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Abstract: Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, 

especially in young children and the elderly. Much effort has been dedicated to developing 

protein-based universal vaccines to conquer the current shortcomings of capsular vaccines 

and capsular conjugate vaccines, such as serotype replacement, limited coverage and high 

costs. A recombinant live vector vaccine delivering protective antigens is a promising way 

to achieve this goal. In this review, we discuss the researches using live recombinant 

vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal 

antigens. We also discuss both the limitations and the future of these vaccines.  

Keywords: Streptococcus pneumoniae; Salmonella; lactic acid bacteria; BCG; adenoviruses; 

bacterial vector; viral vector 

 

1. Introduction 

Streptococcus pneumoniae is the most common cause of pneumonia as well as a number of invasive 

diseases, such as meningitis and sepsis, and non-invasive mucosal diseases, such as otitis media and 

sinusitis. It causes severe morbidity and mortality worldwide, especially in young children and the  

elderly [1]. It has been estimated that 14.5 million episodes of serious pneumococcal disease occur 

each year, resulting in 826,000 deaths in children under 5 years of age, the vast majority of which 

OPEN ACCESS 



Vaccines 2014, 2 50 

 

 

occur in low-income countries with poor access to health care [1]. The overall rate of invasive 

pneumococcal disease (IPD) among children and adults is reported to be between 11 and 23.2/100,000 

individuals per year [2]. In adults, community-acquired pneumonia, among which 30%–50% are 

caused by S. pneumoniae [2], is one of the major respiratory health diseases in the USA and Europe [2,3]; 

it is the most frequent cause of death from infection and poses a heavy burden to healthcare systems 

worldwide [2,4]. It is estimated that the annual total economic burden of pneumococcal disease 

among US adults aged over 50 years is about $5.5 billion [5]. The increasing incidence of 

antibiotic-resistant S. pneumoniae strains worldwide posed another threat to the treatment of 

infection [2]. The burden of pneumococcal diseases is worsened by increasing numbers of people with 

chronic disease (sickle-cell disease, chronic renal failure, chronic liver disease, asplenia), HIV or 

mycobacterial  infection, as well as an aging population in many developed countries [2]. Currently, 

we have two types of vaccines against S. pneumoniae, pneumococcal polysaccharide vaccine (PPV) 

and pneumococcal conjugate vaccine (PCV) [6,7]. Both of them are designed to generate antibodies 

against capsular polysaccharide (CPS) [8,9]. S. pneumoniae has at least 94 serotypes with different 

abilities in nasopharyngeal carriage, invasiveness and disease incidence. The PPV is a 23-valent 

vaccine, which covers 23 commonly encountered serotypes. It is recommended to persons older than 65 

years of age and aged ≥2 years at high-risk for pneumococcal diseases. The CPS is a T-cell-independent 

immunogen. It does not lead to isotype switching and induction of memory B-cell responses, leading 

to a temporary protection [10]. Capsular vaccines could cause hyporesponsiveness that blunts the 

immune response to subsequent doses due to the first dose [2]. It is also not very effective in infants 

and children under 2 years old—a group that is highly susceptible to infection, particularly in 

developing countries. Several meta-analyses showed that this vaccine is effective in low-risk 

adults, but not in high-risk groups [11–13]. To conquer these problems, the conjugate vaccine, PCV7, 

was licensed in 2000. Recently, PCV10 and PCV13 were licensed too. These vaccines are composed 

of pneumococcal polysaccharides conjugated to different protein carriers [6]. A conjugate vaccine can 

present the peptide or carbohydrate epitopes to carrier-peptide- or carbohydrate-specific T cells, 

respectively [14], resulting in T cell help for the production of memory B cells [10,15] and robust 

immune responses [16]. The conjugate vaccine increases enabling it to be used for young children [17]. 

The introduction of conjugate vaccines has tremendously decreased the rate of IPD and nasopharyngeal 

carriage by vaccine serotypes in children [15,18,19]. An effective herd immunity was also  

observed [7,20,21] with total 2/3 IPD reduction [6]. 

