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Abstract

Natural selection among tumor cell clones is thought to produce hallmark properties of malignancy. Efforts to understand
evolution of one such hallmark—the angiogenic switch—has suggested that selection for angiogenesis can ‘‘run away’’ and
generate a hypertumor, a form of evolutionary suicide by extreme vascular hypo- or hyperplasia. This phenomenon is
predicted by models of tumor angiogenesis studied with the techniques of adaptive dynamics. These techniques also
predict that selection drives tumor proliferative potential towards an evolutionarily stable strategy (ESS) that is also
convergence-stable. However, adaptive dynamics are predicated on two key assumptions: (i) no more than two distinct
clones or evolutionary strategies can exist in the tumor at any given time; and (ii) mutations cause small phenotypic
changes. Here we show, using a stochastic simulation, that relaxation of these assumptions has no effect on the predictions
of adaptive dynamics in this case. In particular, selection drives proliferative potential towards, and angiogenic potential
away from, their respective ESSs. However, these simulations also show that tumor behavior is highly contingent on
mutational history, particularly for angiogenesis. Individual tumors frequently grow to lethal size before the evolutionary
endpoint is approached. In fact, most tumor dynamics are predicted to be in the evolutionarily transient regime throughout
their natural history, so that clinically, the ESS is often largely irrelevant. In addition, we show that clonal diversity as
measured by the Shannon Information Index correlates with the speed of approach to the evolutionary endpoint. This
observation dovetails with results showing that clonal diversity in Barrett’s esophagus predicts progression to malignancy.
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Introduction

Natural selection has long been recognized as the ultimate

driver of cancer progression and pathogenesis (see [1] for a recent

review; see also [2]). In early stages of tumor progression,

heterogeneous populations of malignant and healthy cells compete

for available resources. Tumor cell clones that have acquired, via

mutation and epigenetic effects, malignant ‘‘hallmark’’ phenotypes

[3,4] gain proliferative and (or) survival advantages relative to

other lineages in their tumor microenvironment. Eventually the

hallmark-carrying mutant clones come to dominate the tumor and

destroy tissue homeostasis. If this interpretation is correct, then the

mechanism causing malignancy—heritable variation conferring

advantages to particular clonal lineages—is precisely evolution by

natural selection.

Explaining the adaptive significance of most cancer hallmarks is

straightforward. However, angiogenesis—the ability of tumors to

generate their own vascular infrastructure—presents a difficult

case. Angiogenesis is coordinated directly and indirectly by cancer

cells using a variety of signaling molecules, including vascular

endothelial growth factor (VEGF), angiopoietins, fibroblastic

growth factors (FGFs), platelet-derived growth factor (PDGF),

epidermal growth factor (EGF), transforming growth factors

(TGFa and -b), and thrombospondin-1 (TSP-1), among others.

These factors act in a variety of ways on vascular endothelial cells

and (or) their precursors. Target cell responses include prolifer-

ation, chemotaxis and differentiation into functional microvessel

endothelial cells [3–6]. The balance between pro- and anti-

angiogenic molecules in the local milieu define the ‘‘angiogenic

signal’’ [7]. In hypoxic tissues, this balance tips in favor of

angiogenesis [5,6]. Cancer is often characterized by derangement

of this signaling system, generating among certain tumor clones

more-or-less constitutive production of pro-angiogenic signals and

receptors, a condition referred to as the angiogenic switch [3,4,7–

12]. The intensity of this switch varies among tumors even of the

same histological type and tissue of origin [4,13].

Angiogenesis clearly benefits tumors. In addition to nutrient

delivery and waste removal, tumor microvessels provide routes for

metastasis. However, all tumor cells receive the benefits of

angiogenesis whether or not they participate in producing the

signal. Therefore, the signal is a public good. As is well known

from decades of research into the ‘‘free-rider’’ problem in

economics and evolutionary biology, public goods are susceptible

to exploitation by free-riders. In this context, free-riders would be

clones that, by mutation or epigenetic alteration, decrease or stop

their own production of proangiogenic signals. Since metabolic

energy is required to produce the angiogenic signal, free-riders

eliminate one drain on internal energy reserves with no immediate

detriment. However, they gain an immediate advantage—saved

energy reserves can be committed to proliferation and
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maintenance metabolism. Free-rider clones would therefore be

expected to expand more rapidly than angiogenic clones due to

their inherited advantage. The obvious fact that the tumor, and

the free-riders themselves, would suffer hypoxia once free-riding

becomes dominant is irrelevant. Natural selection does not act to

benefit the tumor. Selection simply favors clones with the highest

growth and survival potential once the chains of kin selection and

other evolutionary forces compelling cooperation have been

broken. In any environment, even severely hypoxic ones, free-

rider clones will always have an advantage over angiogenic clones,

all else being equal, because they have less demand for energy to

produce a public good. Any angiogenic clone will certainly benefit

from being angiogenic. But the free-rider benefits equally. The fact

that cancer cells tend to disperse from unfavorable environments

does not eliminate the problem. It simply spreads it. If the

hallmarks of cancer are consequences of evolution, it is not

immediately clear why the angiogenic switch persists in malignant

tumors.

Indeed, modeling studies initiated by one of us (JDN) predict

that such nonangiogenic free-riders can damage or perhaps

destroy all or part of a growing tumor [14–16]. This predicted

‘‘tumor-on-a-tumor’’ phenomenon has a conceptual sister, viz.

hyperparisitism—one parasite exploiting another. Therefore, the

parallel term ‘‘hypertumor’’ was suggested to describe it [14], and

it has since been recognized as a form of evolutionary suicide

[17,18].

The early hypertumor models were limited by the fact that costs

associated with hallmark phenotypes could not be investigated

because the models lacked a proper description of energetic trade-

offs. That limitation was addressed in a recent study by Nagy and

Armbruster [17] in which the original models were extended to

include an energetic ‘‘opportunity cost.’’ This extension required

the addition of a submodel describing intracellular adenylate

dynamics to the existing tissue-level model of angiogenesis. The

result was a multiscale system with three distinct spatial and

temporal levels: intracellular energy metabolism on scales of mm

and seconds to minutes; tissue-level on scales of mm and hours to

days; and evolutionary, with scales of cm and months to years

(Fig. 1). In this formulation, ATP, the primary energy currency in

cells, is partitioned among three major energetically demanding

programs: proliferation, cell maintenance and secretion.

