
Running Head: BAYESIAN MEDIATION WITH MISSING DATA 1 

 

 

 

 

 

 

A Bayesian Approach for Estimating Mediation Effects with Missing Data 

Craig K. Enders 

Arizona State University 

Amanda J. Fairchild 

University of South Carolina 

David P. MacKinnon 

Arizona State University 

 

Author Note 

Craig K. Enders, Department of Psychology, Arizona State University. Amanda J. 

Fairchild, Department of Psychology, University of South Carolina. David P. 

MacKinnon, Department of Psychology, Arizona State University. 

 Correspondence concerning this article should be addressed to Craig K. Enders, 

Department of Psychology, Arizona State University, Box 871104, Tempe, AZ, 85287-

1104. Email: craig.enders@asu.edu. 

This article was supported in part by National Institute on Drug Abuse grant 

DA09757 (David MacKinnon, PI). 

mailto:craig.enders@asu.edu


Running Head: BAYESIAN MEDIATION WITH MISSING DATA 2 

Abstract 

Methodologists have developed mediation analysis techniques for a broad range of 

substantive applications, yet methods for estimating mediating mechanisms with missing 

data have been understudied.  This study outlined a general Bayesian missing data 

handling approach that can accommodate mediation analyses with any number of 

manifest variables.  Computer simulation studies showed that the Bayesian approach 

produced frequentist coverage rates and power estimates that were comparable to those of 

maximum likelihood with the bias-corrected bootstrap.  We share a SAS macro that 

implements Bayesian estimation and use two data analysis examples to demonstrate its 

use. 
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A Bayesian Approach for Estimating Mediation Effects with Missing Data 

 The evaluation of mediating mechanisms has become a critical element of 

behavioral science research, not only to assess whether (and how) interventions achieve 

their effects, but also more broadly to understand the causes of behavioral change. The 

significance of mediation hypotheses is evident in a variety of substantive domains 

ranging from drug prevention (e.g., perceived social norms, a psychological mediator, 

transmits the impact of a prevention program on adolescent drug use; Liu, Flay, et al., 

2009), to health promotion (e.g., knowledge of fruit and vegetable benefits, a behavioral 

mediator, transmits the effect of a health promotion program on weight loss; Elliot, 

Goldberg, Kuehl, Moe, Breger, & Pickering, 2007), to epidemiology (e.g., weight-related 

biomarkers, a biological mediator, transmit the effect of a diet and stress reduction 

intervention on tumor markers of prostate cancer; Saxe, Major, Westerberg, Khandrika, 

& Downs, 2008).  The wide appeal of mediation analyses continues to drive the 

development of new analytic procedures for assessing mediation effects. 

 Methodologists have developed mediation analysis techniques for a broad range 

of substantive applications.  However, methods for estimating mediating mechanisms 

with missing data have been understudied.  The purpose of this study is to extend Yuan 

and MacKinnon’s (2009) work on Bayesian mediation analyses to the missing data 

context.  Specifically, we outline a Bayesian parameter simulation approach and provide 

a SAS macro for performing Bayesian mediation analyses with any number of manifest 

variables.  Bayesian mediation analyses provide several advantages over conventional 

estimation methods.  First, the Bayesian approach should yield more accurate inferences 

than frequentist significance testing approaches because it does not require distributional 
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assumptions. This advantage is particularly important because the sampling distribution 

of the mediated effect can be quite nonnormal. Second, the Bayesian paradigm offers a 

more interpretable interval estimate than the frequentist approach, providing a credible 

interval in which the probability of the population parameter falling within the bounds is 

specified.  Third, it is possible to improve the power to detect mediation effects with 

missing data by incorporating prior information about the indirect effect.  Finally, the 

parameter simulation approach that we demonstrate is straightforward to implement in 

SAS. 

The organization of the manuscript is as follows.  The paper begins with a review 

of both the single mediator model and Bayes’ theorem.  Next, we describe the use of a 

Markov chain Monte Carlo algorithm known as data augmentation to simulate the 

distribution of a mediation effect.  Having outlined the procedural details, we use a data 

analysis example to demonstrate Bayesian estimation, and we use computer simulations 

to study its performance.  Finally, we show how to perform a Bayesian analysis that 

incorporates prior knowledge about a mediation effect.  

Mediation Analysis 

 A mediating variable (M) conveys the influence of an independent variable (X) on 

a dependent variable (Y), thereby illustrating the mechanism through which the two 

variables are related (Baron & Kenny, 1986; Judd & Kenny, 1981; MacKinnon, 2008).  

The basic mediation model posits that X influences M, which in turn influences Y, as 

follows 

 

  ̂     (1) 



Running Head: BAYESIAN MEDIATION WITH MISSING DATA 5 

 

  ̂         (2) 

 

where   is the slope coefficient from the regression of M on X,    is the partial coefficient 

from the regression of Y on X controlling for M, and   is the slope from the regression of 

Y on M controlling for X.  For simplicity, we omit the intercepts from the previous 

regression equations because these parameters do not contribute to the mediation effect.  

 Methodologists have proposed a variety of mediation tests (e.g., causal steps, 

Baron & Kenny, 1986; the difference in coefficients     , MacKinnon, Warsi, & 

Dwyer, 1995), but contemporary work suggests that the product of coefficients is the 

most flexible estimator because it extends to complex scenarios that include multiple 

mediators or outcomes, multilevel data structures, and categorical outcomes (e.g., 

MacKinnon, Lockwood, Brown, Wang, & Hoffman, 2007). The logic of the product of 

the coefficients estimator derives from path analysis, where the total effect of X on Y is 

decomposed into indirect and direct components (Alwin & Hauser, 1975).  This 

decomposition posits that the total effect of X on Y is comprised of a portion that is 

transmitted through the intervening variable (i.e., the indirect effect) and a portion that is 

not impacted by the intervening variable (i.e., the direct effect).  This decomposition is 

given by 

 

         (3) 
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where   is the total effect of X on Y,    is the direct effect, and    is the indirect effect.  

The indirect effect, or product of coefficients estimator, is the product of the regression 

slope that relates the independent variable to the mediator (i.e., the   path) and the partial 

regression coefficient that relates the mediator to the outcome (i.e., the   path).  We 

henceforth refer to this estimator as   .  

Researchers routinely use a normal-theory standard error derived from the 

multivariate delta method to evaluate the statistical significance of    (e.g., Sobel, 1982).  

Dividing    by a normal theory standard error yields a Wald z statistic, and referencing 

this test statistic to a standard normal distribution gives a probability value for the 

mediated effect.  Recent work has shown, however, that normal-theory standard errors 

are inaccurate because the product of two normally distributed variables is not necessarily 

normally distributed; the sampling distribution of    can be markedly asymmetric and 

kurtotic even when the   and   regression coefficients have normal sampling 

distributions (MacKinnon, Fritz, Williams, & Lockwood, 2007; MacKinnon, Lockwood, 

& Williams, 2004; MacKinnon, Lockwood, Hoffman, West, & Sheets, 2002; Shrout & 

Bolger, 2002; Williams & MacKinnon, 2008).  This distributional violation is especially 

problematic in small samples and with small effect sizes.  The consequence of applying 

normal-theory significance tests is that the probability value from the Wald z test is 

conservative, limiting the power to detect mediation effects and increasing Type II error 

rates.  The methodological literature currently favors asymmetric confidence limits based 

either on the theoretical sampling distribution of the product (MacKinnon et al., 2007; 

Meeker, Cornwell, & Aroian, 1981) or on empirical resampling methods (Efron & 

Tibshirani, 1993) because these approaches improve the accuracy of significance tests.  
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The Bayesian approach that we outline in this manuscript naturally yields asymmetric 

intervals as a byproduct of estimation. 

