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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

There is mounting evidence to suggest that the urban built form plays a crucial role in household energy consumption, hence 
planning energy efficient cities requires thoughtful design at multiple scales - from buildings, to neighborhoods, to urban regions. 
While data on household energy use are essential for examining the energy implications of different built forms, few utilities 
providing power and gas offer such information at a granular scale. Therefore, researchers have used various estimation techniques 
to determine household and neighborhood scale energy use. In this study we develop a novel method for estimating household 
energy demand that can be applied to any urban region in the US with the help of publicly available data. To improve estimates of 
residential energy this paper describes a methodology that utilizes a matching algorithm to stitch together data from RECS with 
the Public Use Microdata Sample (PUMS) provided by the Bureau of Census. Our workflow statistically matches households in 
RECS and PUMS datasets based on the shared variables in both, so that total energy consumption in the RECS dataset can be 
mapped to the PUMS dataset. Following this mapping procedure, we generate synthetic households using processed PUMS data 
together with marginal totals from the American Community Survey (ACS) records. By aggregating energy consumptions of 
synthesized households, small area or neighborhood-based estimates of residential energy use can be obtained. 
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1. Introduction 

The increasing concerns around fossil fuel use and its climate-changing GHG emissions have generated an 
impetus for planning and retrofitting neighborhoods to be more energy efficient. Reducing residential energy use is 
a significant component of the global response to climate change given that the residential sector consumed about 21 
percent of total energy in the U.S. (USEIA 2017). However, estimating residential energy consumption is 
challenging especially because the utility providers are often unwilling to share this information at a granular spatial 
scale. As a result, estimates of residential energy demand is based on several modelling techniques, with various 
margins of error. These models are influenced by several factors, including characteristics of housing units, 
occupant behavior, and adjacent built environment attributes. Typically, household surveys are used to obtain 
information regarding these factors. The surveys additionally often request actual energy use data from 
householders’ utility bills. While the surveys offer a viable option for generating estimates of residential energy 
consumption, they are time-consuming and expensive. Besides, the United States Energy Information 
Administration (USEIA) conduct detailed surveys of energy use in the residential sector every four years, which 
also includes a wealth of information about many of the factors mentioned earlier influencing energy use.  

In this paper we propose a new bottom-up residential operational energy consumption model using the USEIA’s 
Residential Energy Consumption Survey (RECS), the Public Use Microdata Sample (PUMS), and the American 
Community Survey (ACS) data as inputs. These data are available for all the major metropolitan areas in the U.S. 
Therefore, the methodology presented in this paper can potentially be applied to estimate residential energy 
consumption for all major cities. The remainder of the paper is organized as follows. The next section outlines some 
prior work in estimating residential energy using top-down and bottom-up models. Section Three describes our 
proposed model framework, followed by an implementation of the proposed model using Atlanta Metropolitan Area 
in Section Four. The model results are presented in the fifth section and validated using utility data for the City of 
Atlanta. The last part concludes the proposed residential operation energy consumption model and identifies 
constraints which merit further examination and improvements.   

2. Prior work 

Studies estimating operational energy consumption primarily use either top-down or bottom-up models. The top-
down models typically estimate local residential energy consumption from regional level estimates using factors, such 
as gross domestic product (Eric Hirst, 1978; Saha & Stephenson, 1980), technology attributes (Haas & Schipper, 
1998; E. Hirst, Lin, & Cope, 1977), price, total population, and evolution of housing stocks (Nesbakken, 1999; Zhang, 
2004). The bottom-up approach consists two genres of models, including the statistical models and the engineering 
models. The results from statistical models are generally analyzed to interpret the correlations of energy consumption 
with various individual-level characteristics, such as the size of housing units, socio-economic and demographic 
features, local heating and cooling degree days (Eric Hirst, Goeltz, & White, 1986; Raffio, Isambert, Mertz, Schreier, 
& Kissock, 2007) and behaviors, including financial and cultural motivations in energy use (Douthitt, 1989; Fung, 
Aydinalp, & Ugursal, 1999; Tonn & White, 1988). The aim of statistical models is to understand the variation in 
energy use given changes in various occupant characteristics, so that policies can be derived to monitor energy price 
and provide ethical or financial motivations to regulate or curb energy consumptions (Chen, Wang, & Steemers, 2013; 
Jain, Smith, Culligan, & Taylor, 2014). Some recent model efforts use more advanced machine learning models such 
as neural networks and support vector machine to estimate residential energy consumptions (Aydinalp, Ugursal, & 
Fung, 2002, 2004; Dong, Cao, & Lee, 2005). However, these models are also data intensive and are difficult to be 
applied to large study areas.  