This model confirms that evolution of hallmarks acting on

proliferation rate differs markedly from evolution of the angiogenic

switch. In particular, selection drives energy allocation for

proliferation to an intermediate state that balances evolutionary

benefits of reproduction with opportunity costs of shunting

reducing power away from cell maintenance. This attracting state

is an evolutionarily stable strategy (ESS) sensu Maynard Smith and

Price [19,20]; that is, it is a strategy that, when used by almost all

residents of a population, cannot be invaded by any possible

mutant. This ESS is also convergence stable (essentially an

evolutionary attractor; see [21] for a review).

In contrast, angiogenic potential does not evolve to an

intermediate state in this model. As predicted by the free-rider

argument, direct selection on angiogenesis signaling is powerless to

produce the angiogenic switch via the benefits of eventual

increased perfusion. However, this model predicts an indirect

evolutionary pathway to the angiogenic switch caused by an

interesting property of the adenylate homeostasis mechanism.

Both modeling and in vivo studies suggest that intracellular

equilibrium ATP concentration is a unimodal function of overall

cell metabolic rate [11,23]. To the left of the mode (relatively low

metabolic rates), cells respond to slight increases in ATP

consumption by excessively ramping up de novo adenylate synthesis,

resulting in a paradoxical increase in equilibrium ATP concen-

tration. Therefore, under conditions favoring such overcompen-

sation, mutants that increase production of the angiogenic signal,

which requires ATP for protein synthesis and secretion, can gain

more ATP for proliferation. This pleiotropic effect on both

proliferation and angiogenic potential confers to the mutant a

selective advantage. In the model, the evolutionary picture is

complicated by an interaction between this phenomenon and the

neovascularization in response to the angiogenic signal. This

interaction generates an ESS that is always evolutionarily repelling

(details in [17]). That is, if clones differ only in ATP allocation to

angiogenesis, clones slightly more (or less) committed to angio-

genesis than the ESS are vulnerable to invasion by a mutant clone

with higher (respectively, lower) energy allocation to angiogenesis.

Therefore, this model predicts that, given enough time, selection

will run away either to vascular hyper- or hypoplasia, eventually

reaching a tumor inviability region. The latter possibility is the

original hypertumor prediction, while the former represents a

novel form of evolutionary suicide [14,16,17].

The open questions we address here are the following: (i) what

are the likely trajectories tumors traverse through their evolution-

ary ‘‘strategy spaces’’ as angiogenic and proliferative potentials

evolve? (ii) what variation in these evolutionary trajectories can be

expected? and (iii) how rapidly will the traverse occur? Answers to

these questions are required before practically testable predictions

from the model can be distilled, but they could not be addressed in

the previous modeling attempts. In these studies, the evolutionary

analysis relied on the techniques of adaptive dynamics [21,24,25],

which require the assumption that mutation dynamics are much

slower than ecological dynamics. At most only two competing

clones can exist in a tumor. One arises as a rare mutant within a

tumor populated almost exclusively by a resident clone. Compet-

itive exclusion is the rule in these pairwise bouts; either the mutant

invades the tumor and eliminates the resident clone, or the

resident eliminates the mutant. Either way, ‘‘ecological’’ dynamics

of competition are assumed to reach their endpoint before a new

mutant arises, so ecological and evolutionary timescales decouple.

Also, all mutations are assumed to have a small effect; therefore,

the difference between phenotypes of resident and mutant clones is

always small [25]. Given the genomic instability characteristic of

many malignant tumors [4], these assumptions are likely to be

violated in real tumors. So, here we repeat the evolutionary

analysis with the adaptive dynamics assumptions relaxed. To

achieve this, we first define a stochastic simulation analogue of the

multiscale evolutionary model in [17]. The equations governing

intracellular adenylate, tumor growth and angiogenesis are

unchanged. The only alteration we introduce is at the evolutionary

scale. In particular, we allow an indefinite number of clones to

compete at the same time, and mutant clones arise at random

times independent of the current state of the system. Here we show

that relaxation of the adaptive dynamics assumptions has no effect

on predicted evolutionary endpoints from the original adaptive

dynamics analysis. However, the simulations predict that evolu-

tionary dynamics of both angiogenesis and proliferative capacity is

dominated by mutational history. Practically, this prediction

suggests that the disease is on an evolutionary transient throughout

its clinical course—that is, an attracting ESS is rarely if ever

approached—and the tumor’s evolutionary tempo and trajectory

are largely determined by phenotypes of early mutants, which in

practice are likely to resist prediction. We refer to this prediction as

the historical contingency effect, following [26].

Angiogenesis Evolution in Clonally Diverse Tumors
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Methods

The deterministic model underlying our simulations [17]

comprise two distinct systems of ordinary differential equations

(ODEs) governing dynamics at three time and spatial scales (Fig. 1).

The first system, which extends the pioneering work of Martinov,

Ataullakhanov, Vitvitsky and colleagues [22,23], tracks intracel-

lular adenylate dynamics, with adenylate concentrations scaled in

fmol and time scaled in mins (‘‘Energetics Scale’’ in Fig. 1). The

second system, operating at tissue and evolutionary scales,

describes growth dynamics of the tumor, dynamics of its vascular

infrastructure and competition among clones within the tumor.

The tumor is assumed to comprise some number of genetically

and phenotypically distinct clones, a collection of immature

vascular endothelial cell precursors (VECPs) and patent, functional

microvessels. In the original formulation, the number of compet-

ing clones was limited to 2, but here we allow the tumor to house

an arbitrary number, S, of distinct clones. Dynamics of a single

clone (‘‘Tissue Scale’’ in Fig. 1) is governed by two ODEs—one for

clonal mass (in g) and one for mean tumor microvessel density.

Time is scaled in days. Overall tumor dynamics (‘‘Evolutionary

Scale’’ in Fig. 1) is therefore determined by Sz2 ODEs, one for

each clone, plus equations for VECPs and microvessels, with

dependencies on the energetic states of cells determined by

equations at the energetics scale. This tissue-level model is derived

directly from previous work of Nagy and colleagues [14,16].