Mediation Analyses with Missing Data 

 The last decade has seen a noticeable shift to missing data techniques that assume 

a missing at random (MAR) mechanism, such that the probability of missing data on an 

incomplete variable is unrelated to the would-be values of that variable (e.g., other 

variables in the data predict missingness).  Maximum likelihood estimation and multiple 

imputation are currently the principal MAR-based methods in social science applications, 

and the Bayesian approach that we outline is a third option.  Maximum likelihood 

estimation largely accommodates familiar complete-data mediation procedures.  For 

example, multivariate delta standard errors (i.e., the Sobel test) and asymmetric 

confidence limits based on the bootstrap are available in software packages such as 

Mplus.   

Multiple imputation is arguably less flexible for mediation analyses.  Standard 

imputation procedures (e.g., draw m imputed data sets, perform a mediation analysis m 

times, pool the estimates and standard errors) encourage researchers to implement and 

pool delta method standard errors, and there is no reason to expect the performance of 

this approach to improve with incomplete data.  Unfortunately, bootstrap procedures that 

methodologists currently favor do not translate well to multiple imputation.  The most 

natural way to implement the bootstrap is to impute the data then apply the bootstrap to 

each imputed data set (i.e., impute-then-bootstrap).  The procedural steps are as follows: 

(a) generate m imputed data sets, (b) draw b bootstrap samples from each data set, (c) 

form m empirical sampling distributions for    by fitting the mediation model to the b 
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bootstrap samples from each imputed data set, and (d) find the    values that correspond 

to the .025 and .975 quantiles of each empirical sampling distribution,      
  and      

 , 

respectively.  Because each of the m sets of bootstrap samples originates from a complete 

parent data set, averaging these quantiles or otherwise basing inferences on the bootstrap 

samples is inappropriate because the empirical sampling distributions reflect the variation 

of complete-data    estimates (i.e., the bootstrap sampling distributions are narrower 

than their missing-data counterparts). 

A second way to implement the bootstrap with imputation is to draw b samples 

from the incomplete data set and impute each bootstrap sample (i.e., bootstrap-then-

impute).  The procedural steps are as follows: (a) draw b bootstrap samples from the 

incomplete parent data set, (b) generate m  1 imputed data set per sample, (c) estimate 

   from each imputed data set, and (d) form an empirical sampling distribution of the    

estimates (or of the average of the m    estimates if m > 1).  Again, the .025 and .975 

quantiles of this empirical sampling distribution define a 95% confidence interval that is 

the basis for statistical inferences.  Unlike impute-then-bootstrap, this procedure should 

yield an appropriate empirical sampling distribution because an incomplete parent data 

set generates the bootstrap samples.  However, bootstrap-then-impute is computationally 

intensive and difficult to implement in existing software packages. 

The previous discussion highlights the fact that combining imputation and the 

bootstrap is, at best, a cumbersome solution for mediation analyses with missing data.  

We believe that a Bayesian framework provides a natural solution for mediation analyses 

because it yields a 95% confidence interval (technically, a 95% credible interval) based 

on the quantiles of an empirical distribution of estimates.  This is precisely what 
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researchers are striving for with the bootstrap.  Further, the simple SAS macro that we 

present later in the manuscript provides a convenient method for estimating a wide range 

of mediation models (e.g., single- or multiple-mediator models with any number of 

predictors or outcomes).  Coupled with the ability to incorporate prior information (e.g., 

mediation estimates from pilot data or a published study), we believe that Bayesian 

mediation is an important tool for researchers. 

Bayesian Estimation 

This section briefly outlines Bayesian estimation.  A number of resources provide 

accessible introductions to the Bayesian paradigm (Bolstad, 2007; Enders, 2010; Yuan & 

MacKinnon, 2009), and Bayesian texts provide additional technical details (Gelman, 

Carlin, Stern, & Rubin, 2009).  The classical frequentist approach that predominates the 

social sciences defines a parameter as a fixed but unknown value in the population.  

Repeated sampling yields a distribution of estimates that vary around the true population 

value.  In contrast, the Bayesian paradigm views the parameter itself as a random variable 

that has a distribution (i.e., there is no single true parameter value in the population).  The 

basic goal of a Bayesian analysis is to use a priori information and the data to describe 

the shape of this parameter distribution (called a posterior).  The prior information takes 

the form of a probability distribution for the parameter of interest, and a likelihood 

function quantifies the data’s evidence about the parameter.  Collectively, these two data 

sources define a posterior distribution that describes the relative probability of different 

parameter values.   

Bayes’ theorem provides the mathematical machinery behind Bayesian 

estimation.  The theorem is 
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  (   )  
 ( ) (   )

 ( )
 (4) 

 

where  (   ) is the posterior distribution of a parameter  , Y is the data,  ( ) is the prior 

distribution of  ,  (   ) is the likelihood function, and  ( ) is the marginal distribution 

of the data.  Because the denominator of theorem is an unnecessary scaling factor that 

makes the area under the posterior integrate (i.e., sum) to one, the key part of the theorem 

reduces to 

 

  (   )   ( ) (   )  (5) 

 

In words, Equation 5 says that the relative probability of a particular parameter value is 

proportional to its prior distribution times the likelihood function.  Conceptually, the 

posterior distribution is a weighted likelihood function, where the prior probabilities 

increase or decrease the height of the likelihood.  For example, if the prior assigns a high 

probability to a particular value of  , the corresponding point on the posterior is more 

elevated than the likelihood function.  Conversely, if the prior specifies a low probability 

to a particular value of  , the posterior distribution relies more heavily on the likelihood 

function.  

 There are at least two ways to apply the previous ideas to a mediation analysis.  In 

the complete-data context, Yuan and MacKinnon (2009) applied Bayes’ theorem to the   

and   parameters that define of the product of coefficients estimator.  Although this 

approach is also applicable to missing data analyses, we propose an equivalent procedure 
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that instead applies Bayesian principles to a covariance matrix.  Working with a 

covariance matrix is convenient because it provides a straightforward mechanism for 

incorporating prior information about a mediation effect.  As we show below, two 

quantities define the prior distribution of a covariance matrix: an a priori estimate of   

and a degrees of freedom value.  Because estimates of a covariance matrix (or 

alternatively, a correlation matrix) are often available from pilot data, a published study, 

or a meta-analysis, we believe that working with   is often easier than working directly 

with   and  .  The remainder of this section describes the application of Bayesian 

estimation to a covariance matrix, and interested readers can consult Yuan and 

MacKinnon (2009) for details on applying Bayesian methods to regression coefficients.  

