants. Efforts to characterize the genetic of
CAS and other forms of speech sound disorders will lead to early identification of infants at
genetic risk and motivate the development of effective preventative measures.
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