Interactions among all three scales revolve around tumor

perfusion, measured as microvessel length density. In the model,

Figure 1. Schematic representation of the multiscale model. The ‘‘energetic scale’’ submodel [equations (1) through (10)] governs dynamics
of adenylate (AMP, ADP and ATP). Interconversions among the three species occur via maintenance metabolism (e.g., biosynthesis, volume control),
chemical energy to support proliferation and angiogenesis signal production, glycolysis and, most importantly, the adenylate kinase reaction, among
others. Sources for adenylate include de novo synthesis of AMP and salvage from nucleic acid catabolism. Adenylate sinks include AMP destruction by
deaminases and nucleotidases and ATP loss to nucleic acid synthesis. Clonal expansion or regression at the tissue scale [model (11)] depends
primarily on mean tumor microvessel density, which is controlled in part by angiogenic factor secretion by existing clones. Blood vessels grow from
existing vasculature via chemotaxis and maturation of vascular endothelial cell precursors in and near the tumor. At the evolutionary scale,
angiogenic and proliferative potential varies among clones (different colored cell subpopulations) as they compete for resources delivered by
microvessels. Evolutionary scale dynamics are handled in the simulation (see ‘‘Simulation Methods’’ above).
doi:10.1371/journal.pone.0091992.g001
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hypoxic tumor cells secrete a chemical signal composed of a

variety of tumor angiogenesis factors (TAF) to which VECPs

respond by proliferating, maturing and integrating themselves into

functional microvessels. The interaction between intracellular and

tissue levels arises as cells partition their available chemical

potential energy, primarily in the form of ATP, among three

energy-dependent activities: maintenance metabolism (cell volume

regulation, maintenance protein production and other life-support

physiology), proliferation and, potentially, secretion of TAF. In

turn, these three activities feed into tissue-level phenomena of

blood vessel growth and clone-specific expansion. These growth

phenomena then feed back to the intracellular scale because

relative growth rates of vessels and tumors determine perfusion

and therefore nutrient delivery, which in turn sets the cellular

energy charge and ATP regeneration rate, as detailed below.

Tumor vascular dynamics depend on both the strength of the

angiogenic signal and rate of tumor growth. Tumor vascular

density determines rate of ATP synthesis. Since malignant tumors

are often characterized by dampened oxidative metabolism

(Warburg effect [27,28]), vascular feedback on ATP synthesis

primarily occurs via delivery of glucose for glycolysis (Fig. 1).

Although an exhaustive derivation of the model can be found in

[17] (see also [14]), we provide a detailed outline below for

completeness. All parameters in the model have been estimated

carefully from data when possible or from biological first principles

and model behavior when not. Details of the prarameterizations

are outside the scope of this paper but are available in references

[14,16,17].

Cell Energetics Scale Model
Let A1i(t), A2i(t) and A3i(t) represent mean intracellular

concentrations of adenylate 59 mono-, di- and triphosphate,

respectively, in clonal lineage i[f1,2, . . . ,Sg at time t[½0,?).
(Variables and parameters in this model are summarized in

Tables 1 and 2, respectively.) We assume that each clone acts

independently of all others, and all cells in a given lineage are

identical. Adenylate concentrations are to be understood as mean-

field or ensemble averages within clone i.

Intracellular adenylate dynamics are governed by the following

system of ODEs:

dA1i

dt
~aazk(A2

2i{A1iA3i)zaiA3i{f (A1i,A3i),

dA2i

dt
~2k(A1iA3i{A2

2i)zbA3i{G(wi,v)A2i,

dA3i

dt
~G(wi,v)A2i{ciA3izk(A2

2i{A1iA3i),

i [f1,2, . . . ,Sg:

8>>>>>>>><
>>>>>>>>:

ð1Þ

Total adenylate in cells is controlled primarily via synthesis and

destruction of AMP. In the model, AMP appears de novo at

constant rate aaw0, representing mainly synthesis from inosine

monophosphate and salvage from nucleic acid recycling. The

function f (A1i,A3i) represents irreversible AMP recycling by

enzymes primarily in the 5
0

nucleotidase and AMP deaminase

families. Specifically,

f (A1i,A3i) : ~M1
A1i

k1zA1i

� �4

z
M2A1i(k2zA3i)

k3zk4A1izA2
1i

, ð2Þ

which is an empirical model of AMP destruction suggested by

Martinov et al. [23], who also provided empirical estimates of

(positive) parameters M1, M2, k1, k2 and k3. The first and second

terms in equation (2) represent the actions of AMP deaminases and

5
0

nucleotideases, respectively.

In resting mammalian cells, adenylate dynamics are dominated

by the adenylate kinase reaction,

2ADP'AMPzATP, ð3Þ

which is represented in the model by the second, first and third

terms in each equation of model (1), respectively. In most cells this

reaction has approximately equal forward and backward rates

[29], which we denote here as the positive constant k.

Besides the adenylate kinase reaction (3), interconversion among

adenylate species revolves around either ATP hydrolysis or

synthesis. The former is primarily governed by positive parameters

ai, b and ci, which themselves are sums of constants representing

metabolism supporting proliferation, TAF secretion and mainte-

nance. In particular,

ai~b1zcazgizfi(v), ð4Þ

b~b2zca, ð5Þ

ci~aizbzm{ca, ð6Þ

for i[f1,2, . . . ,Sg. Parameters b1,b2w0 are basic maintenance

metabolism rates. The former is the ATPRAMP conversion rate,

e.g., for biosynthesis (amino acid adenylation) and to power the

phosphoribosyl pyrophosphate synthetase reaction, among others

[17]. The latter (b2) represents the ATPRADP conversion rate,

primarily, but not exclusively, for cell volume control. A second

pathway from ATP to both ADP and AMP exists via the

adenosine kinase reaction,

ATPzAdenosine?ADPzAMP,

which we assume occurs at base rate caw0. Parameter mw0 is the

per-ATP rate of nucleic acid synthesis (assumed to be an

irreversible sink for ATP). All these parameters are assumed

constant across clones.

The key evolutionary parameters are gi and f̂fi, both positive

constants representing mean per-molecule rates at which clone i
cells allocate ATP to proliferation and angiogenesis secretion,

respectively. The dependence of fi on v arises because clones vary

the intensity of their angiogenic signal as a function of vascular

density. Specifically, we assume that

Table 1. Dependent variables studied in this model.

Variable Meaning

t Time

Aj(t) Concentration of adenylate 59 j-phosphate

xi(t) Mass of the ith clone’s parenchymal cells

x(t) Total parenchymal mass

y(t) Total mass of precursor VECs

z(t) Total length of mature microvessels

v(t) Tumor vascularization ( = z/x)

doi:10.1371/journal.pone.0091992.t001
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fi(v)~f̂five{jv, i[f1,2, . . . ,Sg, ð7Þ

where v is vascular density (defined in the Tissue Scale section

below). This functional form, adapted from [14], assumes that

TAF signaling rate is a unimodal function of vascular density, v. It

qualitatively mirrors observed increases in secretion of angiogen-

esis-promoting growth factors as cells become hypoxic [5] with the

added assumption that cells suffering extreme hypoxia lose the

ability to produce the signal. Parameter jw0 is constant across

clones and determines the vascular density at which angiogenesis

secretion peaks. Parameter f̂fi§0 varies among clones, is constant

within a clone, and measures the general intensity of the

angiogenic signal.

