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A B S T R A C T

Compared with other primates, humans sleep less and have a much higher prevalence of Alzheimer ’s

disease (AD) pathology. This article reviews evidence relevant to the hypothesis that natural selection

for shorter sleep time in humans has compromised the efficacy of physiological mechanisms that

protect against AD during sleep. In particular, the glymphatic system drains interstitial fluid from the

brain, removing extra-cellular amyloid beta (eAb) twice as fast during sleep. In addition, melatonin—a

peptide hormone that increases markedly during sleep—is an effective antioxidant that inhibits the

polymerization of soluble eAb into insoluble amyloid fibrils that are associated with AD. Sleep depriv-

ation increases plaque formation and AD, which itself disrupts sleep, potentially creating a positive

feedback cycle. These and other physiological benefits of sleep may be compromised by short sleep

durations. Our hypothesis highlights possible long-term side effects of medications that reduce sleep,

and may lead to potential new strategies for preventing and treating AD.

K E Y W O R D S : evolution; Alzheimer’s disease; sleep; glymphatic system; amyloid beta; melatonin

INTRODUCTION

Why are older humans distinctive among the apes in

their high prevalence of Alzheimer’s disease (AD)

[1]? The prevalence of AD increases exponentially

in humans, from under 2% at age 60 to about 40%

of individuals over age 90 [2]. Although its deleteri-

ous effects typically manifest too late in the life span

to have a major influence on Darwinian fitness

(reproductive success), the high prevalence of

this severely debilitating and often fatal

neurodegenerative brain disease in old humans,

and wide variations in the vulnerability of different

species, motivate us to seek an evolutionary explan-

ation [3–5].

In particular, among apes, humans are distinct-

ively vulnerable to the neuronal damage associated
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with AD [1,6], as initially hypothesized by Stanley

Rapoport [7]. While older great apes acquire modest

levels of amyloid beta (Ab) deposits at ages younger

than they are observed in humans, these amyloids

are typically diffuse and not associated with

degenerating neurons. In contrast, neuritic changes

and AD are commonly associated with plaques in

humans [1,8]. Humans are also outliers in their dra-

matically shorter sleep time compared to other pri-

mates, as discussed below. These two facts intersect

with new findings on the protective role of sleep to

suggest that selection for short sleep duration may

contribute to the distinctive human vulnerability to

AD.

AD is characterized by progressive cognitive def-

icits, especially of short-term memory, that are

associated with the loss of synapses and the death

of specific groups of neurons. The pathological hall-

marks of AD are gross shrinkage of the cerebral cor-

tex and the presence of fibrillar amyloid in neuritic

plaques, which are aggregates of Ab. The Ab peptide

is produced throughout life by neurons and is nor-

mally present in brain in interstitial and cerebro-

spinal fluid, as well as in the peripheral blood [9].

AD is also characterized by neurofibrillary tangles

of hyperphosphorylated tau protein within neurons.

The accumulation of brain amyloid fibrils and tau

pathology can be detected by PET imaging before

clinical grade dementia [10,11]. Neurofibrillary de-

generation typically spreads during clinical AD from

the medial temporal cortex into other cortical re-

gions, and subcortically into the hippocampus, a

key site of spatial memory; the earliest phase may

emanate from the brain stem locus coeruleus

[12,13]. While MRI comparisons of humans with

great apes reveal a relatively larger frontal lobe in

humans [14,15], neuroanatomical differences do

not readily explain the severe neurodegenerative

loss in humans during AD. Humans and other pri-

mates differ in patterns of gene expression in brain

pathways subject to neurodegeneration [8,16], yet

the amyloid peptide sequence is widely shared

across vertebrates, and is identical in humans and

primates [17].

Humans are also unique in their multiple

isoforms of apolipoprotein E (ApoE2,-3, and -4),

which differ in affinity for receptors and lipids,

whereas other primates have a single isoform, E4

[18–20]. ApoE4 is the major risk factor for AD, while

ApoE2 is AD-protective. Beside its role in blood chol-

esterol management, ApoE is important to the

homeostasis and remodeling of brain synapses.

ApoE4, which is considered the ancestral allele

[20], shows selective advantage in resistance to in-

fections [15].