The first step of a Bayesian analysis is to specify a priori probability distribution 

for the covariance matrix.  Assuming normally distributed population data, this 

distribution belongs to the inverse Wishart family, a multivariate generalization of the 

chi-square distribution.  More specifically, the prior distribution of a covariance matrix is 

 

  ( )    (      
  ) (6) 

 

where     denotes the inverse Wishart,     is the degrees of freedom, and    is a sum 

of squares and cross products matrix.  In words, Equation 6 describes a researcher’s a 

priori beliefs about the relative probability of different covariance matrix estimates 

arising from normally distributed population data.  The parameters     and    are so-

called hyperparameters that define the center (i.e., the location) and the spread (i.e., the 

scale) of the probability distribution, respectively. 
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As noted previously, a historical data source can determine the prior distribution’s 

hyperparameters.  For example, if a researcher had access to pilot data that employed 

identical measures of X, M, and Y, the sum of squares and cross products matrix from the 

pilot data can provide   .  Similarly, the covariance matrix from a published study or a 

meta-analysis can provide the necessary matrix, as follows 

 

    (   )    (7) 

 

provided that the published study used the same set of measures as your study.  In the 

likely event that the prior data source employed measures with different metrics, using a 

correlation matrix to specify the a priori associations among the variables is an alternative 

solution.  The following equation provides the necessary transformation 

 

    (   )   (   ) ̂   ̂  (8) 

 

where    is the prior correlation matrix, and  ̂ is a diagonal matrix that contains standard 

deviation estimates from the data (e.g., MAR-based maximum likelihood estimates).  

estimates of the standard deviations.  Pre- and post-multiplying the correlation matrix by 

 ̂ scales the correlations to the metric of the data.  

 As explained previously, a Bayesian analysis is essentially a weighted estimation 

problem where information from the prior and the data combine to produce an inference 

about the parameters of interest.  The     value in Equation 6 quantifies the influence of 

the prior distribution on the sample size metric.  For example, specifying a value of     = 
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20 is akin to saying that the prior distribution contributes 20 data points worth of 

information to the estimation process.  If a researcher had a great deal of faith in the prior 

estimate of the covariance matrix, specifying a larger value of     would be defensible.  

Conversely, if a researcher had relatively little faith in the prior (e.g., because the 

historical data source used a slightly different population of participants, employed 

different measures, etc.), downweighting the prior with a small     value would be 

appropriate.  In the absence of good a priori information about the covariance matrix, a 

researcher can specify a non-informative (i.e., diffuse) prior distribution that effectively 

contributes no information to estimation.  In this situation, the data solely determine the 

final analysis results.  Although it may appear to defeat the purpose of employing 

Bayesian methodology, specifying a non-informative prior is still quite useful because it 

provides a mechanism for evaluating mediation effects without invoking distributional 

assumptions for   .  We demonstrate this point later in the manuscript. 

 In the Bayesian framework, the prior and the data combine to produce an updated 

distribution that describes the relative probability of different covariance matrix 

estimates.  This posterior distribution is also an inverse Wishart  

 

  (   )    (      ) (9) 

 

where a degrees of freedom and sum of squares and cross products matrix again define 

the center and the spread of the distribution, respectively.  The degrees of freedom 

parameter is the sum of the degrees of freedom from the prior and the data, as follows 
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                (    ) (10) 

 

and   similarly combines two sources of information
1
. 

 

          (11) 

  

Mediation Analyses via Data Augmentation 

 Deriving the posterior distribution in Equation 9 is difficult or impossible with 

missing data, and the observed-data distribution of    is even more daunting.  Markov 

chain Monte Carlo (MCMC) provides a simulation-based approach to estimating these 

distributions.  Conceptually, an MCMC analysis is analogous to the bootstrap in the sense 

that it generates an empirical distribution for each parameter, but it does so by drawing a 

large number of parameter values from their respective posterior distributions; in the 

context of a missing data analysis, Schafer (1997) refers to this process as parameter 

simulation.  The data augmentation algorithm (Schafer, 1997; Tanner & Wong, 1987) is 

the predominant MCMC algorithm for generating multiply imputed data sets, and the 

algorithm happens to be well suited for mediation analyses with incomplete data.  As 

described below, data augmentation uses regression equations to impute the missing 

values, and it subsequently draws a new covariance matrix from its posterior distribution.  

In the context of a multiple imputation analysis, researchers are primarily interested in the 

imputed values and view the parameter draws as a superfluous byproduct of the MCMC 

                                                             
1
 When specifying a prior distribution for the variable means, Equation 10 has additional 

terms that depend on the prior means and the sample means (e.g., see Schafer, 1997, p. 

152).  For simplicity, we omit these terms because we believe that researchers will rarely 

have access to a prior data source that uses identical measures of X, M, and Y. 
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algorithm.  In contrast, we are interested solely in the parameter draws, and the imputed 

data sets are the byproduct. 

 To begin, consider the use of data augmentation for simulating the posterior 

distribution of a covariance matrix.  Data augmentation is a two-step algorithm that 

repeatedly cycles between an imputation step (I-step) and a posterior step (P-step).  The 

I-step fills in the missing values with draws from a conditional distribution that depends 

on the observed data (i.e., the non-missing values) and the current estimates of   and  .  

More formally, the I-step draws plausible score values from 

 

  ̇    (           ̇   )   ( ̂    
 ) (12) 

 

where  ̇  represents an imputed value from cycle t (throughout the manuscript, we use a 

dot to denote a draw),      is the missing value,      represents the observed data, and 

 ̇    contains the parameter draws (i.e.,   and  ) from the previous computational cycle.  

Procedurally, data augmentation uses multiple regression to simulate random draws from 

this conditional distribution.  Specifically, the elements in   and   generate regression 

equations that predict the incomplete variables from the complete variables, such that 

each missing value is replaced by a draw from a normal distribution with a mean equal to 

the predicted score for case i and a variance equal to the residual variance from the 

regression of Y on the complete variables. 

 Having filled in the data, the P-step draws a new covariance matrix and mean 

vector from their respective complete-data posterior distributions.  To begin, data 

augmentation uses the filled-in data set from the preceding I-step to estimate the variable 



Running Head: BAYESIAN MEDIATION WITH MISSING DATA 16 

means and the sum of squares and cross products matrix,  ̂  and  ̂ , respectively.  

Combined with the hyperparameters of the prior distribution (i.e.,     and   ) these 

quantities define the posterior distribution of  .  To generate a new estimate of the 

covariance matrix, the algorithm uses Monte Carlo simulation to draw a k by k matrix of 

random numbers from the posterior distribution in Equation 9, where  ̂  replaces   .  

The Monte Carlo procedure yields a simulation-based estimate of   that randomly differs 

from the covariance matrix that produced the imputation regression coefficients at the 

preceding I-step.  We denote this draw as  ̇ .  The algorithm similarly generates a new set 

of means by drawing a k by 1 vector of random numbers from a multivariate normal 

distribution, the center and spread of which are defined by  ̂  and  ̇ , respectively.  We 

denote this draw as  ̇ .  Having completed a single computational cycle, the data 

augmentation passes the simulated parameters to the next I-step, where the elements in  ̇  

and  ̇  define the imputation regression equations for cycle t + 1. 

The data augmentation algorithm repeatedly cycles between the I- and P-steps, 

often for thousands of iterations.  The collection of  ̇  and  ̇  values forms an empirical 

posterior distribution for each element in the mean vector and the covariance matrix.  