Finally, ATP is ‘‘regenerated’’ from ADP primarily via

glycolysis in cancer cells. This conversion is governed in the

model by the function G(w,v). Here, w denotes the ‘‘energy

charge’’ of a cell, which is a sort of weighted average of ‘‘high

energy’’ phosphoryl groups in adenylate. Specifically,

wi : ~
A3iz(1=2)A2i

A1izA2izA3i

ð8Þ

is the mean energy charge of cells in the ith clone. Mean glycolysis

rate is assumed to vary among clones only as they vary in mean

energy charge; in particular,

G(wi,v) : ~4s(v)wi(1{wi), ð9Þ

where

s(v) : ~
smaxv

0:1zv
, ð10Þ

and smaxw0 is constant. The particular forms and parameteriza-

tions for G(w,v) [equation (9)] and s(v) [equation (10)] were chosen

to fit data from [22] (see [17] for details).

Tumor Tissue Scale Model
Let xi(t), i[f1,2, . . . ,Sg, be the mass (in g) of clone i at time

t[½0,?). Also let y(t) and z(t) be VECP mass (in g) and total

length of microvessels, respectively, within the tumor at time t.
Microvessel length is scaled such that z~1 when total length of

microvessels in the tumor equals that of 1 g of healthy tissue in the

tumor’s site of origin [14,17]. We assume that mean proliferation

and angiogenesis signal production for cells of clone i depend on

Table 2. Parameters and default values representing a resting cell (from [17]).

Parameter Meaning Default Units

Evolutionary

l Mutation rate parameter 0.1 hr21

gi Proliferation secretion effort of clone i 1, max = 12 min21

f̂fi
Basic TAF secretion effort of clone i 0.11 g/U/min

Energetic

aa de novo AMP synthesis rate 5.72561025 fmol/min

k Adenylate kinase rate parameter 106 1/fmol/min

b1 Maintenance ATP to AMP rate 4 min21

b2 Maintenance ATP to ADP rate 4 min21

ca Adenosine kinase rate 0.01 min21

m ATP destruction rate 0.01 min21

j Nutrient sensitivity of TAF secretion 10/3 g/U

smax Physiological max ATP regeneration rate 390 min21

M1 AMP deaminase parameter 0.4 fmol/min

M2 Nucleotidase parameter 9.16761027 fmol/min

k1 AMP deaminase parameter 0.5 fmol

k2 Nucleotidase parameter 561023 fmol

k3 Nucleotidase parameter 2.5610210 fmol2

k4 Nucleotidase parameter 561025 fmol

Tissue

p Basic parenchyma proliferation rate 0.072 hr21

ks Proliferation sensitivity parameter 2 fmol/min

m Parenchyma mortality parameter 0.0698 fmol/hr

a Max VEC response to TAF 0.1 hr21

kv Sensitivity of VECs to TAF 0.0115 fmol/min

b VEC death/maturation rate 0.04 hr21

c VEC maturation rate 3 U/g/hr

d Microvessel remoldeling rate 461023 g/U/hr

doi:10.1371/journal.pone.0091992.t002
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the clone’s mean intracellular ATP concentration. However, mean

ATP concentration depends on vascular density, v, the clone’s

energy commitment to proliferation, gi and its commitment to

angiogenesis, fi(t) (see previous section). Therefore, there is a

continuous feedback between energetic and tissue scale dynamics.

Since adenylate dynamics of model (1) equilibrate very rapidly on

the time scale of the tissue model (11) (ref. [17]), we further assume

that mean ATP concentration in all clones is locked in quasi-

equilibrium for the adenylate model. We denote the ATP quasi-

equilibrium for the ith clone as �AA3i.

These assumptions lead to our tissue-level model of tumor

growth, adapted from [14,17]:

dxi

dt
~

pgi
�AA3i

kszgi
�AA3i

{
m
�AA3i

� �
xi, i[f1,2, . . . ,Sg,

dy

dt
~

PS
i~1

yi (v,�AA3i )xi

x
{b,

0
BB@

1
CCAy,

dz

dt
~cy{dvz,

yi(v,�AA3i) ~
afi(v)�AA3i

kvzfi(v)�AA3i

, i[f1,2, . . . ,Sg,

v ~
z

x
, x~

XS

i~1

xi:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

(Note that we have suppressed the time arguments of dependent

variables for clarity.) Here, v(t) denotes tumor microvessel length

density (in microvessel units/g), and z is scaled such that v~1
when tumor vascular density equals that of surrounding healthy

tissue. The mean ATP hydrolysis rate in support of proliferation in

clone i is gi
�AA3i. Mean per-cell proliferation rate is a monotonically

increasing, saturating function of gi
�AA3i, which we represent with a

Michaelis-Menten form in which pw0 and ksw0 are maximum

proliferation rates and half-saturation constants, respectively. We

also assume that a clone’s mean per capita mortality rate is

inversely proportional to �AA3i, with constant mw0.

Mean energetic commitment to angiogenic signal production in

clone i takes a similar form to that for proliferation, viz. fi(v)�AA3i.

As with proliferation, ATP invested in angiogenesis gives

diminishing returns, as represented by another Michaelis-Menten

function, with maximum angiogenic signal production a and half-

saturation constant kv [see equation for yi(v,�AA3i) in system (11)].

Overall angiogenic signal is the average signal strength of all clones

weighted by clone density, and we assume that per capita

proliferation of VECPs is proportional to the strength of this

signal [first term, second equation in system (11)]. Mean per capita

VECP mortality and maturation rates, combined into parameter

bw0, are assumed to be fixed. As VECP cells mature, they

integrate themselves into functional tumor microvessels at rate c,

composed of both the rate constant and a unit conversion factor.

There is evidence that tumors actively maintain their vascular

infrastructure even after its initial construction [5,6,12,30].

Viewing this maintenance as the tumor provisioning microvessels

with a resource, which may simply be space, we assume that this

resource is proportional to tumor mass, say R~c1x, where c1w0
is constant. Resource availability per microvessel unit is therefore

the ratio R=z~c1x=z~c1=v. We assume that per capita

microvessel remodeling rate is inversely proportional to this ratio;

that is, it is proportional to v with proportionality constant d

(which includes c1; second term, z equation of system (11); see also

ref. [14]).

This modeling approach implicitly assumes that the average

conditions in the tumor are predictive of tumor dynamics. In

particular, vascularization, v(t), is interpreted as mean vessel

density throughout the tumor at any given time (or, alternatively,

the ensemble average of many similar tumors). However, since

mutant clones are initially localized and vary in angiogenic

efficacy, one should question the assumption that all clones are

equally vascularized on average. On the other hand, cancer cells

are characterized by their ability to infiltrate surrounding tissues,

and many if not most exhibit positive chemotaxis up nutrient

gradients and therefore tend to move towards areas of locally high

vascularization [31]. So how violated the averaging assumption is,

and the consequences of that level of violation, remain open

questions to be addressed in subsequent approximations.