Far from purely pathogenic, the amyloid precursor

protein (APP) is cleaved into several peptides with

diverse actions; some are neurotrophic, while others

are neurotoxic during development and throughout

life [21]. A broader perspective is emerging on the

highly evolved functions of amyloid that go beyond

the initial Ab neurodegenerative cascade hypothesis

in AD [22–24]. In particular, the 2010 suggestion that

Ab has anti-microbial activity [25] has recently been

confirmed in studies showing that the expression of

Ab40 or Ab42 in cultured cells extends survival in the

presence of C. albicans, and that the expression of

Ab42 in in transgenic C. elegans extends survival in

the face of gut infection with C. albicans or

S. thyphimurium [16]. Furthermore, the presence of

microbes induces Ab precipitation in the mouse

brain within days, and Ab forms fibrils that entangle

fungi in a manner similar to other antimicrobial pep-

tides [16]. Antiviral actions of Ab have also been sug-

gested, in conjunction with evidence that viral

infections may contribute to AD [26].

HUMANS SLEEP LESS THAN OTHER
PRIMATES

Humans are also distinctive in their tendency to

sleep considerably less than other primates. In this

context, estimates of typical human sleep are crit-

ical: is the 8 h that sleep that physicians recommend

also a good estimate for ancestral average human

sleep duration? To address this question, re-

searchers are studying traditional human popula-

tions that lack access to electricity, and thus likely

have a stronger circadian drive based on natural

cycles of light and darkness. One recent study found

the average sleep times in three different hunter-

gatherer groups range from 5.7 to 7.1 h, with an over-

all average of 6.5 h [27]. Another set of authors

observed a nearly identical average sleep time for

agriculturalists in rural Madagascar [28], while a

study of a Haitian population lacking access to elec-

tricity identified the sleep duration as 7 h [29].

Notably, these studies used actigraphy, a method

that is known to overestimate sleep durations [30].

In addition, napping is less common than expected

in hunter-gatherers [27], yet perhaps more common

and longer in agriculturalists, potentially adding up

to an hour of sleep per day [28]. Taken together, 7 h is

a good upper-level estimate of typical human sleep,
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with many ancestral populations likely sleeping less

than this when ecological or social conditions con-

strain options for safe sleep. A meta-analysis

including 65 studies of 3577 subjects in Western

societies also found a 7.0 h average total sleep

time [31].

Using 7 h as a conservative estimate of the ances-

tral human sleep duration, humans are clearly short

sleepers relative to other primates (Fig. 1). Yet, is

this different from what one would expect for a diur-

nal primate with the body and brain size of a human?

Samson and Nunn [32] investigated human sleep

more quantitatively using a method that predicts a

phenotypic characteristic of a particular species

based on trait co-variation across the clade of inter-

est, phenotypic characteristics of the ‘target’ spe-

cies, and the phylogenetic placement of the

species of interest [33–35]. The implementation of

the method used by these authors is Bayesian, thus

producing a posterior probability distribution of pre-

dicted sleep duration in humans. With this posterior

distribution, one can compare the observed dur-

ation of sleep—7 h in this case—to the posterior

distribution of predictions. If humans lie below the

95% credible interval of values in the distribution,

they are determined to be a negative evolutionary

outlier (or a positive outlier if above the 95% credible

interval).

Using body mass, activity period, endocranial vol-

ume, percentage of leaves in the diet, interbirth inter-

val and foraging group size as predictor variables,

and a posterior distribution of primate evolutionary

trees from a Bayesian phylogenetic analysis [36],

Samson and Nunn’s [32] analysis predicted that that

humans should sleep for an astonishing average

of 10.3 h per night, with a 95% credible interval of

7.9–13.3 h per night. The conservative estimate of

7 h of sleep per night falls well below the 95% cred-

ible interval, suggesting that the average human

sleeps much less than predicted for a primate with

our phenotypic characteristics and the characteris-

tics of our close evolutionary relatives.

Several selective pressures involving the risks and

opportunity costs of sleep may have favored shorter

sleep in humans [32]. In terms of risks, one selection

pressure likely involved the transition from sleeping

in the trees to sleeping on the ground, where risk of

predation increased. While there is uncertainty

about the rates of predator attacks on current hunter

gatherers, predation rates for our ancestors were

likely high [39]. In addition to increased vulnerability

to predators, terrestrial sleep also makes humans

more vulnerable to hostile conspecifics, both within

the group and from other groups, because move-

ment and attacks may be easier at night when on

the ground.

Sleeping also imposes opportunity costs

including lost chances to socialize, to learn from

others or to learn through direct trial and error.

