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Abstract

Given species inventories of all sites in a planning area, integer programming

or heuristic algorithms can prioritize sites in terms of the site’s complementary

value, that is, the ability of the site to complement (add unrepresented species

to) other sites prioritized for conservation. The utility of these procedures is

limited because distributions of species are typically available only as coarse

atlases or range maps, whereas conservation planners need to prioritize rela-

tively small sites. If such coarse-resolution information can be used to identify

small sites that efficiently represent species (i.e., downscaled), then such data

can be useful for conservation planning. We develop and test a new type of sur-

rogate for biodiversity, which we call downscaled complementarity. In this

approach, complementarity values from large cells are downscaled to small cells,

using statistical methods or simple map overlays. We illustrate our approach

for birds in Spain by building models at coarse scale (50 9 50 km atlas of

European birds, and global range maps of birds interpreted at the same

50 9 50 km grid size), using this model to predict complementary value for

10 9 10 km cells in Spain, and testing how well-prioritized cells represented

bird distributions in an independent bird atlas of those 10 9 10 km cells.

Downscaled complementarity was about 63–77% as effective as having full

knowledge of the 10-km atlas data in its ability to improve on random selection

of sites. Downscaled complementarity has relatively low data acquisition cost

and meets representation goals well compared with other surrogates currently

in use. Our study justifies additional tests to determine whether downscaled

complementarity is an effective surrogate for other regions and taxa, and at

spatial resolution finer than 10 9 10 km cells. Until such tests have been com-

pleted, we caution against assuming that any surrogate can reliably prioritize

sites for species representation.

Introduction

Prioritization algorithms identify sets of sites that effi-

ciently represent species (Stein et al. 2000; Ferrier and

Wintle 2009; Moilanen et al. 2009, 2014). A solution (set

of sites) is optimum if it represents the largest possible

number of species in a specified number of sites (or alter-

natively requires the fewest number of sites to represent

all species). Several procedures produce optimum or near

optimum solutions; these include the simulated annealing

algorithm in the software program Marxan (Ball et al.

2009), the reverse stepwise heuristic algorithm in program

Zonation (Moilanen et al. 2009), and rarity-weighted

richness, RWR (Williams et al. 1996; Csuti et al. 1997;

Albuquerque and Beier 2015a). Each of these procedures

ranks each site in terms of its contribution to the goal of

species representation. We refer to this rank as the com-

plementarity value of the site because it indicates how

much each site complements (adds unrepresented species

to) the other sites in the solution set.

Although fine-scale biodiversity data are becoming

more widely available, wall-to-wall species inventories

(i.e., inventories of all sites available for selection) do not

exist for any planning area and such data would be
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expensive to acquire (Hurlbert and Jetz 2007; Venter

et al. 2014). Therefore, the utility of conservation algo-

rithms is limited because distributions of species are typi-

cally available only as coarse atlases or range maps,

whereas conservation planners need to prioritize relatively

small sites. For example, the Atlas of European Breeding

Birds lists bird species present in each 50 9 50 km cell in

Western and Central Europe (Hagemeijer and Blair 1997)

and BirdLife International (2012) provides range maps of

all bird species. If such coarse-scale information can be

downscaled (i.e., used to identify high-priority sites at

local scales), then such data can be useful for conserva-

tion planning.

One intuitively appealing way to downscale coarse data

is to build species distribution models (SDMs) for each

species as a function of environmental conditions in

coarse atlas cells and use the resulting model to predict

occupancy at finer cell size (when sites are squares on a

grid, the terms cell and site are synonyms). Then, one can

apply a prioritization algorithm to select a complementary

set of sites. Ara�ujo et al. (2005) took this approach. In

their study, SDMs built using 50 9 50 km atlas data were

only moderately successful in predicting species distribu-

tions in 10 9 10 cells. Furthermore, the 10 9 10 km cells

with the highest expected complementarity (as predicted

from downscaled data) overlapped only 23% (birds) to

47% (plants) of the cells with highest true complementar-

ity. Newer downscaling procedures (e.g., Azaele et al.

2012; Keil et al. 2013; Barwell et al. 2014) yield more

accurate predictions of species occupancy at fine scales,

but have not been evaluated for their ability to identify

sites with high complementarity values. Moreover, SDMs

cannot be developed for species that occur in only a few

of the coarse cells. For example, Ara�ujo et al. (2005) did

not build models for the 28% of species that occurred in

the fewest cells, and Keil et al. (2013) similarly could not

build models for about 14% of species. Thus, downscaling

SDMs can overlook the range-restricted species that are

often the focus of conservation efforts.