Evolutionary Scale Model
The tumor’s vascular support, measured by v, reacts to changes

in the clonal composition of angiogenic phenotypes, their

prevalence and overall abundance. In turn, clonal composition is

determined by selection pressures generated by a particular

vascular environment. This interaction dictates dynamics at the

evolutionary scale. Here we follow the prevalence of each

phenotype within the tumor, where the phenotype of clone i is

defined as fgi,f̂fig; that is, the phenotype is the clone’s energetic

commitment to angiogenesis and proliferation. We make no

explicit hypotheses about how these phenotypes relate to

genotypes except for the general assumptions that these traits

have high heritability, that they are polygenic, and that new

phenotypes may arise by mutation. However, we allow the

possibility that multiple genotypes can generate the same

phenotype. We also leave open the possibility that phenotype

could result from a persistent epigenetic change. For simplicity,

however, we refer to new phenotypes as ‘‘mutants.’’ In any case,

phenotype is fixed for all cells in the clone, although angiogenesis

signaling and proliferation rates in a single clone are not fixed

since these depend on vascularization, which is dynamic.

Evolutionary dynamics of clonal phenotypes in this model were

initially analyzed using adaptive dynamics [17]. The technique is

founded on the question, can a rare mutant strategy invade an

otherwise monomorphic population using a different strategy (the

‘‘resident’’ strategy) in the resident’s equilibrium environment

[21,24,25]? The set of all possible strategies is referred to as the

strategy space. One analyzes the ability of any possible mutant

phenotype to invade any resident strategy in an environment set

by the resident. Such an analysis produces a good, if not complete,

picture of the evolutionary dynamics, including the existence and

location in strategy space of evolutionarily important points or sets.

In particular, adaptive dynamics identifies evolutionarily stable

strategies (ESS), can be used to determine whether these points are

evolutionarily attracting (continuously stable strategies [32]) or

repelling and assess potential for evolutionary suicide [18] and

evolutionary branching [21], among other things.

However, adaptive dynamics is limited by two fundamental

assumptions. First, interarrival times between mutations must be

long compared to population dynamics so that fate of the mutant

is determined before the next mutant arises. Although this

assumption improves analytical tractability, it removes mutational

dynamics from the evolutionary picture, rendering transient

evolutionary dynamics invisible. We can only see the potential

evolutionary endpoints. Also, this assumption is almost certainly

violated in most cancers, which are well-known to be genomically

and genetically heterogeneous [1,33]. Second, most adaptive
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dynamics analyses rely on the assumption that mutations have

small phenotypic effects. Although this assumption is not strictly

required, relaxing it typically compounds analytical complexity.

But again, in cancer this assumption has dubious validity because

even minor mutations in both coding and control regions of genes

can have massive effects on cell phenotype. A relevant example

here would include a mutation in the control region of HIF1A, the

gene for the a subunit of hypoxia-inducible factor 1, which could

generate an enormous alteration of a clone’s angiogenic potential

[34]. The main goal of this paper is to assess the effects these

assumptions have on the predictions of the coupled models (1) and

(11). Therefore, we relax these assumptions, at the cost of

sacrificing analytical tractability, which leads to the simulations

described below.

Simulation Methods
In concept, our simulations operate as follows. Initial tumors are

assumed to be small (10 mg) and monomorphic with vascular

density equal to that of surrounding healthy tissue (z(0)~1).

Therefore, simulation initial conditions were always the following:

x1(0)~0:01 g, xi(0)~0 for all i[f2,3, . . . ,Sg, y(0)~0:001 g,

z(0)~0:01, Aj1(0)~�AAj1, j[f1,2,3g, where �AAj1 are the equilibrium

concentrations in a tissue with v~1, and all Aji for j[f1,2,3g and

i[f2,3, . . . ,Sg are left undefined until they arise via mutation.

Mutations occur as discrete events, with one new mutant clone

introduced at each event. Biologically, all mutation events except

the first are assumed to be independent of time, the composition of

the tumor and the number of previous mutation events.

Mathematically we therefore assume that, if fTngS{1
n~0 is the set

of arrival times for the S mutations defining new clones (assuming

that T0~0), then T1, T2{T1, . . . ,TS{1{TS{2 are independent,

identically distributed exponential random variables with param-

eter l (mean l{1; biologically, the mean interarrival times of

mutations).

On the time intervals ½Tn{1,Tn),n[f1,2, . . . ,S{1g, tumors

grow according to models (1) and (11) with xi~0 and Aji ignored

for all i[fnz1, . . . ,Sg and j[f1,2,3g. Mutant clones enter the

model when they have grown to a size large enough to be buffered

from stochastic extinction; therefore, a mutation event represents

the arrival of an already sizable mutant clone, which is assumed to

have initial mass of 0.1 mg and initial adenylate concentrations

equal to the quasi-equilibrium for that clone at the current

vascular density. So, at arrival times Tn, n[f0,1, . . . ,S{1g, the

mass of the new mutant clone, xiz1(Tn), is set instantly to 0.1 mg,

and the three adenlylate species for the new clone instantly take on

their quasi-equilibrium values for that clone given v(Tn); that is,

Aj(nz1)(Tn)~�AAj(nz1)(v(Tn)),j[f1,2,3g. In the terminal time peri-

od, ½TS{1,?), the tumor grows according to models (1) and (11),

with all variables strictly positive. In practice, simulations ended at

t~4 ‘‘years.’’ This horizon ensures that tumors, if viable, will grow

beyond the model’s design, given that the model is meant to

represent tumors still growing in their exponential phase. In

addition, it allows vascular density to equilibrate so that the

evolutionarily dominant clone can more easily be defined (see

below).

In any given simulation, only one parameter, either g or f̂f, was

allowed to evolve—all others were fixed at their default values.

Values of g for each clone were drawn from the interval ½1,12� and

for f̂f from the interval ½0,4�, which includes essentially all

biologically feasible values for these parameters [17]. The

probability distributions for the draws were uniform over those

intervals because, as mentioned earlier, single mutations may have

large phenotypic effects, and a comprehensive mapping between

pathological genetic and epigenetic alterations and phenotypic

effects is unavailable. Given this uncertainty, a uniform probability

distribution is the proper prior assumption. Further uncertainty

arises in the mutation rate parameter, l. We explore the

consequences of this uncertainty by fixing l in each simulation,

but varying it between 10 and 50 hours among simulations. In

each case, however, the number of (eventually) competing clones,

S, was fixed at 50. Each simulation scenario was then repeated

1000 times with the same initial conditions.

