
entropy

Article

Generalized Einstein’s Equations from Wald Entropy

Maulik Parikh 1,* and Sudipta Sarkar 2

1 Department of Physics and Beyond Center for Fundamental Concepts in Science, Arizona State University,
Tempe, AZ 85287, USA

2 Indian Institute of Technology, Gandhinagar, Gujarat 382424, India; sudiptas@iitgn.ac.in
* Correspondence: maulik.parikh@asu.edu; Tel.: +1-480-727-8081

Academic Editor: David Kubiznak
Received: 26 February 2016; Accepted: 17 March 2016; Published: 31 March 2016

Abstract: We derive the gravitational equations of motion of general theories of gravity from
thermodynamics applied to a local Rindler horizon through any point in spacetime. Specifically, for
a given theory of gravity, we substitute the corresponding Wald entropy into the Clausius relation.
Our approach works for all diffeomorphism-invariant theories of gravity in which the Lagrangian is
a polynomial in the Riemann tensor.
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1. Introduction

It has long been an attractive idea that gravity is not fundamental but, rather, emerges out of some
more fundamental constituents. This concept dates back to Wheeler’s ideas on pre-geometry and to
Sakharov’s proposal on induced gravity. A more modern version of this is the gauge/gravity duality
of string theory in which gravity is described by a gauge theory that lives in one dimension less; since
the gauge theory does not itself contain the spacetime metric as a fundamental dynamical field, from
this point of view, gravity is emergent.

A great advance in the emergent gravity paradigm was made by Jacobson [1]. Jacobson considered
the puzzling fact that the laws of black hole mechanics, derived in classical general relativity,
seem mysteriously to anticipate the laws of black hole thermodynamics, derived in semi-classical
gravity. Rather than trying to explain how classical laws could “know about” quantum-mechanical
ones, Jacobson reversed the logic, regarding the thermodynamics to be a premise rather than a
consequence. Quite remarkably, by assigning the thermodynamic properties of black hole horizons to
local light-cones in spacetime (not necessarily near a black hole), the Einstein equation re-appears as
an equation of state. This seems to suggest that gravity arises in some thermodynamic approximation
through the coarse-graining of some underlying microscopics.

The question arises whether this alluring result is somehow an artifact of Einstein gravity, or
whether the connection between thermodynamics and gravity goes deeper, persisting also in general,
higher-curvature theories of gravity. But extending the original derivation to higher-curvature theories
is nontrivial, in part because that derivation makes use of the Raychaudhuri equation, whose usefulness
is obscured in higher-curvature theories: the Raychaudhuri equation relates the derivative of the
expansion of the horizon to the Ricci tensor, but a simple relation between the Ricci tensor and the
stress tensor holds only for Einstein gravity. Moreover, in generic theories of gravity, the entropy is not
simply proportional to the area.

In this paper, we obtain the classical gravitational equations from thermodynamics without
making use of the Raychaudhuri equation. Specifically, we show that the classical equations of gravity
follow directly from the Clausius relation, δS “ δQ{T. Here for S we use Wald’s definition of entropy,
which is the entropy (in place of A{4) that satisfies the first law of thermodynamics in higher-curvature
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theories. Our result suggests that classical gravitation always appears to have a quite intriguing
thermodynamic origin. This provides support for the idea that gravity might be emergent; however,
it should be clarified that the sense in which the word “emergent” is used in the gravitational literature
is weaker than in condensed matter: no properties of the microscopic theory are invoked here, and the
only place where coarse-graining is indicated is in the Planckian units in which geometric entropy
is defined.