Individuals who sleep less could engage in more

social learning and social grooming, thus enhancing

learning and formation of alliances. Individuals who

sleep less could engage in more social learning and

social grooming, thus enhancing learning and for-

mation of alliances [40]. Interestingly, Samson and

Nunn [32] also found that the percentage of rapid eye

movement sleep (REM) was also higher than pre-

dicted for humans, which may enhance memory

consolidation, mental rehearsal of social and envir-

onmental challenges in dreams, and general prob-

lem-solving within the shorter period of human

sleep. Many of these phenomena would be beneficial

for learning and social alliance formation, and for

rehearsal of risks associated with terrestrial sleep.

LINKS BETWEEN SHORT SLEEP,
EVOLUTION AND AD

If selection for short sleep duration helps to explain

increased human vulnerability to AD, then sleep dis-

ruption should speed AD onset and progression,

mediated by definable and specific mechanisms.

Recent research has confirmed the physiologic ne-

cessity of sleep, documented the dire health conse-

quences of interrupted sleep and discovered several

Figure 1. Duration of total sleep time in primates, including

humans. Humans are the shortest sleeping primate (here,

using a value of 7 h, see text). The data on nonhuman primates

come from studies in which sleep was staged, most often by

EEG, in adult animals, and thus exclude some studies based

on videography [37] or studies of juvenile animals [38]
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mechanisms that may mediate this relationship. We

discuss each of these in turn.

The utility of sleep

Sleep deprivation has well documented deleterious

effects on health [41]. The need for sleep is a cross-

species universal: extensive evidence confirms its

necessity despite the costliness of sleep in terms

of reduced vigilance [42]. Rats forced to stay awake

are more vulnerable to bacterial infections and

tumor growth [43]. It is broadly assumed that sleep

facilitates repair of tissue wear-and-tear from daily

activity because of severe health consequences of

sleep-deprivation. Humans with fatal familial in-

somnia and other ‘circadian disruptions’ have

higher mortality from diverse morbidities that im-

pact mental and physiological functions [44,45].

Sleep and AD

The role of sleep disruption in AD pathogenesis is

difficult to assess because AD itself is associated with

sleep disruption, as analyzed in humans and mouse

models by David Holtzman and colleagues [46]. With

this caveat in mind, self-reported sleep disturbance

at age 70 in a large prospective sample of men

showed 3-fold higher subsequent risk of AD, whereas

sleep disturbance at age 50 did not influence risk [47].

A large prospective study found increased risk of

compromised cognitive function for individuals

who had previously reported fewer than 6 or more

than 8 h of average sleep. However, the study also

found worse health for those at the extremes, so the

causal direction is unclear [48]. Moreover, in a very

recent prospective study of a large sample of cogni-

tively normal subjects followed for development of

subsequent AD (National Alzheimer Coordinating

Center), those with sleep disturbances had 3.4-fold

higher risk of subsequent AD; this risk ratio was fur-

ther increased by including BMI and APOE genotype

as covariates, suggesting that sleep is an independ-

ent risk factor for AD [49]. Both reports are consistent

with data showing greater Ab accumulations

measured via PET scan in those with shorter sleep

in a community sample [50].

Sleep deprivation of mice also slightly increased

Ab in brain interstitial fluid [51]. Cross-sectional and

longitudinal studies suggest that sleep disruption

can be a cause and an effect of AD [46,52].

Holtzman’s group is generating further data which

suggests a positive feedback cycle of sleep

disruption that could accelerate neurodegeneration

during AD [46,53]. On the positive side, sleep induc-

tion decreased axonal injury in a rat model of trau-

matic brain injury [54], and sleep may more generally

reduce AD-related neuropathology [55].

THE GLYMPHATIC SYSTEM

Recent research identifies some of the mechanisms

underlying the utility of sleep and its potential connec-

tion to AD. Thebrain has a specialized lymphatic system

involving astroglial cells, the ‘glymphatic system’, that

channels interstitial fluids in the brain through astro-

cytes into the peripheral lymphatic system [56–59].

The glymphatic system is especially relevant to AD be-

cause it transports Ab and metabolites out of the brain.

The connection to sleep is also strong, as the Ab trans-

port rate is doubled during sleep [59]. This has led some

scientists to hypothesize that insufficient sleep may be a

vital factor in the progression of AD [57–60]. Disruption

of glymphatic transport by inadequate sleep might also

mediate other effects on AD. For instance, traumatic

brain injury (TBI) often causes severe sleep disruption

that may contribute to the premature development of

amyloid plaques and tangles [61,62].