We evaluated the evolutionary outcome of the simulation using

two measures. The first represents what would appear be the

evolutionary ‘‘winner’’ in a histopathology study. In this case, we

defined the ‘‘evolutionarily dominant,’’ or just dominant, clone to

be the clone with the largest mass at the end of the simulation (4

years). The second measure of evolutionary success conforms more

closely to an evolutionary biologist’s notion of evolutionary

advantage. In this case, we define the dominant clone as that

which has the highest per capita growth rate at simulation’s end.

These two methods frequently identified different evolutionarily

favored clones. For instance, many simulated tumors had small,

but very rapidly growing, clones within them at the end of the

simulation. These clones were clearly outcompeting all others, but

because they arose late the the natural history of the tumor, they

had not had time to impact the tumor’s histology. This

phenomenon lead us to fix S~50 mutants—mutants that arise

beyond the 50th almost always remain pathologically irrelevant.

A measure of clonal diversity within a tumor provides a concise

description of a tumor’s evolutionary state with, potentially,

clinically relevant predictive power [1,35,36]. We therefore

measure phenotypic diversity with the Shannon Diversity Index,

or Shannon Information measure [37], which quantifies the mean

relative abundance of tumor clones. Maley et al. [35] used it to

measure clonal diversity in Barrett’s esophagus, and we adopt it

here for the same reason they did—it does not overemphasize the

most common clone. Given that selection acts on clones of all

sizes, and that rate of evolution depends on availability of adaptive

phenotypes [38], Shannon’s diversity index is a better measure of

evolutionary potential than are many other commonly used

indexes, like Simpson’s. In the model, the practical difficulties of

estimation from field data [39] are eliminated. The index, H , is

defined as

H : ~{
XS

i~1

qi ln qi,
XS

i~1

qi~1, ð12Þ

where qi is the proportion of the tumor mass contributed by the ith
clone. The Shannon index thus varies between 0 (a monomorphic

tumor) and ln S (all S clones contribute equally to tumor mass). If

the evolutionary endpoint is a monomorphic tumor, the Shannon

index may be used as a rough measure of how close the tumor is to

its climax histology (in the sense of the ecologist’s ‘‘climax

ecosystem’’).

Results and Discussion

Evolution of Proliferation
Our simulations show that relaxation of restrictive adaptive

dynamics assumptions do not alter the predictions of the adaptive

dynamics analysis. No matter which definition one uses for

‘‘evolutionary dominance,’’ either the histopathologist’s (most

mass) or the evolutionary biologist’s (largest per-capita growth

rate), the mean dominant g from our simulations agrees very well

with the CSS (evolutionary attracting strategy) predicted by
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adaptive dynamics; for example, with default parameter values,

the predicted ESS for proliferation effort was g&3:67 min21

(approximately 5:5 fmol or 7|109 ATP molecules per minute in a

resting cell, about half the rate measured in mouse LS cell culture

[40]) which agrees very well with our simulations (Fig. 2).

Nevertheless, the evolutionarily dominant clone at the close of

any given simulation varies, sometimes significantly, from the

theoretical ESS from adaptive dynamics. These deviations appear

to be caused by mutational contingency—although the ESS is a

deterministic evolutionary endpoint, by chance, the mutational

history [26] fails to direct the system towards the optimal g before

the tumor grows out of bounds. This picture predicts that tumors

of the same type, even in the same genetic background, will vary in

evolutionary strategy in a symmetric distribution around the ESS

(Fig. 2). However, at the whole-tumor level, the weighted mean

proliferation effort, defined as

�gg : ~
XS

i~1

xigi

x
, ð13Þ

also tends towards the predicted ESS, as does the ensemble

average of many simulations (Fig. 3).

Historical contingency has a greater impact on the histopath-

ological picture of tumor natural history than it does on the

evolutionary view. If mutant clones nearest the ESS arise late, they

will tend to contribute little to the tumor mass as it approaches

lethality; the clone favored by selection has no time to become

histologically significant. However, these favored clones’ per capita

expansion rates are large. Therefore, the variance in ‘‘dominant

phenotype’’ will tend to be greater in the histopathological rather

than the evolutionary view (Fig. 2). This effect is magnified as

mutation rate decreases—longer mutation interarrival times gives

early-arising, suboptimal clones more time to gain bulk before

more well-adapted mutants crop up. As a result, if the number of

mutations is fixed, tumors with lower mutation rates have greater

variance in ‘‘dominant phenotype’’ at the histological level (Fig. 2,

blue plots) and take longer to approach the ESS at the whole

tumor level (Fig. 3). In contrast, since time of arrival has little effect

on per capita growth rate, mutation rate has little to no effect on

the ‘‘dominant’’ clone as defined by per capita growth rate (Fig. 2,

black plots).

These results suggest that, in clinical applications, simple

measures of clonal diversity that fail to take clonal abundance

into account, like mean phenotype or the ecologist’s ‘‘species

diversity’’ measure [39], will be inferior to metrics like the

Shannon diversity index, which magnifies the relative contribution

of rare clones to overall tumor diversity. We explore the

consequences of this suggestion by evaluating the dynamics of

diversity in our simulations, taking proliferation commitment, g, as

the phenotype (Fig. 4). In most simulations, transient dynamics in

H are longer than are transients in mean g (compare Figs. 3 and

4). Interestingly, the Shannon index tends to increase with

increasing mutation rate even though the total number of

mutations remains the same (Fig. 4). Historical contingency is

the culprit here, too. When interarrival times are relatively long,

new mutant clones have a diminishing impact on this diversity

measure since previously successful clones have more time to gain

mass before they are challenged by new mutants. In addition, H

exhibits a large variance both among tumors in the ensemble and

within a given tumor over time well after mutations have stopped

(Fig. 4, purple curves).

How this variation relates to clinical prognosis is an interesting

open question. Maley et al. [35] addressed a similar issue in

Barrett’s esophagus. Their study suggested that higher Shannon

diversity index in cell ploidy predicts progression from the

premalignant state to adenocarcinoma. These authors suggest

that this correlation is causative since higher genetic diversity

Figure 2. Evolutionarily ‘‘dominant’’ proliferation commitment (g) in 1000 simulations for each of two mutation rates: l = 0.1 and
0.02 (plotted as mean interarrival time between mutations 10 and 50 hours, respectively). All parameters except g were set to the
defaults in [17]. Shown are distributions of the histopathologist’s ‘‘dominant’’ clone (clone with the most mass; blue) and the evolutionary biologist’s
dominant clone (clone with the largest per capita growth rate; black).
doi:10.1371/journal.pone.0091992.g002
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generally leads to more rapid evolution. In the context of the

current study, the evolutionary endpoint is the ESS. Therefore, the

same reasoning suggests that higher diversity should lead to more

rapid convergence to that endpoint. Since diversity increases with

mutation rate even for a fixed number of mutations, we therefore

expect more rapidly mutating tumors to more rapidly approach

the ESS. Indeed, the simulations predict precisely this pattern

(Fig. 3). The significance of this is two-fold. Clonal diversity not

only helps predict probability of cancer progression, it can also be

used to assess the evolutionary potential of tumors that are already

malignant. Therefore, we suggest that phenotypic diversity can be

a clinically relevant measure that can complement genomic and

genetic profiles which are at times so complicated by underlying

genetic instability that they can obscure our understanding of

tumor drivers.

