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Abstract
Species turnover or β diversity is a conceptually attractive surrogate for conservation plan-

ning. However, there has been only 1 attempt to determine how well sites selected to maxi-

mize β diversity represent species, and that test was done at a scale too coarse (2,500 km2

sites) to inform most conservation decisions. We used 8 plant datasets, 3 bird datasets, and

1 mammal dataset to evaluate whether sites selected to span β diversity will efficiently rep-

resent species at finer scale (sites sizes < 1 ha to 625 km2). We used ordinations to charac-

terize dissimilarity in species assemblages (β diversity) among plots (inventory data) or

among grid cells (atlas data). We then selected sites to maximize β diversity and used the

Species Accumulation Index, SAI, to evaluate how efficiently the surrogate (selecting sites

for maximum β diversity) represented species in the same taxon. Across all 12 datasets,

sites selected for maximum β diversity represented species with a median efficiency of 24%

(i.e., the surrogate was 24%more effective than random selection of sites), and an inter-

quartile range of 4% to 41% efficiency. β diversity was a better surrogate for bird datasets

than for plant datasets, and for atlas datasets with 10-km to 14-km grid cells than for atlas

datasets with 25-km grid cells. We conclude that β diversity is more than a mere descriptor

of how species are distributed on the landscape; in particular β diversity might be useful to

maximize the complementarity of a set of sites. Because we tested only within-taxon surro-

gacy, our results do not prove that β diversity is useful for conservation planning. But our

results do justify further investigation to identify the circumstances in which β diversity per-

forms well, and to evaluate it as a cross-taxon surrogate.

Introduction
Because many species have not been described and most species distributions have not been
mapped, conservation planners have long used surrogates for conservation planning [1]. Sur-
rogates are features that are well-mapped in the planning region, such as soil types, landforms,
climate conditions, or occurrences of an easily-observed taxon. The idea is that a set of p sites
selected to span diversity in the surrogate will efficiently represent diversity of species (or other
biodiversity targets) whose true distributions are not known.

In this paper we evaluate β diversity as a surrogate, i.e., whether sites selected to span β
diversity will efficiently represent species. We use the term β diversity as a synonym for species
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turnover or assemblage dissimilarity [2–7]. To use β diversity as a surrogate for species repre-
sentation, we follow the “indirect environmental diversity” approach of Faith and Walker [3–
6]. In this approach, sites (geographic places that could be selected for conservation) are
arranged in an ordination in which distance between sites reflect dissimilarity of species assem-
blages of a well-mapped group (the indicator group). Then, given a budget sufficient to con-
serve p sites, a p-median selection algorithm selects sites to span the ordination. It is assumed
that each assemblage reflects the responses of individual species to environmental variation
among sites. Thus a site with an assemblage that differs from the assemblages at the previously
selected sites is assumed to represent a new environmental setting, and the site is therefore pre-
dicted (on average) to represent additional species in the target group, even if it contains no
new species in the indicator group. The original claim [4] was that sites spanning β diversity in
an indicator taxon will efficiently represent targets in other taxa, but this claim obviously must
apply with equal or greater force to targets in the indicator taxon [6]. Thus the use of β diversity
as a surrogate entails the hypothesis that sites selected to span β diversity will efficiently repre-
sent species in the same taxon or another taxon.

A key assumption of the model is that each species has a unimodal distribution in environ-
mental space. If this assumption is true, Faith andWalker [4] proved that sites selected to span
ordination space will efficiently represent target species. This critical assumption could be false
if species distributions were driven less by environmental conditions than by other factors,
such as habitat degradation and loss due to human activities, species-specific dispersal limita-
tions (e.g., after retreat of continental glaciers, or formation of a land bridge between land mas-
ses), stochastic colonization events, interspecific interactions, or frequent disturbance.