2. Results

2.1. General Theories of Gravity

Consider a general diffeomorphism-invariant theory of gravity in any number of dimensions.
For simplicity and convenience, we will assume that the Lagrangian is a polynomial in the Riemann
tensor but does not involve its derivatives. One may regard the Lagrangian formally as dependent on
both the metric and the Riemann tensor even though of course the Riemann tensor depends on the
metric [2,3]. Specifically, let the action be

I “
1

16π

ż

dDx
a

´gLpgab, Rabcdq ` Imatter. (1)

We have set Newton’s constant to unity. Define

Pabcd “
BL

BRabcd
. (2)

Pabcd has the same algebraic symmetries as the Riemann tensor, including cyclicity. One then finds that
the equation of motion that follows from Equation (1) (supplemented by appropriate generalizations
of Gibbons-Hawking-like boundary terms and with minimal coupling to matter) is

Pcde
a Rbcde ´ 2∇c∇dPacdb ´

1
2

Lgab “ 8πTab. (3)

For example, when the Lagrangian is L “ f pRq, we find Pabcd “
1
2

f 1pRq
´

gacgbd ´ gadgbc
¯

. Thus,
the equation of motion is

f 1pRqRab ´∇a∇b f 1pRq `
ˆ

2 f 1pRq ´
1
2

f pRq
˙

gab “ 8πTab. (4)

This reduces to Einstein’s equation when f pRq “ R.
Another example is Lovelock gravity [4,5], the most general extension of Einstein gravity for

which the equations of motion do not contain derivatives of the Riemann tensor. The Lagrangian
is L “

řmmax
m“0 cmLm, where cm are constants of dimension plengthq2m´2, which are arbitrary as far as

gravity is concerned, and mmax “ pD´ 2q{2 for even D dimensions and mmax “ pD´ 1q{2 for odd D.
Each term Lm is made up of contractions of products of the Riemann tensor:

Lm “
1

2m δi1...i2m
j1...j2m

Rj1 j2
i1i2

...Rj2m´1 j2m
i2m´1i2m

. (5)

Here the δ symbol is the generalized Kronecker delta, defined as the sum over signed permutations
of products of ordinary Kronecker deltas. The Einstein-Hilbert action with a cosmological constant
is just a special case of the Lovelock action with c1 “ 1 and c0 “ ´2Λ. When D ď 4, there are no
other possible terms; the next term appears for D ě 5. It is L2 “ R2 ´ 4RabRab ` RabcdRabcd, known as
Gauss-Bonnet gravity, which appears in the low-energy effective action of certain string theories [6,7];
its coefficient in ten-dimensional heterotic string theory is c2 “ `α1{4. The Gauss-Bonnet action is a
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topological invariant in four dimensions, just as the Einstein-Hilbert action is a topological invariant in
two dimensions. It is convenient to write Equation (5) in the form [8]

Lm “ Qabcd
pmq Rabcd. (6)

Then, for the mth-order Lovelock Lagrangian, Pabcd “ mQabcd
pmq , which has the nice property that

∇aPabcd “ 0. The equation of motion for Lovelock theory is therefore

mmax
ÿ

m“0

cm

ˆ

m Qacde
pmq Rb

cde ´
1
2

Lmgab
˙

“ 8πTab, (7)

which follows easily from Equation (3).
In each of these theories, one can associate an entropy with Killing or black hole horizons.

For example, in place of A{4, the entropy in f pRq gravity is [9]

S f “ f 1pRq
A
4

, (8)

while for Einstein-Gauss-Bonnet gravity, black holes have an entropy of

SG´B “
1
4

ż

dD´2x
?

σ
´

1` 2c2
pD´2qR

¯

, (9)

where pD´2qR is the scalar curvature of (the cross-section of) the horizon. We will show below that, as
in Jacobson’s derivation of Einstein’s equation from S “ A{4 [1], varying these entropies and imposing
the Clausius relation, δQ “ TδS, leads directly to the equations of classical gravity.

2.2. Wald Entropy

Wald [2,3] and other authors [10,11] have developed a powerful and elegant Lagrangian-based
method for determining the entropy of a black hole with a Killing horizon. Wald’s method
works for any diffeomorphism-invariant theory in any number of dimensions and does not require
Euclideanization. Here we adopt a simplified version of the formalism [12]. Consider a generally
covariant Lagrangian, L, that depends on the Riemann tensor but does not contain derivatives of the
Riemann tensor.