 The engineering models compute energy consumptions based on the energy ratings of various appliances, building 
materials, applied energy saving technology on-site and thermodynamic theorems (Zhao & Magoulès, 2012). 
Specifically, this approach first estimates energy consumption for a series of typical prototypes or archetypes of 
housing stocks in the region, using a small sample of buildings. The occupant behaviors are not captured but simplified 
to various assumptions. Different from the statistical models, the objective of engineering models is to extrapolate the 
results to the entire region so that the total residential energy consumption or the changes in consumption under various 
technology penetration scenarios can be obtained. The extrapolation is usually made by assigning weights, estimated 
based on regional housing inventory, to the sampled buildings. several software and calculation standards are 
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developed to estimate building energy consumption using this modeling approach (Crawley, Hand, Kummert, & 
Griffith, 2008; de Normalización, 2008) 

Despite different model objectives, both the statistical and engineering models have some limitations. First, both 
approaches rely heavily on the availability of historical micro sample data, which are usually time-consuming and 
expensive to collect (Swan & Ugursal, 2009; Zhao & Magoulès, 2012). For instance, the U.S. EIA conducts national 
level Residential Energy Consumption Survey (RECS) every four years to collect information regarding occupant 
characteristics, market penetration of new appliances and condition of housing stocks. The sample size, however, in 
each metropolitan area is quite small, rendering it insufficient to assess local energy consumptions. Additionally, it is 
hard, if not impossible, to extrapolate the micro-sample model results to the region, as the features considered in the 
models are usually not standard across the region (Kavgic et al., 2010).  

3. Estimation Technique 

The residential operational energy estimation technique developed in this study is based on three key components: 
1) statistical matching of the household records from the RECS and PUMS data, 2) estimation of energy consumption 
models using the matched records, and 3) synthesizing households using PUMS and ACS data. The objective of the 
first component is to assign the energy use component available in RECS to a matched record in the PUMS dataset. 
In other words, the statistical matching process “joins” energy consumption variable from the RECS data to a portion 
of the PUMS data based on the similarity of the shared variables. Given that RECS has a substantially smaller sample 
than PUMS, a lot of records in PUMS remain unmatched. The second model component then estimates models using 
energy consumption variables from the RECS data as the dependent variables and household socio-demographic and 
economic features and housing unit characteristics in the PUMS data as the independent variables. The estimated 
model is then applied to the unmatched PUMS data to impute energy consumptions. The final output of the second 
model component is the PUMS data with appended energy consumption variables. 

The final model component takes energy consumption appended to PUMS data as the seed matrix and ACS data 
as the marginal controls to synthesize households in the region. Both household-level and population-level variables, 
which are highly correlated with energy consumptions in the estimated models, are controlled to obtain a more 
representative profile for the region. The synthesized energy consumptions can then be aggregated using various 
geographic units to determine the distribution of energy consumptions in the region. The following sections elaborate 
the detailed methodologies regarding each model component.  

4. Data and Model Implementation 

We implemented the estimation technique described above using data for 10-county Atlanta metropolitan region. 
The results are then cross-compared with electricity and natural gas consumption data provided by Georgia Power 
and Atlanta Gas Light to validate the model outputs. 

4.1. Statistical Matching 

The RECS data and PUMS data are matched for all records in the state of Georgia using common variables in 
both datasets, so that the energy consumption information, including electricity BTU (ELBTU), natural gas BTU 
(NGBTU) and other BTU (OBTU), can be appended to the matched PUMS records. First, we identified 12 
variables, including the type of housing unit, property ownership, year built, energy bills, etc., from the RECS data 
that are also available in the PUMS data. These variables, however, are not exactly measuring the same attribute in 
the same manner as evident from the data dictionaries. To unify the measurements, the common variables were 
reclassified or reorganized. We conducted the Spearman rho rank correlation analysis to determine the final 
matching variables, and the results are shown in Table 1. The variables with the highest correlations (bolded) are 
used as matching variables. The household structure and heating fuel are categorical variables and, therefore, are 
used as group control variables, indicating that only households with the same household structure and the heating 
fuel type can be joined. The joint distribution of household type and heating fuel type reveals that some heating fuel 
types, such as solar, district steam, and coal, are only used by a small sample of households. As a result, there will 
be many housing categories with zero observations, if all heating fuel types are persevered in the model, rendering 
the matching process infeasible to complete. For instance, if there is no apartment with wood as heating fuel in the 
RECS data, then all similar records from the PUMS will not be able to be matched and appended with energy 
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consumptions. Therefore, to simplify the matching process, the heating fuel types are reclassified into three 
categories: 1) electricity, 2) natural gas, and 3) others. 