Aging may also impair glymphatic transport, as

suggested by the 40% decreased clearance of brain

Ab in older mice [63]. Differences between species also

provide useful evidence for a role for the glymphatic

system removing metabolic products. A comparative

study of cortical neuronal density in 24 mammalian

species found an inverse correlation of sleep duration

with the extra-cellular diffusion space. This finding was

interpreted as an outcome of selection for the capacity

to clear metabolites while maximizing the number of

hours awake for foraging [64]. In related work, Barton

and Capellini suggest that human sleep may have be-

come more efficient because the risks of sleeping on

the ground make it so costly [65].

MELATONIN

MEL may also influence rates of AD progression.

Levels of this potent antioxidant hormone increase

more than ten-fold in darkness and in association

with sleep onset. Reduced MEL levels, because of

lack of sleep or sleeping with lights on, increases

the risk of breast cancer [66], as confirmed in mice

[67]. Levels are reduced in the CSF of patients with

AD, and levels decrease further with disease progres-

sion [68]. The anti-inflammatory actions of melatonin

are consistent with extensive evidence for the
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possible role of inflammation in the pathogenesis of

AD. MEL has not only anti-inflammatory functions,

but can also directly inhibit the in vitro fibrillization of

Ab [69,70]. By NMR spectrometry, MEL binds to Ab at

a single low affinity binding site, allowing the joint

clearance of MEL-Ab complexes [71]. In mice, mela-

tonin protected against the neurotoxicity of Ab [72],

whereas administered MEL had several effects that

decrease Ab production [73]. In vitro, Ab directly in-

hibits MEL production in mouse pineal cells in vitro.

CONCLUSIONS

Collectively, these emerging findings document a

role for sleep disruption in the pathogenesis of AD

that supports our suggestion that selection for short

sleeping time in humans may have made humans

more susceptible to AD. We do not propose that the

emergence of AD in human evolution has influenced

Darwinian fitness. Fitness impacts are possible after

the end of reproduction via kin selection, but they are

unlikely in this case because AD is rarely manifested

until after age 60, when selective forces on individ-

uals are weaker. We consider AD to be an epiphe-

nomenon of selection acting on other traits,

focusing here on the trade-off between the special

benefits for humans of reduced sleep time, and the

associated costs, including decreased protection of

the brain from AD and other kinds of damage.

While the data and recent findings generally point

toward a link between the evolution of short sleep

and AD in humans, we also wish to point out several

caveats and limitations. First, the effects of vari-

ations in sleep for individuals within a species do

not prove the effects of variations in sleep duration

across species. In the several million years since the

divergence of humans from our last common ances-

tor with other primates, selection may have adapted

the sleep system to function more efficiently [65].

Second, while the proposed short-term social and

safety benefits from shorter sleeping times are

plausible, they have not yet been documented in

humans. Data are also not yet available about pos-

sible social or physical disadvantages experienced

by hunter gathers who sleep less than others, topics

ripe for more research.

Third, the short sleep duration in humans could

have other explanations; for example, changes in

brain physiology associated with selection on cogni-

tive function could increase sleep efficiency, result-

ing in less need for sleep. We must also consider why

Ab accumulations (but not dying neurons) appear

years earlier in the brains of other primates

compared to humans [1,17], who sleep much less.

Fourth, the brain differences that make humans

more vulnerable to neuron damage are not direct re-

sults of Ab accumulation. Neuronal damage instead

seems to require interactions with immune mechan-

isms [74], which also mediate neuron pruning in the

normal course of development [75]. Of special interest

are aspects of innate immune function, particularly

CD33, a receptor that regulates Abuptake by microglia

and has uniquely evolved alleles in humans [76].

Strong selection on these systems in the course of

rapid brain evolution offers an alternative explanation

for the distinctive human vulnerability to AD [3].

Another important unanswered question is whether

glymphatic function, and the more general physio-

logical protection provided by sleep, vary considerably

among individuals, and whether such variations are

correlated with perceived need for sleep. If organisms

have mechanisms that monitor the concentrations of

brain metabolic products and modulate sleep need

accordingly, then those who thrive on fewer hours of

sleep are doubly fortunate. However, if maintenance of

brain integrity is proportional to the absolute number

of hours of sleep, healthy people who need less sleep

may be more vulnerable to AD. We are unable to find

reliable data on this point, but nonhuman animal

studies of the effects of sleep time variations are pos-

sible. Also needed are studies of how glymphatic func-

tion, plaque formation and AD progression are

influenced by new drugs that reduce the need for sleep.
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