Although the covariance matrix is not the substantive focus of a mediation analysis, the 

elements in  ̇ define the mediation model parameters.  For example, the components of 

the product of coefficients estimator for a single-mediator model are as follows   

 

  ̇   ̇   ̇ 
 ⁄  (13) 

 

  ̇  ( ̇   ̇ 
   ̇   ̇  ) ( ̇ 

  ̇ 
   ̇  

 )⁄  (14) 
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and the direct effect is given by 

 

  ̇   ̇   ̇ 
   ̇   ̇   ̇ 

  ̇ 
   ̇  

 ⁄ . (15) 

 

Although they may or may not be of interest, the covariance matrix elements also define 

the residual variances from the mediation model. 

 

  ̇  
   ̇ 

   ̇  
  ̇ 

 ⁄  (16) 

 

  ̇  
  ( ̇ 

  ̇ 
  ̇ 

   ̇ 
  ̇    ̇ 

  ̇    ̇ 
  ̇     ̇   ̇   ̇  ) ( ̇ 

  ̇ 
   ̇  

 )⁄  (17) 

 

Analogous matrix expressions are applicable to multiple-mediator models. 

Because each P-step yields values for the terms on the right side of the previous 

equations, data augmentation provides a simple mechanism for simulating draws from the 

posterior distribution of   .  The steps are as follows: (a) generate a data augmentation 

chain comprised of several thousand (e.g., 10,000) computational cycles, (b) save the 

values in  ̇  at each P-step, and (c) use the elements in  ̇  to compute   ̇  from each 

cycle.  The collection of   ̇ values forms a simulation-based posterior distribution for the 

mediation effect.  Importantly, parameter simulation does not use the filled-in data sets to 

produce an inference about   ; the imputations are a superfluous byproduct of 

estimation.  Rather, the goal is to use familiar summary statistics to describe the center 

and spread of the posterior.  For example, the median   ̇ value describes the center of the 
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posterior distribution and effectively serves the same purpose as a frequentist point 

estimate.  Although the posterior mean is sometimes a suitable point estimate, the 

posterior distribution of    can be markedly nonnormal, making the median a better 

choice
2
.  Similarly, the posterior standard deviation is comparable to a frequentist 

standard error.   

Finally, the   ̇ values that correspond to the .025 and .975 quantiles of the 

posterior distribution,       and       , define a credible interval that is analogous to a 

95% confidence interval in the frequentist paradigm.  The credible interval provides a 

straightforward mechanism for hypothesis testing.  Consistent with standard practice, the 

mediation effect is statistically significant if this interval does not contain zero.  Although 

the 95% credible interval functions like a frequentist confidence interval, it is important 

to note that its interpretation does not rely on a hypothetical process of drawing repeated 

samples from the population.  Rather, the credible interval defines the range in which 

95% of the parameter values fall.  Importantly, because the 95% credible interval is based 

on the empirical quantiles of the posterior distribution, inferences do not rely on the 

(often) untenable assumption that the    estimates follow a normal distribution.  This is 

an important advantage over maximum likelihood and multiple imputation procedures 

that utilize multivariate delta method standard errors (MacKinnon et al., 2007; 

MacKinnon, Lockwood, & Williams, 2004; MacKinnon et al., 2002). 

Data Analysis Example 1 

                                                             
2
 We compared the posterior mean and median from the computer simulations that we 

report in a subsequent section and found that the posterior median had a lower mean 

squared error when compared to the data-generating value of   . 
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 To illustrate the parameter simulation procedure, we analyzed data from a study 

that sought to reduce the risk for cardiovascular disease in firefighters (Moe et al., 2002; 

Ranby, MacKinnon, Fairchild, Elliot, Kuehl, & Goldberg, 2011).  Due to the extreme 

physical demands of their job, firefighters have a markedly elevated risk for 

cardiovascular disease.  Accordingly, the PHLAME (“Promoting healthy lifestyles: 

Alternative models’ effects”) intervention aimed to decrease risk factors in this group by 

promoting healthy eating and exercise habits.  For this example, we consider the impact 

of a team-based treatment program (X) on intent to eat fruit and vegetables (Y) through 

two putative mediators: the extent to which coworkers eat fruit and vegetables (M1) and 

knowledge of healthy eating benefits (M2).  Additionally, we used two auxiliary variables 

in the imputation model, friends’ and partner’s consumption of fruit and vegetables and 

partner’s consumption of fruit and vegetables.  Figure 1 shows a path diagram of the 

mediation model (to avoid clutter, the residual covariance between the mediators is 

omitted).  Table 1 gives maximum likelihood descriptive statistics for the analysis 

variables. 

 Although multiple imputation programs typically output the parameter draws 

required for computing mediation model parameters, the computations require 

considerable data manipulation, particularly for models with multiple mediators or 

multiple outcomes.  To simplify the process, we created a SAS macro program that fully 

automates the Bayesian analysis.  The macro uses the MI procedure in SAS to implement 

parameter simulation and subsequently uses the IML procedure to compute the mediation 

model parameters.  The full macro program is available at www.appliedmissingdata.com. 

http://www.appliedmissingdata.com/
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To illustrate the macro, Figure 2 shows the inputs for the data analysis example, 

with bold typeface denoting user-supplied values.  The macro requires four sets of inputs.  

The first set of inputs consists of the file path for the raw data, the input variable list, and 

a numeric missing value code.  We assume that the input text file is in free format and 

with a single placeholder value for missing data.  Note that the input data may contain 

variables that are not used in the analysis.  The second set of inputs contains information 

about the prior distribution.  Leaving these entries blank, as they are in the figure, invokes 

a standard non-informative prior.  Later in the manuscript we demonstrate how to specify 

an informative prior distribution.  The third set of inputs specifies the analysis variables.  

Variables in the mediation model are specified as X, M, or Y variables.  Although our 

example is a relatively simple two-mediator model, the macro is flexible and can 

accommodate single- or multiple-mediator models within any number of X, M, and Y 

variables.  Auxiliary variables (e.g., correlates of incomplete variables or predictors of 

missingness) contribute to the imputation process but are not part of the mediation model.  

Specifying which variables are complete or missing is unnecessary, but it is important to 

note that the linear imputation model in PROC MI assumes that the incomplete variables 

are multivariate normal.  At a minimum, this assumption precludes the use of incomplete 

categorical variables with more than two categories; if complete, such variables can be 

used as X variables or as auxiliary variables, but they must be dummy or effect coded.  

The final set of inputs specifies the burn-in period, the number of iterations, and a 

random number seed (the seed can be left blank, but specifying a value ensures that the 

program will return the same results each time it executes).  The specifications in our 
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example instruct the macro to discard the initial set of 500 burn-in iterations and form the 

posterior distributions from the ensuing 10,000 iterations. 

To facilitate convergence assessments, the macro produces trace plots of the 

mediation parameters from the burn-in period.  A trace plot is a line graph that displays 

the iterations on the horizontal axis and the simulated parameter values on the vertical 

axis.  To illustrate, Figure 3 shows a plot of the   ̇ values for the indirect effect of the 

intervention on intentions via coworker eating habits.  The absence of long-term upward 

or downward trends suggests that a stable posterior distribution generated the parameter 

values.  For interested readers, a number of resources further address the use of trace 

plots as a convergence diagnostic (Enders, 2010; Schafer, 1997; Schafer & Olsen, 1998). 