In this paper we test this critical assumption–and test β diversity as a surrogate–with 12
datasets, and assess whether the efficiency of β diversity varies with characteristics of the data-
set such as spatial extent, spatial resolution (size of site), type of species data (inventory versus
atlas), taxon, number of species, or stress value (badness of fit) of the ordination [8]. There has
been only 1 previous attempt to determine how well sites selected to maximize β diversity rep-
resent species [6], and that test was done at a scale too coarse (2,500 km2 sites) to inform most
conservation decisions. We extend this work to finer scales (sites< 1 ha to 625 km2).

For each of our 12 datasets, we used a single taxon as both the indicator taxon and the target
taxon. We acknowledge that a conservation planner would want to use β diversity only as a
cross-taxon surrogate, and that our within-taxon tests overestimate how well β diversity would
represent biodiversity targets in another taxon. However, we could not find even a handful of
datasets that describe occurrence of multiple taxa in cells no larger than 25 x 25 km. Despite
the limitation of using within-taxon tests, our effort is the most comprehensive attempt to eval-
uate β-diversity as a surrogate for species representation. If β-diversity is a poor surrogate in
tests using the same taxon as indicator and target, we would infer that the key assumption (spe-
cies have unimodal distributions in environmental space) is false. On the other hand, if β diver-
sity is a good within-taxon surrogate, then further investigation of β diversity as a cross-taxon
surrogate would be warranted.

Materials and Methods
To test whether β diversity is an efficient surrogate for within-taxon biodiversity, we analyzed
12 biological datasets. Each dataset consisted of a list of species present in each of> 200 sites.
We selected datasets that attempted to document all species present, such that pseudo-absences
probably indicated true absences in most cases. We further attempted to find datasets on differ-
ent taxa, from different geographic regions, and to include both atlas and inventory datasets.
Araujo et al. [6] suggested that β diversity might perform poorly at continental spatial extent
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(where common species may drive β diversity patterns) and for large (50x50 km) grain size
(which cannot detect local gradients driven by restricted-range species). Accordingly, we
selected datasets covering small to mid-sized regions, with grain sizes no larger than 25x25 km.
We present results for all datasets analyzed. Five datasets were inventories of the focal taxon at
all sites; 7 datasets were atlases summarizing occurrence records of the focal taxon (Table 1).

For each dataset, we created a matrix of the dissimilarity values (1 minus Jaccard similarity)
between each pair of sites [7]. We chose Jaccard dissimilarity because this index is appropriate
for presence-absence data, whereas Bray-Curtis and other dissimilarity metrics are appropriate
for relative abundance data. Then we used nonmetric multidimensional scaling (NMDS [15])
and hybrid multidimensional scaling (HMDS [16]) to place each site in 2-dimensional space,
where inter-site distance reflected β diversity (species turnover, dissimilarity between species
assemblages). Within each ordination (NMDS or HMDS) we performed up to 1,000 iterations
per random start and selected the ordination with the lowest stress value across 10 random
starts. Matrix and ordination analyses were performed using R package vegan [17].

We created a regularly-spaced grid of 10,000 points across this ordination space and treated
them as demand points in a p-median selection algorithm. This algorithm selects the set of p
sites that minimizes the sum of distances (in ordination space) from each demand point to the
nearest selected site. Specifically, we used the hybrid heuristic p-median procedure in POP-
STAR [18] with 32 random starts, and hybridization among the top 10 solutions to identify a
solution that best spans β-diversity space. In previous tests, including tests with pathological
datasets (created with the sole purpose of being hard to solve), POPSTAR obtained solutions
better than or within 0.1% of the best known solution [18]. We conducted 5 runs per dataset,
varying p to select 15%, 20%, 25%, 30%, and 35% of the total number of sites in each dataset.
We chose these levels to reflect performance of each surrogate at levels about as low as the

Table 1. Twelve datasets used to evaluate β diversity. In each “atlas” dataset, each site was a grid cell, survey efforts did not cover the entirety of each
grid cell, and the sites collectively comprised the entire study area. In each “inventory” dataset, the sites were a systematic subsample of the study area.