Under the diffeomorphism xa Ñ xa ` ξa the metric changes via δgab “ ´∇aξb ´ ∇bξa.
By diffeomorphism-invariance, the change in the action, when evaluated on-shell, is given only by a
surface term. This leads to a conservation law, ∇a Ja “ 0, for which we can write Ja “ ∇b Jab, where Jab

defines (not uniquely) the antisymmetric Noether potential associated with the diffeomorphism ξa [2].
For a Lagrangian of the type L “ Lpgab, Rabcdq direct computation shows that Jab is given by

(see [12])
Jab “ ´2Pabcd∇cξd ` 4ξd

´

∇cPabcd
¯

, (10)

with Pabcd “ BL{BRabcd. The Noether charge associated with a rigid diffeomorphism ξa is defined by
integrating the Noether potential over a closed spacelike surface S:

Q “

ż

S
JabdSab. (11)

When ξa is a timelike Killing vector (the one whose norm vanishes at the Killing horizon), it turns
out [2,3] that the corresponding Noether charge is precisely the entropy, S , associated with the horizon,
apart from a few factors:

S “ 1
8κ

ż

S
dSab Jab. (12)
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Here κ is the surface gravity of the black hole horizon. The integral for this “Wald entropy” can
be evaluated over any spacelike cross-section of the Killing horizon [10]. In fact we can formally define
the quantity S on any closed spacelike surface, S, of codimension two (such as a section of a stretched
horizon), and only at the end take the limit in which that S approaches a section of the Killing horizon.
It can be shown, for example, that both Equations (8) and (9) are just special cases of Wald entropy.

2.3. Gravitation From Thermodynamics

Now let us show how the classical equations of gravity, Equation (3), arise thermodynamically.
(That the equations look thermodynamical has been shown for various special cases [13,14].) The set-up
is as follows [1]. Take any spacetime point p and pick any future-directed null vector ka emanating
from p. In the vicinity of p, the geometry is of course locally flat; this means that the metric is
the Cartesian Minkowski metric to order x2 when Taylor-expanded in Riemann normal coordinates
centered at p. The plane orthogonal to ka thus defines a local acceleration, or Rindler, horizon, H. Thus,
in effect, we are drawing a “local" horizon through every point in spacetime. Let B1 be any spacelike
neighborhood of p of codimension two that lives on the Rindler plane, and let B2 be some further
section of the Rindler plane along ka. Next, let ξa be a future-directed timelike vector that generates

boosts and asymptotically approaches ka. For example, ξa “ x
ˆ

B

Bt

˙a
` t

ˆ

B

Bx

˙a
. This would be a

true Killing vector if the spacetime were flat. Generically, ξa is an approximate Killing vector in that it
satisfies Killing’s equation to order x in Riemann normal coordinates at p; we will always drop higher
order terms below. A timelike congruence about ξa then defines a stretched horizon, Σ. As in the
membrane paradigm [15,16], points on H and points on Σ can be put in one-to-one correspondence by,
say, ingoing null rays that pierce both surfaces. Let Si be the images of Bi on Σ via this correspondence.
See Figure 1.

Figure 1. The local Rindler horizon, H, of an arbitrary spacetime point p is defined by a null vector, ka.
A stretched horizon, Σ, is defined by a timelike approximate Killing vector ξa and has a normal vector
field na. Bi and Si are spacelike patches of codimension two that inhabit the planes of the Rindler and
stretched horizons in the directions orthogonal to the figure, with p contained in B1.

Let ξaξa “ ´α2, where the norm α (which is the lapse) is taken to be constant over Σ. This norm
vanishes at H, a Killing horizon. Let ua be the proper velocity of a fiducial observer moving along the

orbit of ξa i.e., ua “

ˆ

d
dτ

˙a
“

1
α

ξa, where τ is the proper time. Let na be the spacelike unit normal

to Σ, pointing in the direction of increasing α. Both ua and na map to ka in the limit that α Ñ 0, for
which Σ Ñ H.

After these preliminaries, we are ready to deduce the classical equations of gravity from
thermodynamics. The key idea [1] is to assign black hole thermodynamic properties to local Rindler
horizons. The stretched horizon can be assigned a local temperature, Tloc “ κ{2πα, as well as the Wald
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entropy appropriate to the given theory of gravity; this means that the surface gravity, κ, is required to
be approximately constant over Σ.