Turning to the posterior distribution, the macro produces a histogram and a kernel 

density plot for each mediated effect.  To illustrate, Figure 4 shows a plot of the   ̇ 

values for the indirect effect of the intervention on intentions via coworker eating habits.  

In our example, this distribution was based on draws from the 10,000 iterations following 

the burn-in period.  As seen in the figure, the posterior distribution was nonnormal, with 

skewness of S = .46 and excess kurtosis of K = .59.  Again, the shape of the posterior 

underscores the problem with applying significance tests that assume a normal 

distribution (and thus a symmetric confidence interval) for    (e.g., tests based on the 

multivariate delta method). 

 In a Bayesian analysis, researchers can use straightforward summary statistics to 

describe and evaluate mediation effects.  For example, the mean and the median describe 

the center of the posterior distribution in a manner that is analogous to a frequentist point 

estimate.  Although both values are legitimate estimates of the mediation effect, the 
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median is generally a better estimate, particularly when the posterior distribution is 

nonnormal (e.g., when the sample size or the effect size is small).  In lieu of a formal 

significance test, the parameter values that correspond to the .025 and .975 quantiles of 

the posterior distribution form a credible interval that is analogous to a 95% confidence 

interval in the frequentist paradigm.  The macro produces a table that includes the 

posterior median and the 95% credible interval bounds for each mediated effect.   

Figure 5 shows the macro output from the example analysis.  Considering the 

indirect effect of the intervention on intentions via coworker eating habits, the posterior 

median was Mdn = .083, and the 95% credible interval limits were        = .0010 and 

       = .193.  Because this interval does not contain zero, we can conclude that the 

mediation effect is statistically significant.  The corresponding absolute proportion 

mediated effect size was .264, indicating that approximately 26% of the effect of the team 

intervention on intent to eat fruit and vegetables was mediated through the social norm of 

coworkers eating fruit and vegetables.  Turning to the indirect effect of the intervention 

on intentions via knowledge of healthy eating benefits, the posterior median was Mdn = 

.063, and the 95% credible interval limits were        = -.00007 and        = .162, and the 

corresponding absolute proportion mediated was .203.  From a frequentist perspective, 

this indirect effect is non-significant because the credible interval contained zero.  

Importantly, both credible intervals are asymmetric around the posterior median, which 

owes to the positive skew of the posterior distributions.  

 The interpretation of component path coefficients in the mediation model may be 

of particular interest in program evaluation work where one seeks to explore action 

and/or conceptual theory underlying a program (see Chen, 1990).  The same summary 
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statistics detailed above can describe the posterior distributions of  ̇,  ̇, and 

 ̇ individually.  As seen in Figure 5, the tabular output also includes numeric summaries 

for the component paths as well as for the total effect of X on Y.  

Computer Simulations 

 We performed a series of Monte Carlo simulations to study the performance of 

Bayesian mediation.  With one exception, the data-generating model was consistent with 

full mediation and did not include a direct effect of X on Y.  We generated 5000 artificial 

data sets within each cell of a fully crossed design that manipulated three experimental 

conditions: the missing data mechanism (missing completely at random and missing at 

random), the sample size (N = 50, 100, 300, and 1000), and the magnitude of the 

mediation effect.  The mediation factor was comprised of five combinations of   and   

values:   = 0 and   = 0,   = .10 and   = .10,   = .30 and   = .30,   = .50 and   = .50, and 

  = .30 and   = .10.  Because the simulation variables were standard normal, the   and   

values are identical to Pearson correlations.  Consequently, the mediation model 

parameters correspond to Cohen’s (1988) effect size benchmarks (i.e., zero/zero, 

small/small, medium/medium, large/large, medium/small).  Finally, note that the   = 0 

and   = 0 condition had a direct effect that was moderate in magnitude (i.e.,    = .30).  

The direct effect was zero in all other conditions.  

 We used the SAS IML procedure to generate three standard normal variables and 

subsequently used Cholesky decomposition to impose the desired correlation structure.  

Next, we imposed a 20% missing data rate on both M and Y.  In the missing completely at 

random (MCAR) simulation, we used uniform random numbers to independently impose 

missing data, such that cases with ui < .20 had a missing value on M or Y.  In the MAR 
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simulation, the value of X determined missingness on M and Y.  Beginning with the 

highest X value and working in descending order, we independently deleted M and Y 

scores with a .75 probability until 20% of the values on each variable were missing.  This 

produced a situation where cases with high scores on X had higher missing data rates on 

M and Y.  Note that we chose not to manipulate the amount of missing data because this 

design characteristic tends to produce predictable and uninteresting findings (e.g., as the 

missing data rate increases, power decreases).  Rather, we chose a constant 20% missing 

data rate because we felt that it was extreme enough to expose any problems. 

We used the MI procedure in SAS version 9.2 to implement parameter simulation.  

Using the standard non-informative prior distributions for   and  , we generated 10,500 

cycles of data augmentation and saved the simulated parameter estimates from each P-

step.  Next, we used the formulas from Equations 13 through 15 to convert the elements 

in  ̇  into mediation model parameters.  For each of the 200,000 replications (2 missing 

data mechanisms by 4 sample size conditions by 5 effect size conditions by 5000 

iterations), we discarded the parameter draws from the initial 500 burn-in cycles and 

formed an empirical distribution of 10,000 parameter draws. 

To assess the relative performance of the Bayesian approach, we also used 

maximum likelihood missing data handling and multiple imputation to estimate the 

mediation effect.  These are the principle MAR-based analysis approaches that enjoy 

widespread use in substantive applications.  To implement maximum likelihood 

estimation, we input the raw data files to Mplus 6.1 and used the MODEL INDIRECT 

command to estimate   .  Mplus offers a variety of significance testing options for 

mediation effects, and we examined three different possibilities: normal-theory maximum 
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likelihood with multivariate delta method (i.e., Sobel) standard errors, the bias corrected 

bootstrap, and the percentile bootstrap.  Although the methodological literature has 

discounted significance tests based on normal-theory standard errors, we chose this 

option because it likely reflects the analytic practice of many substantive researchers, 

especially those who use statistical software packages such as SPSS or SAS. 

We used the MI procedure in SAS version 9.2 to implement multiple imputation.  

Using the standard non-informative prior distributions for   and  , we generated 100 

imputed data sets from a data augmentation chain with 200 burn-in and 200 between-

imputation cycles; we chose the relatively large number of imputed data sets in order to 

maximize power of the subsequent significance tests (Graham, Olchowski, & Gilreath, 

2007).  We then used the REG procedure to estimate the regression coefficients from 

Equations 13 through 15 and subsequently computed    and its normal-theory (i.e., 

Sobel) standard error from each of the 100 sets of imputations.  Finally, we used Rubin’s 

(1987) pooling rules to generate a point estimate, standard error, and confidence interval 

for each of the 200,000 artificial data sets. 