We tried a different approach to downscaling, namely

downscaling complementarity value from large cells to

small cells, using statistical methods or simple map over-

lays. This approach can be applied to any measure of

complementarity value, such as selection frequency in

Marxan, importance score in Zonation, or RWR rank.

We chose to use RWR because RWR can be computed

much faster and easier than other measures of comple-

mentarity, and its complementarity scores are highly cor-

related (in rank order) with complementarity scores

produced by more complex procedures (Csuti et al. 1997;

Albuquerque and Beier 2015a).

In this article, we demonstrate that downscaled com-

plementarity efficiently identifies fine-grain cells with high

complementary. We used two methods to downscale

RWR, namely statistical downscaling (of coarse atlas data

and global range maps) and direct downscaling (of global

range maps only). In statistical downscaling, we measured

complementarity (RWR) in large (50 9 50 km) cells,

modeled complementarity as a function of environmental

conditions in those coarse cells, and used the resulting

model to predict complementarity for smaller cells

(10 9 10 km). In direct downscaling, we counted the

number of species ranges that overlapped each 10-km

grid cell, calculated the number of 10-km cells overlapped

by each species range, and calculated RWR for each cell.

We illustrate our approach for birds in Spain by building

models using coarse data (a 50 9 50 km atlas of Euro-

pean birds, or global range maps of birds interpreted at

the same 50 9 50 km grain size), and using these models

to predict complementary value for 10 9 10 km cells in

Spain. Then, we used an independent atlas of Spanish

birds in those 10 9 10 km cells to assess how efficiently

downscaled complementarity represented the birds of

Spain, as measured by the Species Accumulation Index

(SAI – Rodrigues and Brooks 2007). SAI assesses the sur-

rogacy value by comparing the number of species repre-

sented in sites selected to represent the surrogate, to the

largest number of species that can be represented in the

same number of sites and to the number of species repre-

sented in the same number of randomly selected sites.

Materials and Methods

Data acquisition and preparation

We downscaled 2 coarse-scale datasets, namely the Atlas

of European Breeding Birds (Hagemeijer and Blair 1997),

which summarizes presence of bird species in a grid of

~50 9 50 km cells, including 267 species in 241 cells in

Spain, and global bird range maps from BirdLife Interna-

tional (2012), which include 322 bird species range maps

that overlap Spain. We processed the range maps to gen-

erate presence values for each 50-km grid cell at least par-

tially overlapped by a species range map. We evaluated

how well complementarity downscaled from these coarse

sources reflected complementarity in the independent

fine-grain (10 9 10 km) Spanish Bird Atlas (Mart�ı and

Del Moral 2003; INB 2007), which includes records of

263 native bird species in 5303 cells in mainland Spain

(Fig. 1).

We selected 37 potential predictor variables associated

with species richness patterns. We obtained temperature

and precipitation variables from Hijmans et al. (2005),

NDVI (normalized difference vegetation index) from

Tucker et al. (2004), elevation and slope from USGS

(n.d.), potential evapotranspiration and precipitation
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variables from Zomer et al. (2008), sunshine and topo-

graphic diversity (Benito et al. 2013) from USGS (n.d.).

We calculated the mean or range of each environmental

variable across each 50-km and 10-km grid cell.

Identifying environmental gradients

We used varimax-rotated factor analysis (VrFA), across

the 241 50-km cells, to identify major environmental gra-

dients and identify a set of environmental variables with

low multicollinearity. We used the Kaiser criterion (Kaiser

1960) to select PCA factors with an eigenvalues >1. We

then identified the environmental variable that was most

highly correlated with each significant factor. Because

PCA factors are by definition orthogonal to each other,

these environmental variables tend to have low multi-

collinearity.

Modeling complementarity as a function of
environmental variables

Williams et al. (1996) proposed that the rarity value of a

species can be characterized by the inverse of the number

of cells in which it occurs. Thus, if a species is found in

only one cell, the species would have the maximum rarity

score of 1/1 = 1, and a species that occurs in 20 cells

would have a rarity score of 1/20 = 0.05. Williams et al.

also proposed that the rarity scores of all species in a cell

can be summed to yield a single rarity-weighted richness

value for the cell, RWR =
Pn

i¼1
1
ðciÞ ; where ci = the

number of cells in which species i occurs and the values

are summed for the n species occurring in that cell. RWR

has been demonstrated to reliably indicate complementar-

ity value of cells in all datasets tested (Csuti et al. 1997;

Albuquerque and Beier 2015a).