By Equations (10) and (12), the Wald entropy associated with a compact section of the stretched
horizon at time τ is

S “ ´ 1
4κ

ż

Spτq
dSab

´

Pabcd∇cξd ´ 2ξd∇cPabcd
¯

. (13)

We now vary the entropy along the timelike congruence. Since the surface gravity is constant
(to leading order) over Σ, κ can be taken outside the integral. Then the entropy change is

δS “ Spτ2q ´ Spτ1q

“ ´
1

4κ

«

ż

Spτ2q
dSab

´

Pabcd∇cξd ´ 2ξd∇cPabcd
¯

´

ż

Spτ1q
dSab

´

Pabcd∇cξd ´ 2ξd∇cPabcd
¯

ff

“ `
1

4κ

ż

Σ
dΣa∇b

´

Pabcd∇cξd ´ 2ξd∇cPabcd
¯

. (14)

In the last step, we have used Stokes’ theorem for an antisymmetric tensor field Aab:
ż

Σ
dΣa∇b Aab “ ´

¿

BΣ

dSab Aab, (15)

where the minus sign comes about because Σ is timelike. (To be explicit, our conventions here are

dΣa “ na dA dτ and dSab “
1
2
pnaub ´ uanbqdA on Spτq, where the normal na to the stretched horizon

points outwards, away from the true horizon.) Here we have discarded a surface term in Stokes’
theorem corresponding to the “vertical” boundaries joining the endpoints of Spτ2q and Spτ1q; this
can be justified by having the constant-time slices curve up so that Spτ1q and Spτ2q have common
boundaries [17]. Next, recall that Pabcd has the same algebraic symmetries as the Riemann tensor,
including cyclicity. Using those symmetries, we find that

δS “ 1
4κ

ż

Σ

”

´∇b

´

Padbc ` Pacbd
¯

∇cξd ` Pabcd∇b∇cξd ´ 2ξd∇b∇cPabcd
ı

dΣa. (16)

Now we will use the fact that ξa is an approximate timelike Killing vector, as defined earlier.
Locally (to order x in Riemann normal coordinates), ξa satisfies Killing’s equation. Hence the terms in
parentheses drop out since they are symmetric in the indices c and d, whereas ∇cξd is antisymmetric.
We will now assume the approximate validity of Killing’s identity, ∇a∇bξc « Rd

abcξd, a point we
discuss further in the next section. Then we find

TlocδS “ 1
8πα

ż

Σ

´

PabcdRdcbeξe ´ 2ξd∇b∇cPabcd
¯

nadτdA. (17)

On the other hand, the locally-measured energy or heat flux into the stretched horizon is

δQ “ `

ż

Σ
dΣaTa

e ue “
1
α

ż

Σ
dA dτ naTa

e ξe. (18)

Now we take the limit α Ñ 0 in which the stretched horizon, Σ, becomes the true horizon, H.
Then both na and ua become proportional to the null vector ka (with the same proportionality constant).

Writing ka “

ˆ

d
dλ

˙a
where λ is some affine parameter, and equating δQ and TlocδS , we can show that

ż

H

´

Pcde
a Rbcde ´ 2∇c∇dPacdb ´ 8πTab

¯

kakbdλ dA “ 0. (19)
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As this holds for any p and any null ka, the integral does not depend on the domain, so the
integrand must be zero, up to a term that vanishes when contracted with kakb:

Pcde
a Rbcde ´ 2∇c∇dPacdb ` ϕ gab “ 8πTab, (20)

for some scalar function ϕ. By demanding conservation of the stress tensor and using the Bianchi

identities, we find that ϕ “ ´
1
2

L`Λ, where Λ is an integration constant. Thus we see that imposing
TlocδS “ δQ at any point in spacetime necessarily implies that

Pcde
a Rbcde ´ 2∇c∇dPacdb ´

1
2

Lgab `Λgab “ 8πTab. (21)

With the cosmological constant appearing as an integration constant, this is precisely the classical
equation of motion, Equation (3), for our theory of gravity.