The outcome variables for the simulations were relative bias, power, and 

confidence interval coverage.  Because the Bayesian framework defines a parameter as a 

random variable rather than a fixed quantity, frequentist definitions of power and 

confidence interval coverage do not apply.  Nevertheless, we felt that it was important to 

evaluate the Bayesian procedure from a frequentist perspective in order to make 

comparisons with other MAR-based procedures.  To quantify power for the Bayesian 

analyses, we obtained the .025 and the .975 quantiles from each posterior distribution and 

defined power as the proportion of replications where the 95% credible interval did not 
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include zero.  We applied the same procedure to the maximum likelihood bootstrap 

procedures.  For maximum likelihood and multiple imputation with normal-theory test 

statistics, the proportion of replications within each design cell that produced a 

statistically significant    coefficient served as an empirical estimate of power.   

 For Bayesian (and bootstrap) confidence interval coverage, we used the .025 and 

the .975 quantiles from each posterior (sampling) distribution to compute the proportion 

of the credible intervals within each design cell that included the population parameter 

from the data-generating model.  For maximum likelihood and multiple imputation with 

normal-theory standard errors, coverage was the proportion of replications where the 

95% confidence interval included the true population value.  In the frequentist paradigm, 

confidence interval coverage value directly relates to the Type I error rate, such that 95% 

coverage corresponds to the nominal 5% Type I error rate, a 90% coverage rate 

corresponds to a twofold increase in Type I errors, and so on. 

Simulation Results 

 As would be expected with MCAR and MAR mechanisms, all missing data 

handling approaches produced relatively accurate point estimates with no appreciable 

bias.  Consequently, we limit our subsequent presentation to power and confidence 

interval coverage.  Further, because the results from the MCAR and MAR simulations 

were virtually identical, we limit the presentation to the MAR condition.   

Table 2 displays the coverage values for each design cell in the MAR simulation. 

The table illustrates that the effect size and the sample size influenced coverage rates and 

that the sample size moderated the impact of effect size, such that larger sample sizes 

yielded more accurate coverage.  The   = 0 and   = 0 condition produced coverage rates 
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that exceeded the nominal .95 rate at every sample size, indicating conservative 

inferences.  The same was true for the condition where both coefficients had a small 

effect size (i.e.,   = .10 and   = .10), although the coverage rates approached the nominal 

level as the sample size increased.  Finally, when either   or   (or both) had at least a 

medium effect size, Bayesian estimation and maximum likelihood estimation with 

bootstrap standard errors produced accurate coverage rates, particularly with sample sizes 

of 100 or larger.  In contrast, coverage rates based on multivariate delta (i.e., Sobel) 

standard errors were not as accurate at smaller sample sizes and only approached the 

nominal level at larger Ns.  In the complete-data context, Yuan and MacKinnon (2009) 

compared Bayesian and frequentist coverage values and found a very similar pattern of 

results.   

 Table 3 gives empirical power estimates for the five methods.  For Bayesian 

estimation and maximum likelihood estimation with bootstrap standard errors, these 

estimates reflect the proportion of replications where the credible (or confidence) interval 

did not contain zero, whereas the power values for the normal-theory test statistics reflect 

the proportion of replications that produced a statistically significant test statistic.  As 

seen in the table, the bias corrected bootstrap produced the highest power values, 

followed by Bayesian estimation and the percentile bootstrap, respectively.  Power values 

for the normal-theory (i.e., Sobel) test were noticeably lower, except in situations where 

the sample size or the effect size was large.   

Collectively, the results in Tables 2 and 3 suggest that Bayesian parameter 

simulation yields coverage and power values that are comparable to the best maximum 

likelihood approach (maximum likelihood estimation with the bias corrected bootstrap).  



Running Head: BAYESIAN MEDIATION WITH MISSING DATA 28 

As expected, Bayesian estimation was superior to normal-theory significance tests based 

on multivariate delta method standard errors.  It is important to reiterate that we 

implemented standard non-informative prior distributions in the simulations.  Bayesian 

estimation can produce a substantial power advantage (i.e., narrower confidence 

intervals) when using informative prior distributions (Yuan & MacKinnon, 2009).  We 

address this topic in the next section. 

Data Analysis Example 2 

Thus far, we have focused on non-informative prior distributions.  In the context 

of a complete-data mediation analysis, Yuan and MacKinnon (2009) showed that an 

informative prior could provide a substantial increase in statistical power.  This is 

particularly useful for behavioral science applications where mediation effects are often 

modest in magnitude.  In this section, we use our SAS macro to illustrate a mediation 

analysis with an informative prior distribution.  To keep the example simple, we consider 

a single-mediator model involving the indirect effect of the team intervention on 

intentions via coworker eating habits.  Further, we omit the auxiliary variables from the 

previous example. 

As described previously, implementing an informative prior distribution requires 

an a priori estimate of the covariance or correlation matrix and a degrees of freedom 

value (e.g., from pilot data, a published study, or a meta-analysis).  For the purposes of 

illustration, suppose pilot data produced the following covariance matrix and mean 

vector. 
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  ̂  [
            
             
             

]  

 

  ̂  [
   

    
    

]  

 

The MI procedure (and thus our macro) uses a _TYPE_ = COV data set 

containing estimates   and   to define the prior distributions (the program automatically 

converts the matrices into the necessary hyperparameters).  Our macro program requires 

a file path for this data set (in text format) as well as a corresponding variable list.  To 

illustrate, Figure 6 shows the macro inputs for the analysis example, and Figure 7 shows 

the contents of the _TYPE_ = COV text data set containing the prior parameters.  

Importantly, the variable list for the prior data must have _TYPE_ and _NAME_ as the 

first two variables, and the format of the data file itself should not deviate from that in 

Figure 7.  The N and N_MEAN rows of the input data set contain the degrees of freedom 

values for the covariance matrix and mean vector, respectively.  Although the decision is 

subjective, we arbitrarily assigned 30 degrees of freedom to the prior distribution, which 

effectively meant that the prior contributed roughly 30 as much information as the data.  

Finally, note that the values in the MEAN and N_MEAN rows can be set at zero if mean 

estimates are not available.  Such would be the case when using Equation 8 to convert a 

correlation matrix from a published study that uses measures with different metrics.   

  Consistent with the earlier example, we generated a 10,500-cycle data 

augmentation chain and discarded the initial set of 500 burn-in iterations.  For 

comparison purposes, we estimated the single-mediator model with a standard non-
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informative prior.  The posterior median was Mdn = .079, and the 95% credible interval 

was bounded by values of        = -.003 and        = .192.  Again, notice that this 

interval was asymmetric around center of the distribution because the posterior was 

positively skewed.  Importantly, implementing an informative prior reduced the variance 

of the posterior distribution and therefore narrowed width of the credible interval (i.e., 

increased power).  Specifically, the posterior median was Mdn = .085, and the 95% 

credible interval was bounded by values of        = .011 and        = .188.  Notice that 

the mediation effect was statistically different from zero because credible interval no 

longer contained zero.  To visually illustrate the analysis results, Figure 8 shows kernel 

density plots from the single-mediator model.  The plots clearly demonstrate that the 

posterior distribution based on an informative prior is narrower than that of the non-

informative prior.  In frequentist terms, the reduction in variance translates into greater 

power. 