The continuous variables, such as the total number of rooms, annual electricity, natural gas, and other bills are 
used as match variables. To eliminate the influence of various measuring units on the Manhattan Distance 
calculation outcome, all the continuous matching variables are standardized. Different matching variables are used 
to join ELBTU, NGBTU, and OBTU to the PUMS data, as shown in Table 2. The number of bedrooms is not used 
as a matching variable to joining ELBTU, as it is highly correlated with the total number of rooms in both datasets. 

Table 1: Spearman rho rank correlation analysis results 

Variable names 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝜌𝜌2[𝑝𝑝 𝑣𝑣𝑣𝑣𝑣𝑣𝐴𝐴𝐴𝐴] N Electricity BTU Natural Gas BTU Other BTU 

C
at

eg
or

ic
al

 Household Structure 0.232 [0.00] 0.034 [0.00] 0.037 [0.00] 2246 
Tenure Type 0.095 [0.00] 0.010 [0.00] 0.022 [0.00] 2246 
Heat Fuel Type 0.046 [0.00] 0.515 [0.00] 0.179 [0.00] 2246 
Income 0.110 [0.00] 0.040 [0.00] 0.000 [0.40] 2246 
Move in time 0.030 [0.00] -0.001 [0.58] 0.033 [0.00] 2246 
Year Built 0.013 [0.00] 0.036 [0.00] 0.016 [0.00] 2246 

N
um

er
ic

al
 Bedrooms 0.261 [0.00] 0.073 [0.00] 0.005 [0.00] 2215 

Total Rooms 0.249 [0.00] 0.079 [0.00] 0.009 [0.00] 2246 
Household Size 0.212 [0.00] 0.009 [0.00] 0.001 [0.21] 2246 
Annual Electric Bill 0.894 [0.00] 0.027 [0.00] 0.003 [0.02] 2246 
Annual Natural Gas Bill 0.037 [0.00] 0.996 [0.00] 0.028 [0.00] 2246 
Annual Other Bill 0.006 [0.00] 0.027 [0.00] 0.999 [0.00] 2246 

 

Table 2: Sets of Matching Variables by Target Variable 

Type of Matching Variables 
(𝑋𝑋𝑀𝑀) 

Target Variables (𝑍𝑍) 
Electricity BTU Natural Gas BTU Other BTU 

Group Control Variables Household Structure Heat Fuel Type Heat Fuel 
Type 

Distance Calculation Variables Total Rooms 
Annual Electricity Bill 

Annual Natural 
Gas Bill 

Annual Other 
Bill 

 
The records from RECS and PUMS are then matched together by minimizing the differences between distance 

calculation variables for households with the same category in the group control variables. There are significantly 
more samples in the PUMS data, compared with the RECS data. Therefore, for each RECS dataset, the closest 
PUMS record is found and matched. For ELBTU, the median distance is 0.038, and 75% percentile distance value is 
0.057, indicating the data are well matched together. The maximum distance for matching results of OBTU is 0.98 
when two unusual records are eliminated. For NGBTU matching results, the maximum distance is 0.06, suggesting 
all the households are successfully matched. 

4.2. BTU Imputation Model Results 

In this step, various machine learning models are estimated using the matched PUMS datasets, and the estimated 
models are then applied to unmatched PUMS records to impute residential energy consumptions by BTU types. Before 
model estimation, we first preprocessed features in the PUMS data sets. Features with more than 10% missing values 
were not considered in the models. This excludes 28 features in the PUMS dataset. Among the remaining features, 
nine continuous variables were standardized. The rest 36 categorical features were converted into 134 binary features. 
The number of features included in the model is 143.  The averaged results of the 10-fold cross validation experiments 
for electricity consumption are shown in Table 3. All the training models use the default parameter settings in the 
Scikit Learn package. The results are sorted by Mean Absolute Errors. 
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Table 3: Model Results for Electricity Energy Consumption 