Taxon and geographic area Extent
(km2)a

# Sites &
Assemblages

Size of inventory site or grid
cell

#
Species

Type of
dataset

Plants, Sequoya/Kings Canyon National Park,
USAb

3497 545 <1 ha 854 Inventory

Plants, Sierra Nevada, Spain [9] 862 596 <1 ha 262 Inventory

Plants, Shenandoah National Park, USAb 810 351 <1 ha 728 Inventory

Plants, Chiapas, Mexico [10] 73,311 230 <1 ha 258 Inventory

Plants, UK [11] 243,610 2,242 100 km2 1,456 Atlas

Plants, Botswana c 581,730 556 625 km2 2,237 Atlas

Plants, Namibia c 825,615 998 625 km2 3,566 Atlas

Plants, Zimbabwe c 390,757 360 625 km2 1,338 Atlas

Birds, Arizona, USA [12] 295,234 1,317 25 km2 359 Inventory

Birds, Spain [13] 505,992 5,301 100 km2 294 Atlas

Birds, Florida, USA [14] 170,304 1,028 196 km2 (7.5’) 211 Atlas

Mammals, Ireland d 84,421 1,684 100 km2 39 Atlas

a Approximate area within park or political boundary
b Data from US National Park Service Inventory Products http://science.nature.nps.gov/im/inventory/veg/products.cfm (accessed 20 June 2014)
c Data from South African National Biodiversity Institute, PRECIS accessed via http://www.gbif.org/dataset/1881d048-04f9-4bc2-b7c8-931d1659a354 on

2014-03-10
d Data from the Atlas of Mammals in Ireland 2010–2015 dataset held by the National Biodiversity Data Centre www.biodiversityireland.ie, accessed via

http://www.gbif.org/dataset/c585e6fb-fd76-426e-ae01-a32dc9de5689 on 2014-03-10

doi:10.1371/journal.pone.0151048.t001
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current extent of the world’s protected areas (13% of land area [19]), increasing to various plau-
sible levels of expansion of the protected area network [20]. These 5 sets of sites represented
reserve networks selected to maximize β diversity across sites. We intersected the network with
the species data (inventories or atlas) to calculate S, the number of species represented in each
surrogate network.

We used the Species Accumulation Index, SAI [1, 21] to evaluate the efficiency of the surro-
gate (selecting sites for maximum β diversity) in representing species within the taxon (Fig 1).
SAI compares S, the number of species represented in the set of sites selected using the surro-
gate, to an optimum value O (the largest number of species that can be represented in the same
number of sites) and to R, the mean number of species represented in the same number of ran-
domly selected sites. We calculated O from the core area version of Zonation [22], a selection

Fig 1. A full species accumulation curve for plants in Chiapas. The upper line (black) indicates the largest possible number of species represented at
least once in a given number of sites, as estimated by Zonation [22]. The lower curve (gray) indicates the average number of species represented at least
once in a randomly-selected set of sites; dashed lines enclose 95% of 1000 random sets. Symbols represent the number of species represented at least
once in sites selected to maximize β diversity (dispersion of sites in a 2-dimensional ordination of species assemblages). From left to right, the symbols
correspond to 15% (upward triangle), 20% (cross), 25% (x), 30% (diamond), and 35% (downward triangle) of all sites in the dataset. In Fig 2, data in the lower
left portion of the graph are omitted to present the same results in higher resolution.

doi:10.1371/journal.pone.0151048.g001
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algorithm that starts with all sites tentatively “reserved” and progressively removes sites least
needed to retain at least a small number (core) of occurrences of each species. To calculate R,
we accumulated cells in random order and at each step we calculated the number of species
represented at least once in the randomly selected cells. We repeated the random selection pro-
cedure 1,000 times, used the mean value as R, and calculated a 95% CI on R.