For each of the two coarse-grain datasets, we developed

a random forests model, with RWR of the 50-km cell as

dependent variable, and the selected environmental vari-

ables measured in those 50-km cells as independent vari-

ables. Random forests (Breiman 2001) is a machine

learning method based on an ensemble of regression trees.

To build our random forests models, we first randomly

drew 500 bootstrap samples, each consisting of about

66% of the data. We used these samples to develop 500

regression trees, in each case choosing the best split

among a given number of predictors. The remaining data

(about 33%) were used to estimate error rate based on

the training data (out-of-bag [OOB] error). The OOB

error was then used to estimate the relative importance of

the predictors by observing how much the OOB error

changes when the values for a particular predictor were

permuted in the training set while all other predictor val-

ues were left unchanged. Specifically, the predictor error

on the OOB data was calculated for each tree and for

each predictor variable. The importance score for each

variable is the mean difference between in OOB error

before and after permutation. For each random forests

model, we evaluated 500 trees, which is substantially

beyond the number of trees (about 200) at which mean

squared error declined below 0.05.

Figure 1. Illustration of steps taken to (dark boxes) model complementarity value as a function of environmental variables using coarse-scale

dataset (50 9 50 km), and (light boxes) use of the resulting coarse-scale model to calculate complementarity values for a fine-scale dataset

(10 9 10 km) and test how well sites prioritized in order of downscaled complementarity incidentally represent species. Boxes with dashed

borders indicate steps that are repeated for range maps and atlas dataset.
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Statistically downscaled complementarity,
SDCa, and SDCr

We applied the fitted random forest models to the same

environmental variables measured in each 10-km grid cell

to downscale RWR (DRWR) for each 10-km cell. This

procedure generated two sets of DRWR values: (1) SDCa:

calculated using the fitted random forest models from

coarse-grain atlas data; and (2) SDCr: calculated using the

fitted random forest model from the range maps.

Directly downscaled complementarity, DDCr

We overlaid the global range maps over the 10 9 10 km

grid to the fine-grain atlas data, counted the number of

species ranges that overlapped each 10-km grid cell, cal-

culated the number of 10-km cells overlapped by each

species range, calculated RWR for each cell, and used this

RWR value as DDCr.

Evaluating the performance of downscaled
complementarity as a surrogate for species
representation

We used the Species Accumulation Index, SAI (Ferrier

and Watson 1997; Rodrigues and Brooks 2007), to evalu-

ate the efficiency of SDCa, SDCr, and DDCr as surrogates

to identify sites that represent Spanish birds in 10-km

grid cells. SAI compares the number of species repre-

sented in the set of sites selected using DRWR, to an

optimum value O (the largest number of species that can

be represented in the same number of sites) and to R, the

mean number of species represented in the same number

of randomly selected sites.

We used two procedures to estimate O for the 10-km

bird atlas data, namely the basic core area formulation of

the reserve selection software Zonation (Moilanen et al.

2014) and RWR. Both procedures produced identical values

of O; here, we report O from Zonation results. Zonation

starts with all cells hypothetically “reserved” and iteratively

removes cells that are least needed to maintain core areas of

each species. The algorithm minimizes biological loss by

minimizing proportional loss of geographic range (number

of sites) for the worst-off species (those species with the

smallest remaining range in the current tentative solution).

This produces a hierarchy of sites in which the most impor-

tant 5% is a subset of the most important 10%, and so on.

Cells receive a score between 0 and 1; values close to one

indicate cells removed in the last state of the process,

whereas values close to 0 indicate cells removed early.

To calculate S, we accumulated cells starting with the

cell with the highest value of the surrogate (SDCa, SDCr,

or DDCr), sequentially adding the cell with the next

highest downscaled complementarity value. As cells were

accumulated, the number of species represented in at least

one cell was calculated. To calculate R, we accumulated

cells in random order and at each step we calculated the

number of species represented at least once in the ran-

domly selected cells. We repeated the random selection

procedure 1,000 times and used the mean value as R.

Formally, SAI = (S–R)/(O–R). SAI is scaled �∞ to 1;

negative SAI indicates a worse than random result, 0 indi-

cates random performance, and positive SAI is a measure

of surrogate efficiency. SAI is sometimes calculated using

the entire area under the S, O, and R curves. We used an

alternative procedure, calculating SAI at 15%, 20%, 25%,

30%, 35% of the landscape hypothetically reserved. We

chose this procedure to reflect performance of each surro-

gate at various plausible levels of a protected area net-

work. We used the mean across these five levels of

protection as the point estimate for SAI.