Discussion 

Assessing mediating mechanisms is a critical component of behavioral science 

research.  Methodologists have developed mediation analysis techniques for a broad 

range of substantive applications, but methods for missing data have thus far gone 

unstudied.  Consequently, the purpose of this study was to outline a Bayesian approach 

for estimating and evaluating mediation effects with missing data.  Although our 

approach is closely related to that of Yuan and MacKinnon (2009) in the complete-data 

context, but it applies Bayesian machinery to a covariance matrix rather than to the   and 

  coefficients themselves.  In our view, specifying the mediation model in terms of   has 

two important advantages.  First, we can use normal-theory multiple imputation software 
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(e.g., our macro uses PROC MI in SAS) to implement the procedure.  Programs such as 

PROC MI output the posterior draws that are a byproduct of imputation, and converting 

the elements of  ̇ to mediation model parameters is straightforward (e.g., using Equations 

13 through 15 or matrix versions of those expressions).  Second, and most importantly, 

parameterizing the mediation model as a function of a saturated covariance matrix 

simplifies the process of specifying a prior distribution because researchers need only 

have an a priori estimate of   or R.  Suitable estimates are often available from pilot data, 

published research studies, or meta-analyses.  Having a convenient mechanism for 

specifying prior distributions is particularly important because it can partially compensate 

for the reduced precision that is inherent with missing data. 

Even with a non-informative prior, our simulation results suggest that Bayesian 

estimation yields frequentist coverage values and power estimates that are comparable to 

maximum likelihood estimation with the bias corrected bootstrap; based on the complete-

data literature, we expected the bias corrected bootstrap to be the gold standard against 

which to compare the Bayesian method.  As expected, Bayesian estimation was superior 

to normal-theory significance tests, particularly when the sample size or the effect size of 

either the   or   paths was small.  These findings align with those of Yuan and 

MacKinnon (2009) in the complete-data context.  Although we did not pursue 

simulations with informative prior distributions, past research and statistical theory 

predict that Bayesian estimation would produce narrower confidence intervals and greater 

precision than frequentist alternatives, including the bootstrap.  Our second analysis 

example supports this assertion. 
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Our study suggests a number of avenues for future research.  First, the lack of 

existing research on this topic prompted us to limit the simulations to a single-mediator 

model.  Although this model is exceedingly common in the behavioral sciences, future 

studies should investigate models with multiple mediators and outcomes.  Our SAS 

macro is general and can accommodate these additional complexities.  Second, our 

approach assumes that the incomplete variables are multivariate normal and it further 

assumes that the M and Y variables are continuous, regardless of whether they have 

missing data.  Flexible MCMC methods are becoming available for mixtures of 

categorical and continuous variables (Enders, 2012; Goldstein, Carpenter, Kenward, & 

Levin, 2009; van Buuren, 2007), and these could easily be adapted to accommodate 

mediation models.  This would be a fruitful avenue for future research, particularly given 

the recent interest in mediation models with categorical outcomes (MacKinnon et al., 

2007).  Fourth, recent research suggests that the bias corrected bootstrap yields elevated 

Type I errors under particular sample size and effect size configurations (Fritz, Taylor, & 

MacKinnon, 2012).  Although we did not observe between-method differences in Type I 

errors (for brevity, we did not report the Type I error rates from the   = 0 and   = 0 

design cells), we did not examine the combination of conditions that produce elevated 

Type I errors.  Future studies should explore the differences between Bayesian estimation 

and the bias corrected bootstrap in these problematic scenarios.  Finally, all computer 

simulations are necessarily limited in scope, and ours was no exception.  Although we 

examined a wide range of sample size and effect size conditions (the primary factors that 

influence the distribution of the product), future studies could extend our work by 
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investigating different distribution shapes, missing data rates, and missing data 

mechanisms. 

 In sum, Bayesian estimation provides a straightforward mechanism for estimating 

and evaluating mediation effects with missing data.  Our simulations suggest that the 

Bayesian approach should yield comparable results to the best possible maximum 

likelihood analysis (maximum likelihood with bias corrected bootstrap).  When 

researchers have access to a priori information about a mediation effect (e.g., from pilot 

data, a published study, or a meta-analysis), Bayesian estimation can provide a 

substantial increase in power.  We believe that specifying the prior information in terms 

of a covariance or a correlation matrix will allow researchers to take advantage of this 

important benefit. 
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Table 1 
      

Maximum Likelihood Descriptives from Data Analysis Example 1 

  1. 2. 3. 4. 5. 6. 

1. Friends' healthy eating habits 1.000 0.488 -0.009 0.333 -0.059 0.299 

2. Partner's healthy eating habits 0.243 1.000 0.078 0.818 0.057 0.571 

3. Treatment program (X) -0.016 0.093 1.000 0.129 0.048 0.079 

4. Coworker eating habits (M1) 0.234 0.404 0.220 1.000 0.024 0.265 

5. Knowledge of health benefits (M2) -0.055 0.037 0.108 0.022 1.000 0.298 

6. Healthy eating intentions (Y) 0.169 0.227 0.108 0.150 0.221 1.000 

Mean 3.329 3.858 0.569 3.642 6.237 2.951 

Std. Dev. 1.188 1.693 0.491 1.196 0.910 1.484 

% Missing 0.456 22.096 0.000 21.185 21.640 43.052 

Note. Covariances are on the upper diagonal and correlations are on the lower diagonal. 
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Table 2 
       

Confidence Interval Coverage from the MAR Simulation       

  
 

 
MI ML ML ML 

N  Skew. Kurt. Bayes (MVD) (MVD) (BCB) (PB) 

 = 0,  = 0 

50 0 -0.009 4.265 0.999 0.999 1.000 0.993 0.997 

100 0 0.012 4.079 0.998 1.000 1.000 0.992 0.997 

300 0 0.009 3.970 0.999 1.000 1.000 0.993 0.998 

1000 0 0.035 3.964 1.000 1.000 1.000 0.986 0.997 

 = .10,  = .10 

50 0.01 0.119 3.847 0.996 0.999 0.986 0.981 0.994 

100 0.01 0.257 3.290 0.995 0.999 0.970 0.966 0.991 

300 0.01 0.522 2.224 0.978 0.965 0.909 0.914 0.963 

1000 0.01 0.612 0.894 0.950 0.928 0.920 0.954 0.939 

 = .30,  = .30 

50 0.09 0.559 1.854 0.952 0.934 0.900 0.932 0.943 

100 0.09 0.587 0.993 0.947 0.918 0.909 0.948 0.939 

300 0.09 0.437 0.322 0.951 0.936 0.936 0.954 0.947 

1000 0.09 0.255 0.093 0.953 0.950 0.951 0.950 0.948 

 = .50,  = .50 

50 0.25 0.516 0.717 0.952 0.935 0.922 0.949 0.938 

100 0.25 0.414 0.328 0.945 0.936 0.930 0.944 0.941 

300 0.25 0.257 0.102 0.955 0.952 0.947 0.952 0.949 

1000 0.25 0.144 0.029 0.950 0.946 0.949 0.947 0.946 

 = .30,  = .10 

50 0.03 0.280 2.699 0.980 0.996 0.959 0.930 0.970 

100 0.03 0.377 1.747 0.968 0.978 0.947 0.917 0.956 

300 0.03 0.351 0.658 0.951 0.952 0.945 0.935 0.944 

1000 0.03 0.220 0.193 0.948 0.952 0.949 0.941 0.942 

Note. MI = multiple imputation, ML = maximum likelihood, MVD = multivariate delta 

method (i.e., Sobel) test, BCB = bias corrected bootstrap, PB = percentile bootstrap. 
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Table 3 
       