Formally, SAI = (S-R)/(O-R). SAI is scaled –1 to 1; negative SAI indicates a worse than ran-
dom result, 0 indicates random performance, and positive SAI is a measure of efficiency. For
example, SAI of 0.6 indicates that the surrogate was 60% as effective as the optimal solution in
its ability to improve on random selection of sites. We calculated SAI at 15%, 20%, 25%, 30%,
and 35% of the landscape hypothetically reserved (Fig 1). We used the mean of these 5 SAI val-
ues as an overall estimate of surrogate performance for each dataset.

Across the 12 datasets, we used scatterplots, t-tests, and correlations to evaluate influence of
size of study area, number of species, stress value of the ordination, taxon, size of grid cell (for
atlas data), and type of biodiversity data (inventory, atlas) on SAI. After the counterintuitive
finding that low stress values were associated with low SAI values, we examined ordination
plots and Shepard plots, and experimented with deleting apparent outliers to try to discern pat-
terns associated with poor performance.

Results
Across all 12 datasets, sites selected for maximum β diversity represented species at a median
25% of maximum efficiency. Average efficiencies (SAI) ranged from -15% to +45%, with an
interquartile range of 4% to 41% (Table 2). The mean SAI of 21% was significantly greater than
zero (one-sample t-test, 11 df, P< 0.0001). For 6 of the 12 datasets, sites selected for maximum
β diversity represented species at 31% to 45% of maximum efficiency, with>30% efficiency at
most percentages of the landscape (Table 2, Fig 2). These 6 datasets included birds in Arizona,
Spain, and Florida, and plants in Chiapas (Mexico), United Kingdom, and Shenandoah
National Park (USA). For plants in Sierra Nevada (Spain), β-diversity performed with average
18% efficiency, but only 1 of 5 SAI values was above the 95% CI for randomly selected sites,
and efficiency was as low as 9% when 35% of the landscape was selected for the hypothetical

Table 2. Performance of β diversity in prioritizing sites for conservation, for each of 12 datasets. Performance (SAI) values indicate how efficiently β
diversity represents species compared to the same number of randomly selected sites. Bold indicates values significantly above 95%CI of the same number
of randomly-selected sites. Columns are arranged from highest to lowest mean SAI.

% of sites
prioritized

Dataset

Plants,
Chiapas

Birds,
Arizona

Birds,
Spaina

Plants,
U.K.

Birds,
Florida

Plants,
Shenandoah

NPa

Plants,
Sierra
Nevada
(Spain) a

Plants,
Zimbabwe

Mammals,
Irelanda

Plants,
Namibia

Plants,
Botswana

Plants,
Sequoia-
Kings

Canyon NP

15% 0.42 0.47 0.42 0.41 0.07 0.33 0.15 -0.10 0.10 0.17 -0.16 -0.26

20% 0.53 0.45 0.43 0.33 0.19 0.38 0.20 -0.06 0.11 0.05 -0.16 -0.17

25% 0.42 0.48 0.51 0.34 0.47 0.43 0.15 0.23 -0.12 -0.08 0.01 -0.14

30% 0.37 0.35 0.16 0.44 0.60 0.20 0.29 0.28 -0.09 -0.02 -0.03 -0.04

35% 0.50 0.39 0.58 0.48 0.54 0.21 0.09 -0.06 0.25 -0.03 0.02 -0.12

Mean 0.45 0.43 0.42 0.40 0.38 0.31 0.18 0.06 0.05 0.02 -0.06 -0.15

Stressb 0.176 0.112 0.205 0.112 0.145 0.296 0.312 0.059 0.265 0.045 0.001 0.106

a Datasets for which the ordination was estimated using hybrid multidimensional scaling (because it performed better). Non-metric multidimensional

scaling was used in ordinate the other datasets.
b Stress quantifies the badness of fit for each ordination [8].

doi:10.1371/journal.pone.0151048.t002
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conservation network. For the remaining five datasets, all SAI values were within the 95% con-
fidence interval for the same number of randomly selected sites.