3. Discussions

We have shown that the equations of classical gravity follow from thermodynamics.
Our derivation did not require the Raychaudhuri equation. Moreover, since we started with the
Wald entropy, we could go beyond the Einstein equation to the equations of motion of general theories
of gravity. Since these were obtained from the Clausius relation, they can be regarded as equations of
state—relations between thermodynamic state variables. Thus it seems as though classical gravity has
a thermodynamic origin and, furthermore, that this relation between gravity and thermodynamics
extends beyond Einsteinian gravity. Moreover, our approach suggests why such a relation exists: both
the Wald entropy and the equations of motion are ultimately derived from an action. In Jacobson’s
original calculation, the relation to the action was not apparent, making the result appear mysterious,
but such a relation was nevertheless present since the Bekenstein-Hawking entropy that was used
there is simply a special case of the Wald entropy.

A technical point we have glossed over is the use of the equation ∇a∇bξc « Rabcdξd in
Equation (17), an expression that is strictly true only when ξa is an exact Killing vector. Killing’s
identity is of order x and therefore is of the same order as the terms we would like to keep. Fortunately,
it can be shown that, by appropriately defining higher order terms in ξa, the identity can be made to
hold in the vicinity of a null geodesic. Therefore, by making the patch of Rindler space sufficiently
narrow, Killing’s identity can be assumed throughout the calculation [17].

It would also be interesting to connect our approach to previous calculations, which have had a
quite different methodology. For example, for f pRq theories, previous work has found that the Clausius
relation does not yield purely the equations of motion but also gives rise to additional terms [18]; these
have been interpreted as non-equilibrium effects. However, there have also been claims [19] that the
f pRq equations of motion do follow from the Clausius relation, as we also find; indeed, the derivation
in [19] also invokes the Wald entropy, though restricted to the case of f pRq gravity. However, f pRq
gravity is a very special case and is closely related to Einstein gravity; therefore, the study of f pRq
gravity does not necessarily make clear what aspect of the derivation causes it to work. Here we have
seen that the derivation works for a wide class of theories for which the Lagrangian is a polynomial in
the Riemann tensor.

So far in the literature, derivations of the gravitational equations have taken place in the context
of planar local Rindler horizons. But, as we know from black holes, horizons can also have spherical
topology. It would be interesting therefore to derive the gravitational equations in a local formulation

that mimics black hole horizons. For example, instead of the Killing vector ξa “ x
ˆ

B

Bt

˙a
` t

ˆ

B

Bx

˙a
,

one could work with radial vectors ξa “ r
ˆ

B

Bt

˙a
` t

ˆ

B

Br

˙a
. These, too, of course have constant

acceleration. A family of such vectors at constant ξ2 “ ´α2 would trace out a de Sitter hyperboloid
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about the origin. Constant-time sections on such surfaces would be compact and therefore the issue of
extra surface terms in Stokes’ theorem would not arise. Of course, Killing’s identity, which we also
needed for our derivation, would not hold throughout such a surface, but perhaps its’ integral might
nevertheless be made to vanish. We hope to pursue this approach in the future.

Satisfying as our result is, one possible critique of this program is that the derivation of the
Wald entropy itself relies on the equations of motion being obeyed. Although our approach never
explicitly invokes the equations of motion, it is somewhat unclear whether any derivation, including
Jacobson’s original calculation, that begins with an on-shell expression which agrees with Wald
entropy (such as A{4) is implicitly assuming the answer, or whether that is simply a consequence of
self-consistency. In any case, ultimately one would like to obtain gravity as the thermodynamic limit
of the statistical mechanics of some microscopic theory. Many diffeomorphism-invariant theories of
gravity have pathologies, such as problems with unitarity, and these presumably do not have consistent
microscopics. Entropy, after all, should satisfy not only the first law, but also have other expected
properties: it should obey the second law, be non-negative, and have a statistical interpretation. Ideally,
one would like to have a consistent dual theory without gravity, for which one can obtain the entropy
by enumerating the microstates, and then, after expressing the entropy in geometric language, to
obtain the dynamical equations of classical gravity from a thermodynamic limit, as described here.
Some of this is of course reminiscent of what happens in several contexts in string theory.
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