Models Mean Absolute Error Median Absolute Error R2 Mean Average Percent Diff. 
ElasticNet 4.34e+03 +/- 164.10 6.40e+03 +/- 138.02 0.88 +/- 0.01 13.38 +/- 0.43 
Lasso 4.70e+03 +/- 267.22 6.68e+03 +/- 165.09 0.87 +/- 0.01 14.09 +/- 0.50 
Ridge 4.71e+03 +/- 281.09 6.67e+03 +/- 162.89 0.87 +/- 0.01 14.07 +/- 0.49 
Linear 4.73e+03 +/- 291.61 6.71e+03 +/- 168.62 0.87 +/- 0.01 14.20 +/- 0.52 
Bagging  4.89e+03 +/- 171.73 7.08e+03 +/- 135.53 0.85 +/- 0.01 14.50 +/- 0.33 
Random Forest 4.93e+03 +/- 203.79 6.94e+03 +/- 168.49 0.86 +/- 0.01 14.86 +/- 0.50 
Gradient Boosting 5.02e+03 +/- 239.00 6.95e+03 +/- 118.06 0.85 +/- 0.01 14.72 +/- 0.37 
AdaBoost  7.19e+03 +/- 303.40 8.62e+03 +/- 205.73 0.82 +/- 0.02 17.06 +/- 0.61 
Extra Trees 7.31e+03 +/- 949.76 9.04e+03 +/- 793.19 0.78 +/- 0.03 19.15 +/- 1.53 

 
The outputs for electricity energy consumption suggests that Elastic Net regression performs the best among all 

tested models, as shown in Table 4. The Elastic Net model outputs present the smallest mean and median absolute 
errors and average percent difference. The results suggest, on average, the predicted consumptions are 
approximately 13.4% different from the statistically matched electric BTU consumption values. Additionally, the 
model also has the largest average R2 among all the examined models. The results also suggest that other linear 
models, such as Lasso, Ridge, Ordinary Least Square also show similar prediction power (in terms of the magnitude 
of errors and R2), indicating the relationship between explanatory features and target feature (ELBTU) is linear. 
While, ensemble learning models, such as Bagging, Random Forest, Gradient Boosting, AdaBoost, and Extra Trees, 
perform comparatively poorly, with much higher absolute errors and lower R2. 

4.3. Household Synthesis 

The population synthesizing process is implemented in PopGen 1.1. The software takes PUMS data as the seed 
matrix, containing joint distributions among various features of households and population. PopGen uses ACS data 
as the marginal controls to interpolate the weight of each household in the PUMS data. Both household (or housing 
unit) level and population level variables can be controlled with the IPU synthesizing method. The control variables 
are selected based on the correlations with the target variables (i.e. ELBTU, NGBTU, and OBTU) and the availability 
of the data in the ACS data.  

The correlation of various features with the target feature is determined using the estimated coefficients from the 
Elastic Network models and the feature importance scores from the random forest model. The results show the annual 
electricity and natural gas bills are highly correlated with the electricity and natural gas BTU consumptions, with 
significantly higher estimated coefficients for the standardized variables. Among the other top nine features, the 
number of rooms, the number of persons, household income, building structure types, family life cycle, heating fuel 
type, and tenure types are available in the ACS data. Therefore, these household-level variables are all controlled in 
the synthesizing process. The TAZ level residential operation energy consumption is then calculated by aggregating 
the consumptions of each synthesized household in by TAZ. 

5. Results 

The results for electricity energy consumption suggests each resident consumes approximately 19.43 million BTU 
(or 5694 KWh) per year in the 10-county Atlanta metropolitan area. The electricity consumption per capita for the 
State of Georgia is estimated as 19.56 million BTU per year (EIA, 2009). The results show that residents located in 
the central metro and peripheral areas tend to consume more electricity. The results for natural gas energy indicates 
the average consumption per person is approximately 11.25 million BTU per year, which is close to Georgia’s 
consumption per capita (12.6 million BTU per year). The natural gas consumptions decrease in peripheral areas, where 
the heating fuel is primarily electricity or other fuel sources. The results for other energy consumptions show the 
peripheral residents tend to consume more energy generated by other fuel types. 

6. Conclusions 

In this study, we developed an energy synthesizing model, which can be potentially applied to any major 
U.S. cities. Most bottom-up energy estimation models are data intensive and, therefore, constrained by the 
availability of micro-sampled data and regional housing inventories. To address these model limitations, we 
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developed a novel estimation technique comprising of statistical matching, machine learning and population 
synthesizing. The developed model requires data such as RECS, PUMS, and ACS, which are available across the 
nation. We used data from 10-county Atlanta metropolitan area with 1593 zones to test our estimation process. The 
results show that the electricity, natural gas, and other energy uses per capita are 19.17, 14.05, and 0.59 million BTU 
per year, respectively. These results are consistent with statistics for the State of Georgia, which are 19.56 and 12.6 
million BTU per year for electricity and natural gas consumptions for the same year. Additionally, the synthesized 
results are also cross-compared with the electricity and natural gas utility bills available for 30 zip codes. The 
correlations between our results and observed consumption are 0.908 and 0.927 for electricity and natural gas uses. 
Given the validation results we can conclude that this approach offers an exciting new method to estimate residential 
energy consumption in U.S. metros. 
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