Two factors–taxon and grid cell size–were associated with SAI. Although comparisons
among positive SAI values are meaningful (SAI of 0.50 is twice as good as 0.25), means, correla-
tion coefficients, and t-tests involving negative SAI values should be interpreted with caution
(SAI of -0.50 is not necessarily twice as bad as -0.25, nor is it the mirror image of +0.50).
Because 2 of our 12 SAI values were negative, the p-values should be treated as approximate.
SAI values were higher for bird datasets (mean = 0.42, SD = 0.03, n = 3) than for plant datasets
(mean = 0.15, SD = 0.22, n = 8; 2-tailed t-test with unequal variances, P = 0.01). Across the 7
atlas datasets, β diversity was a better surrogate for datasets with 10-km to 14-km grid cells
(mean = 0.31, SD = 0.18, n = 4) than for atlas datasets with 25-km grid cells (mean = 0.01,
SD = 0.06, n = 3; 2-tailed t-test with unequal variances, P = 0.04). None of the other 4 factors
influenced SAI in a coherent way. SAI for datasets based on inventory data (mean = 0.24,
SD = 0.25, n = 5) were not significantly different than SAI for datasets based on atlas data
(mean = 0.18, SD = 0.23, n = 7, 2-tailed t-test with equal variances, P = 0.64). In tests of correla-
tion (12 cases in each test), SAI did not co-vary with spatial extent (r = -0.19, P = 0.55), stress
value of the ordination (r = +0.35, P = 0.27), or number of species (r = +0.24, P = 0.45). Inspec-
tion of scatterplots suggested only one potential nonlinear influence on SAI: the 5 highest SAI
values were associated with stress values between 0.11 and 0.20 and SAI decreased at higher or
lower stress values. Most surprisingly, the 4 datasets with stress values< 0.11 were associated

Fig 2. Efficiency of β diversity. Number of species represented at least once in sites selected to maximize β diversity (open circles) compared to the largest
possible number of species represented at least once in the same number of sites (black circles, estimated by Zonation [21]), and the number of species
represented at least once in the same number of randomly-selected sites (vertical bar indicates mean and 95%CI).

doi:10.1371/journal.pone.0151048.g002

Evaluating β Diversity for Species Representation

PLOS ONE | DOI:10.1371/journal.pone.0151048 March 4, 2016 6 / 9



with low SAI values (-0.15 to +0.06). Ordination plots for each of these 4 datasets (plants of
Botswana, Namibia, Zimbabwe, and Sequoia-Kings Canyon National Park) had apparent outli-
ers. The dataset for Irish mammals also had apparent outliers; the other 7 datasets did not.
Deleting suspected outliers (4 to 44 outliers per dataset) resulted in a more “normal” ordination
plot for each of these 5 datasets, but did not affect stress values in any consistent way, and did
not improve SAI values.

Discussion
For 6 of the 12 datasets we used, sites selected to maximize β diversity represented species
about 30% to 45% as efficiently as direct selection of sites, meaning β diversity was 30% to 45%
as effective as having full knowledge of species locations in its ability to improve on random
selection of sites. Efficiency was consistent regardless of the fraction of the landscape priori-
tized. Across the 7 atlas datasets, β diversity was a better surrogate at cell sizes of 100–200 km2

than at cell sizes of 625 km2, supporting the idea [6] that β diversity is a better surrogate at
finer resolution.

We are aware of only one other selection-based test of β diversity. In that study, Araujo et al.
[6] reported that performance of β diversity was statistically better than random (P< 0.05) for
plants and reptiles, but not significantly better than random for birds and mammals in
50x50-km cells of Western Europe (SAI was not reported). These results are more pessimistic
than ours, which may be partly due to use of a coarser cell size (50x50 km) than in any of our
data sets, or due to other statistical issues [5].