Empirical Power Estimates from the MAR Simulation       

  
 

 
MI ML ML ML 

N  Skew. Kurt. Bayes (MVD) (MVD) (BCB) (PB) 

 = .10,  = .10 

50 0.01 0.119 3.847 0.004 0.001 0.001 0.015 0.006 

100 0.01 0.257 3.290 0.012 0.001 0.002 0.032 0.015 

300 0.01 0.522 2.224 0.064 0.016 0.018 0.110 0.059 

1000 0.01 0.612 0.894 0.498 0.273 0.291 0.539 0.429 

 = .30,  = .30 

50 0.09 0.559 1.854 0.124 0.057 0.065 0.212 0.134 

100 0.09 0.587 0.993 0.426 0.260 0.271 0.542 0.425 

300 0.09 0.437 0.322 0.974 0.951 0.953 0.981 0.973 

1000 0.09 0.255 0.093 1.000 1.000 1.000 1.000 1.000 

 = .50,  = .50 

50 0.25 0.516 0.717 0.666 0.595 0.563 0.744 0.645 

100 0.25 0.414 0.328 0.970 0.961 0.953 0.978 0.968 

300 0.25 0.257 0.102 1.000 1.000 1.000 1.000 1.000 

1000 0.25 0.144 0.029 1.000 1.000 1.000 1.000 1.000 

 = .30,  = .10 

50 0.03 0.280 2.699 0.027 0.007 0.014 0.056 0.028 

100 0.03 0.377 1.747 0.067 0.023 0.025 0.117 0.068 

300 0.03 0.351 0.658 0.274 0.194 0.188 0.336 0.263 

1000 0.03 0.220 0.193 0.745 0.745 0.720 0.749 0.728 

Note. MI = multiple imputation, ML = maximum likelihood, MVD = multivariate delta 

method (i.e., Sobel) test, BCB = bias corrected bootstrap, PB = percentile bootstrap. 
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Figure 1. Mediation model for Data Analysis Example 1.  
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Figure 2. SAS macro input for Data Analysis Example 1.  The values in bold typeface denote 

user-specified values. 

 
%macro mediation; 

 

/* SPECIFY INPUT DATA OPTIONS */ 

 

%let data = "c:\temp\phlame.dat"; 

%let varlist = txgroup coworker knowledge  

   intentions friends partner; 

%let missingcode = -99; 

 

/* SPECIFY PRIOR DISTRIBUTION OPTIONS */ 

 

%let prior = ;  

%let priorvarlist = ;  

 

/* SPECIFY ANALYSIS VARIABLES */ 

 

%let x = txgroup; 

%let m = coworker knowledge; 

%let y = intentions; 

%let auxiliary = friends partner; 

 

/* SPECIFY MCMC OPTIONS */ 

 

%let burnin = 500; 

%let iterations = 10000; 

%let seed = 20319; 
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Figure 3.  Trace plot of the   ̇ values from the first 500 cycles of data augmentation.  The 

absence of long-term upward or downward trends suggests that a stable posterior distribution 

generated the simulated parameter values. 
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Figure 4.  Kernel density plot of the   ̇ posterior distribution from 10,000 cycles of data 

augmentation. 
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Figure 5.  Macro output from Data Analysis Example 1. 

                SUMMARY OF POSTERIOR DISTRIBUTIONS 

 

Total Effect of X on Y (Tau Paths) 

 

Estimate                                 Median       LCL       UCL 

-------------------------------------------------------------------- 

txgroup -> intentions                  0.323235  -.054293  0.696910 

-------------------------------------------------------------------- 

 

Direct Effect of X on M (A Paths) 

 

Estimate                                 Median       LCL       UCL 

-------------------------------------------------------------------- 

txgroup -> coworker                    0.533389  0.282380  0.785818 

txgroup -> knowledge                   0.197340  0.000523  0.394753 

-------------------------------------------------------------------- 

 

Direct Effect of M on Y Controlling for X (B Paths) 

 

Estimate                                 Median       LCL       UCL 

-------------------------------------------------------------------- 

coworker -> intentions                 0.163396  0.001897  0.323125 

knowledge -> intentions                0.344401  0.143104  0.542487 

-------------------------------------------------------------------- 

 

Direct Effect of X on Y Controlling for M (Tau Prime Paths) 

 

Estimate                                 Median       LCL       UCL 

------------------------------------------------------------------- 

txgroup -> intentions                  0.166932  -.216748  0.552133 

-------------------------------------------------------------------- 

 

Indirect Effect of X on Y via M (AB Paths) 

 

Estimate                                 Median       LCL       UCL 

-------------------------------------------------------------------- 

txgroup -> coworker -> intentions      0.083065  0.000997  0.192888 

txgroup -> knowledge -> intentions     0.063327  -.000073  0.161574 

-------------------------------------------------------------------- 

 

Proportion Mediated Effect Sizes 

 

Estimate                                 Median       LCL       UCL 

-------------------------------------------------------------------- 

txgroup -> coworker -> intentions      0.264484  0.024072  3.770156 

txgroup -> knowledge -> intentions     0.202989  0.019962  2.500836 

-------------------------------------------------------------------- 
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Figure 6. SAS macro input for Data Analysis Example 2.  The values in bold typeface denote 

user-specified values. 

 
%macro mediation; 

 

/* SPECIFY INPUT DATA OPTIONS */ 

 

%let data = "c:\temp\phlame.dat"; 

%let varlist = txgroup coworker knowledge  

   intentions friends partner; 

%let missingcode = -99; 

 

/* SPECIFY PRIOR DISTRIBUTION OPTIONS */ 

 

%let prior = "c:\temp\ex2priorcov.dat"; 

%let priorvarlist = _type_ $ _name_ $ txgroup coworker intentions; 

 

/* SPECIFY ANALYSIS VARIABLES */ 

 

%let x = txgroup; 

%let m = coworker; 

%let y = intentions; 

%let auxiliary = ; 

 

/* SPECIFY MCMC OPTIONS */ 

 

%let burnin = 500; 

%let iterations = 10000; 

%let seed = 20319; 
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Figure 7. Contents of the _TYPE_ = COV text data set containing the prior parameters for Data 

Analysis Example 2.   

 

 
 COV          txgroup    0.2500     0.1875      0.0750 

 COV         coworker    0.1875     2.2500      0.4500 

 COV       intentions    0.0750     0.4500      2.2500 

 N                  .   30.0000    30.0000     30.0000 

 MEAN               .    0.5000     3.5000      3.2500 

 N_MEAN             .   30.0000    30.0000     30.0000   
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Figure 8.  Kernel density graph of the posterior distribution of   ̇ from 10,000 cycles of 

parameter simulation.  The dashed distribution reflects a non-informative prior, and the solid 

distribution is based on an informative prior with 30 degrees of freedom. 
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