To examine the extent to which prioritizations differed

among SDCa, SDCr, DDCr, and “true” priority based on

the most complementary 10-km cells, we calculated the

Pearson correlation coefficients among SDCa, SDCr, and

DDCr and complementarity values of 10-km cells. Signifi-

cance values were corrected for spatial autocorrelation

using a modified t-test proposed by Dutilleul (1993).

All analyses were performed within GRASS (GRASS

GIS 6.4, GRASS Development Team, 2012) and R (R

Development Core Team, 2009).

Results

The varimax-rotated factor analysis (VrFA) identified six

significant environmental gradients across the 241 coarse

(50 km) cells; the most heavily loaded factors on the six

axes were precipitation seasonality, minimum NDVI, pre-

cipitation of wettest quarter, hours of sunshine maxi-

mum, isothermality, and NDVI interquartile range

(Table S1). The random forests models relating SDCa and

SDCr to these six variables explained 16% and 50% of the

variation in the dependent variable, respectively.

All three forms of downscaled complementarity were

effective surrogates for identifying 10-km grid cells that rep-

resented native Spanish birds. The two statistically down-

scaled surrogates were somewhat more effective than the

directly downscaled surrogate. Complementarity statisti-

cally downscaled from global range maps, SDCr, had a

mean efficiency of 77% (Table 1), meaning that it was 77%

as effective as having the full knowledge of species occur-

rence in all sites in its ability to improve on random

selection of sites. SDCa was almost as effective, with an effi-

ciency of 73%. Directly downscaled complementarity had a

mean efficiency of 63%. SDCa, SDCr, and DDCr were only

moderately correlated with each other (Table 2).
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Discussion

For birds of Spain, statistically downscaled complementar-

ity was about 75% as efficient as having full knowledge of

species presence in its ability to improve on random

selection of sites. Thus, statistically downscaled comple-

mentarity was a good surrogate for true complementarity,

regardless of whether the coarse data were from

50 9 50 km atlas data or from global range maps. This

suggests that the drivers of complementarity value at

coarse (50-km grid cell) scale – variables related to pre-

cipitation, NDVI, insolation, temperature, and seasonal

variation in these variables (Table S1) – also drive com-

plementarity value at fine (10-km grid cell) scale. To our

knowledge, this is the first study to model complementar-

ity as a function of environmental variables at coarse

resolution and downscale that model to predict

complementarity at finer resolution. Thus, downscaled

complementarity is fundamentally a new type of surrogate

for species representation.

This finding is consistent with the recent demonstra-

tion that complementarity can be modeled as a function

of a site’s environmental variables for 11 datasets span-

ning global to local extents (Albuquerque and Beier

2015b,c; and in review). This finding is also consistent

with a previous study that modeled species turnover and

applied the model at a different resolution. In that study,

Steinitz et al. (2005) modeled species similarity between

pairs of 10 9 10-m plots as a function of environmental

variables and applied the resulting function to predict

species similarity between 1 9 1 km cells; the observed

similarity was highly correlated (r2 = 0.67) with predicted

similarity. The ability to upscale species turnover from

0.01 to 1 km2 (Steinitz et al. 2005) and to downscale

complementarity from 50 9 50 km2 to 10 km2 (this

study) suggests that complementarity may be generally

predictable across grain sizes. However, we caution

against making broad generalizations from two studies.

Future studies using additional taxa across diverse set-

tings, extents, and grain sizes are needed to determine the

range of conditions over which complementarity can be

rescaled.

Directly downscaled complementarity – interpreting

range maps at the scale of a 10-km grid – also performed

well, with an efficiency of about 63%. This good perfor-

mance was somewhat surprising because species do not

occur at all locations within their mapped range (Hurl-

bert and White 2005), such that interpreting global range

at resolutions smaller than 1° to 2° overestimates species

richness by about 50% to 200% and distorts true patterns

of species richness (Hurlbert and Jetz 2007). Nonetheless,

the relative spatial patterns of RWR derived from this

downscaling procedure reflected relative complementarity

value of each cell reasonably well for birds of Spain.

The downscaled complementarity estimates produced

by the three methods were only moderately correlated

with each other (Table 2). This suggests that each proce-

dure achieved similar levels of species representation by

prioritizing sets of cells that only partially overlapped

each other.

Conservation prioritization has been a challenge in

areas with coarse or incomplete data on species distribu-

tions across sites (Ladle and Whittaker 2011). Our analy-

ses suggest that downscaled complementarity might be an

effective tool to prioritize sites for species representation

in areas lacking high-resolution biological data. DRWR

joins two other new surrogates (predicted importance and

predicted RWR) and one newly reinvigorated surrogate

(environmental diversity) that can identify sites for spe-

cies representation when a planner lacks data on species

Table 1. Species Accumulation Index (SAI) for three types of down-

scaled complementarity used to prioritize sites to represent all native

bird species in Spain. SAI values indicate how efficiently downscaled

complementarity represented species compared to the same number

of randomly selected sites and the largest number of species that

could be represented in the same number of sites.