β diversity was a good surrogate for all 3 bird datasets, but a poor surrogate for the single
mammal dataset (mammals of Ireland). Over 75% of Ireland is in agricultural land use, and
only about 14% of its land area is forest and semi-natural land covers, compared to about 45%
in the rest of Europe [23]. Perhaps human-caused changes in land cover and land use have rele-
gated some mammals to remnant sites such that mammals in Ireland no longer have unimodal
distributions in environmental space. It is not clear why β diversity was a good surrogate for 3
plant datasets and a poor surrogate for 4 plant datasets. It seems unlikely that plant assem-
blages reflect environmental conditions more closely in Chiapas, United Kingdom, and Shen-
andoah NP than in Zimbabwe, Namibia, Botswana, and Sequoya-Kings Canyon NP.

We detected no influence of type of biotic data (inventory versus atlas), number of species,
stress value of the ordination, or spatial extent. In all cases, limited sample size (12 datasets)
may have provided low statistical power. Our power to document an influence of spatial extent
may have been further limited because we avoided using datasets with large (continental) spa-
tial extents.

Surprisingly, stress values, which indicate badness of fit of an ordination [8], were not associ-
ated with SAI; indeed there was a non-significant increase in SAI with stress. The rule of thumb
proposed by Clarke [8] suggested that stress values< 0.1 have “no real risk of false inferences”
whereas stress values between 0.11 and 0.20 can be used with caution but are “potentially mis-
leading.” But our 4 datasets with stress values< 0.11 (plants of Botswana, Namibia, Zimbabwe,
and Sequoia-Kings Canyon National Park) produced 4 of the 5 worst SAI values, whereas stress
values 0.11–0.20 were associated with the best SAI values. Although ordination plots for the 5
datasets with the lowest SAI values tended to have outliers, removing these outliers improved the
ordination plots but not the SAI values. Further work using a larger number of datasets may bet-
ter elucidate the characteristics of datasets that perform well or poorly.

Our evaluation of β diversity was optimistic because we evaluated surrogacy for the same
taxon used to define ordination space. An obvious next step would be to test cross-taxon surro-
gacy in the β diversity framework. Such a test would require incidence data on 2 or more taxa
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at a common set of sites; if atlas data are used, our results suggest grid cells should be<625
km2. We found only one test of cross-taxon surrogacy in the β diversity framework; in that
study Araujo et al. [6] found that cross-taxon efficiency was lower (> 10% decrease in number
of species represented) than within-taxon efficiency in 5 of 12 comparisons, about the same (±
4%) in 5 comparisons, and higher (> 10% increase in species represented) in 2 comparisons.

Magurran &McGill [7] (page 292) concluded that almost all biodiversity metrics, including
β diversity, “are basically descriptive in nature, and if they tie to any process at all it is a grossly
oversimplified null process such as Poisson spatial randomness.” But recent analyses of spatial
pattern demonstrate that β diversity is related to environmental gradients [24–26] and is con-
gruent across broad taxonomic groups [26–29]. These papers have argued that their evidence
supports the use of β diversity in conservation planning. However, such arguments eventually
must be tested by selecting sites to represent β diversity and evaluating how well those sites rep-
resent species (or other conservation targets) [1, 30], as we have done here. Our results suggest
that β diversity may be more than a mere descriptor of how species assemblages vary across the
landscape. In particular, it appears that β diversity can be a useful metric to identify sites that
maximize complementarity of sites prioritized for conservation.

We caution that support for β diversity as a within-taxon surrogate is a necessary but not
sufficient condition for β diversity to serve as a good surrogate for conservation planning. Even
if β diversity is a good within-taxon surrogate, it could still fail as a cross-taxon surrogate if dif-
ferent taxa respond to different environmental gradients. Although much work remains to be
done to evaluate β diversity as a surrogate in conservation planning, our findings provide a
strong reason to engage in that work. Because species distributions are so poorly known in
most planning areas, conservation planners need reliable surrogates.
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