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Mastigocoleus testarum strain BC008 is a model organism used to study marine photoautotrophic carbonate dissolution. It is a
multicellular, filamentous, diazotrophic, euendolithic cyanobacterium ubiquitously found in marine benthic environments. We
present an accurate draft genome assembly of 172 contigs spanning 12,700,239 bp with 9,131 annotated genes with an average
G�C% of 37.3.
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Some microorganisms, known as euendoliths, have the remark-
able capacity to excavate and grow into solid mineral phases,

most typically carbonate minerals, often in the face of imposing
physiological hurdles (1, 2). Cyanobacterial euendoliths are ubiq-
uitous constituents of exposed carbonate outcrops, terrestrial and
aquatic. In the marine environment they can represent important
primary producers in carbonate-dominated systems (3). Euendo-
lithic cyanobacteria play several significant roles in the dissolution
of coral skeletons (4), and the erosion of coastal and terrestrial
carbonate outcrops (5, 6). Their activity also impacts the viability
of natural and farmed bivalve populations (7). Despite their eco-
logical importance, currently no accurate genomic information is
available for any euendolith.

Mastigocoleus testarum is a filamentous, true-branching, di-
azotrophic, morphologically and developmentally complex, cya-
nobacterial species, described as a euendolith in 1886 (8), an im-
portant pioneer of endolithic communities (9), and a pest for
bivalve fisheries (10). A type strain, BC008, isolated from a shell
fragment (11), represents the only working physiological model
organism for the study of cyanobacterial euendoliths (1). While
we have gained important insights into the mechanistic underpin-
ning of carbonate dissolution using BC008, we are hampered by a
lack of genetic information, which would enable comparative
genomics, transcriptomics, and perhaps even the development of
a genetic manipulation system and advances in its management in
aquaculture.

M. testarum strain BC008 was grown as a unicyanobacterial,
but not axenic, culture, in PES-30 medium (12) under a 16/8 h
light/dark diel cycle at room temperature. Genomic DNA was
isolated as previously described (13) and two separate Illumina
MiSEQ paired-end (PE) libraries were created. One, 2 � 150
(lib1), was generated by the Joint Genome Institute and another,
2 � 300 (lib2), by the Translational Genomics Institute. The li-
braries revealed the presence of three distinct, divergent 16S rRNA
sequences. In addition to the dominant 16S ribosomal sequence
for M. testarum, the cultures contained 2 contaminants, one in the
Rhizobiales and one related to Hyphomonas (99.7% identity). The

genomic data set was thus treated as a metagenome. After quality
filtering, both libraries combined contained over 7.2 Gbp of se-
quence. Each library underwent independent assembly using the
iMETAMOS (14) pipeline of METAMOS (15). The best assembly
was used for each library and the resultant contigs were assembled
together using Geneious (16). Because both contaminants had a
high G�C content genome (�50%), all contigs above that mark
were removed. Contigs longer than 3 kbp were scaffolded using
SSPACE (17), resulting in a final draft assembly of 172 scaffolds
(�5 kbp, N50:145,830; mean length: 65,170) representing
12,700,239 bp of genomic DNA with an average G�C% of 37.3,
which is among the largest bacterial genomes reported. Gene pre-
diction and annotation was done using the NCBI prokaryotic ge-
nome annotation pipeline (18) resulting in 9,131 genes, 73 tRNA
loci, and 6 rRNA loci (two complete rRNA operons). Secondary
metabolite gene cluster prediction was done using the antiSMASH
server (19) and resulted in 22 predicted gene clusters indicating
the potential biosynthesis of shinorine, nostopeptolide, hecto-
chlorin, and staurosporine, among others.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number LMTZ00000000. The version described
in this paper is version LMTZ01000000.
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