Evolution of the Angiogenic switch
As described in the introduction, the Nagy-Armbruster model

[17] predicts that any ESS for angiogenesis effort (f̂f) is an

evolutionary repeller—rare mutant strategies further from the ESS

are favored. Selection therefore pushes mean phenotype away

from the ESS, resulting in runaway selection for either vascular

hyper- or hypoplasia. This phenomenon is caused by a complex

interaction between adenylate metabolism, energy charge homeo-

stasis and vascular response to angiogenesis signaling. The

angiogenesis ESS is also highly sensitive to proliferative effort.

For example, if g~1, representing proliferative effort in a healthy,

homeostatic tissue, the ESS f̂f&0:0524 min21 (about 0.08 fmol or

108 ATP molecules per min per cell). However, as g changes

towards its ESS of 3.67 (assuming it does so independently of

selection on angiogenesis potential), the ESS for f̂f jumps past 90

(more than 135 fmol or 1:8|1011 ATP molecules per minute per

cell), beyond what is physiologically reasonable.

Here, as in the previous section, we relax the adaptive dynamics

assumptions of one mutant challenger at a time and small

mutational effect, although we retain the assumption that selection

acts only on angiogenesis effort. Here again, simulations agree

Figure 3. Change over time in weighted mean proliferation effort, �gg (see equation (13)). Blue curves in both panels represent the first 20
of the 1000 simulations plotted in Fig. 2. Solid black curves are the ensemble averages of all 1000 runs, dashed black curves mark the inner 95th
percentile range for all runs, and dotted black lines represent the ESS predicted by adaptive dynamics theory (g~3:67 min21). Dashed red lines
represent mean time of the final mutation (S=l). (A) l~0:1; (B) l~0:02.
doi:10.1371/journal.pone.0091992.g003

Figure 4. Dynamics of the Shannon diversity index, H, of individual tumors evolving in proliferation commitment, g. Purple curves in
both panels represent the first 20 of the 1000 simulations plotted in Fig. 2. Solid black curves are the ensemble averages of all 1000 runs. Dashed red
lines represent mean time of the final mutation (S=l). (A) l~0:1; (B) l~0:02.
doi:10.1371/journal.pone.0091992.g004
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with the adaptive dynamics analysis. There exists an evolutionarily

repelling ESS, so angiogenic commitment evolves to one extreme

or the other, as can be seen in Fig. 5. If proliferation commitment

is low, the angiogenesis ESS is also relatively low. In consequence,

many mutants have an angiogenic commitment above the ESS.

Because the ESS is repelling, those clones with the highest

angiogenic commitment have the greatest advantage, and so f̂f
evolves to its highest possible value (Fig. 5, left-hand black box).

However, if proliferation commitment is high, then the angiogen-

esis ESS is beyond what is physiologically possible but is still

repelling. Therefore, mutants with the lowest angiogenic commit-

ment are most favored, and f̂f evolves to extremely low values

(Fig. 5, right-hand black box).

Nevertheless, these evolutionary forces remain clinically insig-

nificant because historical contingency completely dominates the

dynamics. By the end of the simulations, when tumors are well

beyond lethal size, strategies that dominate by mass vary greatly in

angiogenic phenotype, f̂f (Fig. 5, blue boxes). Therefore, even

detailed histopathology studies would reveal no evolutionary

pattern unless specific markers for angiogenesis were correlated

Figure 5. Evolutionarily dominant tumor angiogenesis factor commitment (f̂f) in 1000 simulations for two values of proliferative

effort (g~1:085 min21 and 3.65 min21). In both cases, l~0:1. All other parameters except f̂f were set to defaults from [17]. (Compare Fig. 2.)
doi:10.1371/journal.pone.0091992.g005

Figure 6. Change over time in weighted mean angiogenesis effort, f̂f. Blue curves in both panels represent the first 20 of 1000 simulations
plotted in Fig. 5. Solid black curves are ensemble averages of all 1000 runs, dashed black curves are the inner 95th percentile of all runs, and dashed
red lines are mean time of the last mutation. (Compare Fig. 3.) (A) g~1:085 min21; dotted horizontal line is the ESS from adaptive dynamics

(&0:0524 min21). (B) g~3:65 min21; the ESS value of f̂fw90 min21 is not shown.
doi:10.1371/journal.pone.0091992.g006
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with proliferation rate. This situation arises because the selection

gradient for angiogenesis effort is extremely shallow [17].

Although extreme values of f̂f are favored, selective benefits of

these extremes are tiny compared to disfavored strategies.

Therefore, tumors tend to be dominated histologically by the

initial clones that arise because the time required by any selectively

favorable clone to overcome these early clones extends well

beyond the time required for the tumor to grow to lethal size.

Nevertheless, the general evolutionary trend towards ‘‘hypertu-

mors’’ predicted by adaptive dynamics is still evident. All

simulations show a clear trajectory towards either vascular hyper-

or hypoplasia. In particular, tumors with low proliferation

commitment (g = 1.085 min21) always evolve towards higher

angiogenic potential (Fig. 6A), while tumors with high proliferation

commitment (g = 3.65 min21) always creep towards failing angio-

genesis (Fig. 6B).

In the former case, tumor necrosis occurs once tumor vascular

density exceeds 3.2 times normal tissue vascularization (Fig. 7,

dashed curves). The necrosis arises as selection continues to favor

the most angiogenic clones in the (hypervascular) tumor; the

energy wasted by massive angiogenic factor secretion in an

environment that promises no more proliferative advantages to

cells from more microvessel density ends up causing the tumor’s

downfall. In contrast, the latter case represents a ‘‘classical’’

hypertumor [14] as selection favors the least angiogenic clones,

eventually forcing the vascular density below that required to

sustain the cells. Specifically, tumors with proliferation commit-

ment anywhere between 0 and 4 min21 become necrotic once

tumor vascularization drops below 0.2 (20% of normal vascular

density; Fig. 7, solid curves).