% of sites

Downscaled complementarity

SDCa SDCr DDCr

15 0.75 0.81 0.56

20 0.77 0.77 0.54

25 0.72 0.72 0.63

30 0.67 0.78 0.56

35 0.74 0.74 0.87

Mean 0.73 0.77 0.63

SDCa = complementarity statistically downscaled to 10-km scale from

50-km atlas data. SDCr = complementarity statistically downscaled to

10-km scale from global range maps. DDCr = complementarity

directly downscaled to 10-km scale from global range maps.

Table 2. Pearson’s correlation coefficients of downscaled comple-

mentarity values, SDCa (complementarity statistically downscaled to

10-km scale from 50-km atlas data), SDCr (complementarity statisti-

cally downscaled to 10-km scale from global range maps), and DDCr

(complementarity directly downscaled to 10-km scale from global

range maps), and “true” complementarity values of 5303 fine-scale

(10 9 10 km) cells in mainland Spain.

True SDCa SDCr

SDCa 0.20

SDCr 0.24 0.57

DDCr 0.32 0.46 0.26

Significant values are represented in bold. All correlations are signifi-

cant at P < 0.05, using a modified t-test that corrected for spatial

autocorrelation (Dutilleul 1993).
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present in each site in the planning area (Table 3). Pre-

dicted importance (synonymous with predicted comple-

mentary) starts with species inventory data for a subset of

sites in the planning area, uses Zonation to calculate com-

plementarity, builds random forest models of the comple-

mentary value of each site as a function of freely available

environmental variables, uses the model to predict com-

plementarity for all sites, and uses these predicted values

as a surrogate to prioritize all sites (Albuquerque and

Beier 2015b). Predicted RWR (Albuquerque & Beier in

review) is identical to predicted importance except that

complementarity of the inventoried subset of sites is esti-

mated by RWR instead of Zonation. Thus, the procedures

for predicted importance and PRWR are the same as

those for downscaled complementarity, except that the

predicted importance and PRWR models extrapolate

across sites instead of across scales. Environmental diver-

sity (Faith and Walker 1996) requires no biotic data;

instead, it quantifies abiotic environmental gradients as

an ordination and selects sites that best span the ordina-

tion space.

In the one study system evaluated by all four surrogates

(birds of Spain), the SAI for downscaled complementarity

was as high as that of predicted importance and PRWR,

and data acquisition cost was zero (Table 3). Thus, with

the recent release of global range maps for birds (BirdLife

International 2012), and amphibians and mammals

(IUCN Red List Spatial Data, IUCN, Gland, Switzerland;

available at: http://www.iucnredlist.org/technical-docu-

ments/spatial-data), downscaled complementarity could be

applied widely for these taxa. Our study justifies additional

tests to determine whether downscaled complementarity

is an effective surrogate for other regions and taxa. One

difficulty in conducting such tests will be finding reason-

ably independent sets of biodiversity data, including

fine-scale species inventories. One limitation of down-

scaled complementarity is that comprehensive atlases

for invertebrates and plants are not available for most

regions. Although a surrogate for some vertebrate groups

is better than no surrogate, a conservation prioritiza-

tion that ignores plants and invertebrates is far from

comprehensive.

Another crucial need is for tests at spatial resolution

finer than 10 9 10 km cells. The performance of surro-

gates at finer scales will likely differ from what is reported

in Table 3. Until such tests have been completed, we cau-

tion against assuming that any surrogate can reliably pri-

oritize sites for species representation.

All four surrogates listed in Table 3 require additional

development, including representation goals >1 occur-

rence per species, goals that vary among species, prioritiz-

ing sites to expand an existing reserve network (rather

than prioritizing on a blank map), consideration of site-

specific costs of conservation, and integration of species

representation goals with conservation goals for compact-

ness, connectivity, and ecological and evolutionary pro-

cesses (Margules and Pressey 2000).

Much work remains to be made to evaluate approaches

to prioritize sites for species representation in a planning

area when a planner has limited information on species

present in those sites, and to integrate species representa-

tion with other conservation goals. We are pleased that

over the last couple years, there has been a proliferation

of promising approaches, and we hope that one or more

of these approaches will soon prove broadly useful in

conservation-relevant contexts.
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