As tumors progress towards their evolutionary endpoint—the

ESS in the case of proliferative potential and extreme hypo- or

hyperplasia for angiogenic ability—clonal diversity will tend to

decrease. Therefore, the diversity index provides at least a rough

measure of how close the tumor system is to its evolutionary

endpoint. However, the picture is muddied because selection

pressures on proliferation and on angiogenic capacities interact.

Weak selective pressures on proliferation allow for increasing

Figure 7. Per capita growth rate of various strategies against tumor vascularization. Gray, dashed horizontal line represents zero growth
rate. Solid lines represent clones with high proliferation commitment (g = 3.65 min21), while dashed lines represent clones with low proliferation

commitment (g = 1.085 min21). Black lines represent the lowest angiogenic clones (f̂f = 0 min21), red lines; the highest angiogenic clones

(f̂f = 4 min21), which encompasses the possible curves of all intermediate angiogenic clones.
doi:10.1371/journal.pone.0091992.g007

Figure 8. Dynamics of the Shannon diversity index, H, of individual tumors evolving in angiogenic commitment (f̂f) for two
different constant proliferation commitments: (A) g~1:085 min21; (B) g~3:65 min21. Purple curves in both panels represent the first 20 of
the 1000 simulations plotted in Fig. 5. Solid black curves are the ensemble averages of all 1000 runs. Dashed red lines represent mean time of the final
mutation (S=l), with l~0:01.
doi:10.1371/journal.pone.0091992.g008
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diversity in angiogenic capacity, whereas tumors evolving rapidly

to a high proliferation commitment tend to be significantly less

diverse (Fig. 8). Indeed, a small subset of highly proliferative

tumors exhibit rapid declines in tumor diversity (Fig. 8B); no

similar behavior was observed in tumors with low proliferation

commitment (Fig. 8A).

Given the dominant role historical contingency plays in

evolution of angiogenesis capacity in these simulations, the clinical

significance of hypertumors remains an open question. Evolution-

ary suicide may be the ultimate endpoint of angiogenic tumors,

but they may also tend to kill the host before that endpoint is

approached in many, perhaps most, cases. However, the

simulations as formulated here cannot be used to assess this

suggestion since the parameterization is focused on early tumor

growing in their exponential phase.

Conclusions

Tumors exist not as homogeneous entities with universal

properties or traits, but rather as diverse collections of heteroge-

neous cell lineages competing for resources with one another and

surrounding healthy cells within the tumor stroma. Thus, viewing

tumor progression as an evolutionary process is vital to under-

standing and eventually treating tumors so that resistance does not

evolve. Previous adaptive dynamics modeling has shown that

selection acts on cells’ commitments to proliferation and TAF

secretion potential based on their costs and benefits, defined

primarily by their effects on metabolism and per capita growth

rate [17]. However, the analytical techniques used in that study,

based on adaptive dynamics, assumes certain biological constraints

not commonly observed in cancer growing in vivo, including low

phenotypic diversity and small mutational effects. Using numerical

simulations, we relax these assumptions and show that diverse,

complex tumors still adhere to the evolutionary pathways

predicted by adaptive dynamics. In particular, (i) the ultimate

evolutionary attractor for proliferative commitment is a finite ESS

that is also convergence-stable, (ii) selection on angiogenic

potential generates an ESS that becomes an evolutionary repeller,

and therefore (iii) selection on angiogenesis potential produces

vascular instability ultimately leading to evolutionary suicide

(hypertumor) by inducing either vascular hypo- or hyperplasia.

However, evolutionary trajectories in these simulations are so

highly influenced by the tumor’s specific mutational history that

the predicted evolutionary endpoints may be largely irrelevant to

tumor natural history in vivo.

Acknowledgments

The authors thank two anonymous reviewers for insightful comments that

helped us sharpen the argument and generally improve the manuscript.-

This research is supported in part by Scottsdale Community College and

Arizona State University’s Barrett Honors College.

Author Contributions

Conceived and designed the experiments: JDN STB JDJ. Performed the

experiments: STB JDJ. Analyzed the data: JDN STB JDJ. Contributed

reagents/materials/analysis tools: JDN. Wrote the paper: STB JDN JDJ.

References

1. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481: 306–313.

2. Weinberg RA (2007) The Biology of Cancer. New York: Garland.

3. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100: 57–70.

4. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation.

Cell 144: 646–674.

5. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, et al. (1998)

Vessel cooperation, regression and growth in tumors mediated by angiopoietins
and VEGF. Science 221: 1994–1998.

6. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial
growth factor (VEGF) and its receptors. FASEB Journal 13: 9–22.

7. Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis.
Semininars in Cancer Biology 19: 329–337.

8. Benjamin LE, Hemo I, Keshet E (1998) A plasticity window for blood vessel
remodelling is defined by pericyte coverage of the preformed endothelial

network and is regulated by PDGF-B and VEGF. Development 125: 1591–
1598.

9. Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis:
FGFs, PDGF, EGF, and TGFs. Journal of Neuro-Oncology 50: 121–137.

10. Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the
angiogenic switch during tumorigenesis. Cell 86: 353–364.

11. Plate KH, Breier G, Weich HA, Risau W (1992) Vascular endothelial growth
factor is a potent tumour angiogenesis factor in human gliomas in vivo. Nature

359: 845–848.

12. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, et al. (2002)

Microtumor growth initi-ates angiogenic sprouting with simultaneous expression

of VEGF, VEGF receptor-2 and angopietin-2. Journal of Clinical Investigation
109: 777–785.

13. Bergers G, Benjaimin LE (2003) Tumorigenesis and the angiogenic switch.
Nature Reviews Cancer 3: 401–410.

14. Nagy JD (2004) Competition and natural selection in a mathematical model of
cancer. Bulletin of Mathematical Biololgy 66: 663–687.

15. Nagy JD (2005) The ecology and evolutionary biology of cancer: A review of
mathematical models of necrosis and tumor cell diversity. Mathematical

Biosciences and Engineering 2: 381–418.

16. Nagy JD, Victor EM, Cropper JH (2007) Why don’t all whales have cancer? A

novel hypothesis resolving peto’s paradox. Integrative and Comparative Biology
47: 317–328.

17. Nagy JD, Armbruster D (2012) Evolution of uncontrolled proliferation and the
angiogenic switch in cancer. Mathematical Biosciences and Engineering 9: 843–

876.

18. Parvinen K (2005) Evolutionary suicide. Acta Biotheoretica 53: 241–264.

19. Smith JM (1982) Evolution and the Theory of Games. Cambridge: Cambridge
University Press.

20. Smith JM, Price GR (1973) The logic of animal conict. Nature 246: 15–18.
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