At the same time, some non-vaccine serotypes become prevalent in the face of the introduction of 

conjugate vaccines [22–24]. Also, certain high-risk groups have poor immunological responses to 

some of the polysaccharides in the vaccine formulations [25]. There are also concerns about the 

conjugate vaccines related to the high cost and complexity of manufacture due to the different 

prevalent serotypes in different geographical areas and the limited coverage of the current PCV 

vaccines [26]. Thus, to develop a low-cost, effective vaccine against S. pneumoniae is still urgent. The 

new vaccine should be able to induce more effective and durable immune responses that could 

potentially protect against all clinically relevant pneumococcal capsular types and cover some high-risk 

groups who may not respond well to the current vaccine, while keeping the cost low enough to be used 

in developing countries. The success of vaccines against other pathogens encourages the scientific 

community to develop a pneumococcal vaccine based on conserved protein antigens across all 
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capsular types [26]. Different reviews have previously covered topics related to new generations of  

S. pneumoniae vaccines [6,27,28], animal models [29,30], antigen selection [26,31–33] and 

mechanisms of protection [28,34]. 

In this review, we will focus on developing new-generation pneumococcal vaccines using live 

bacteria delivering conserved protein antigens. We will discuss two types of live vaccines, live 

attenuated Salmonella and live lactic acid bacteria (LAB), mainly Lactococcus and Lactobacilli. 

Recombinant bacterial strains have several advantages. They have intrinsic adjuvant properties and can 

deliver antigens or DNA vectors with its native form using mucosal routes, which mimic the natural 

infection process to induce immune responses against the heterologous antigens in both mucosal and 

systemic sites. The productions of these kinds of vaccines are easier and less expensive than that of 

protein-based subunit vaccines. Several of the best-characterized candidate S. pneumoniae antigens, 

including pneumococcal surface protein A (PspA), pneumococcal surface adhesin A (PsaA), 

pneumococcal surface protein C (PspC), and pneumolysin (Ply), have been tested in various live 

vectors including attenuated pathogenic bacteria and nonpathogenic bacteria (Table 1). We will 

focus on the immune responses induced by these recombinant bacterial vaccines. The detailed 

properties of different protein antigens tested in live vaccines have been discussed elsewhere [32]. 

2. Bacterial Vectors Deliver Protective Antigens 

2.1. Salmonella-Vectored Vaccines  

Salmonella is a pathogenic bacterium. In order to be used as a live vaccine vector, it should be 

attenuated by various mutations [35,36]. Furthermore, multiple mutations are introduced to reduce the 

chance of reverting to display virulence. Salmonella is one of the most widely studied live vectors to 

deliver protective antigens. Recombinant attenuated Salmonella vaccines (RASVs) can attach to, 

invade and colonize in deep effector lymphoid tissues after mucosal delivery and therefore remodel the 

host cells that they target as well as promote immunomodulatory effects to induce immune responses 

in locations where bacteria persist as well as at systemic sites [37–39]. Currently, a phase I clinical 

trial showed that the three S. typhi vaccine vectors—χ9633, χ9639 and χ9640—delivering 

pneumococcal antigen PspA were safe and well-tolerated [40]. These achievements were made during 

the process with a final goal of developing a safe RASV suitable for use in newborns/neonates and 

infants that induces protective immunity to the diversity of S. pneumoniae strains.  
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Table 1. Live vectored vaccines for S. pneumoniae.  

Strain 
1
  Antigen 

Antigen 

source 
2
 

Promoter/ 

secretion signal  
Location 

Mice 
3
/ 

rabbit 
Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

Bacterial vectors 

S. typhimurium  

Single antigen 

C5 aroA 
Ply (Pd-B, 

W433F)  

Type 1 Ply 

overexpression 

strain 

Native 

promoter 
Cytoplasm BALB/c 

Day 0, 

14, 28, 

42  

Oral 1010 Serum IgG, IgA N.A N.A [41] 

     

Quackenbush 

mice 

Outbreed 

Day 0, 

14,28  
i.p. 106 Serum Ig G IgA N.A N.A  

χ9101, χ9017, 

χ9241 
PsaA Tigr 4 (4) 

Ptrc, native SS, 

lpp, bla, 

Y.pestis psaA 

SS 

Periplasm 
BALB/c, 

C57BL/6  

Day 0, 

42  

Oral 109 i.n. 

109 

Serum IgG, 

Vaginal wash, 

nasal and lung 

IgA 

WU2 (3),  

i.p. 2 × 104; L82016 

(6B), E134 (23),  

i.n. 5 × 106; A66.1(3), 

D39 (2), i.n. 1 × 107  

i.p. no 

protection; i.n. 

reduce nasal 

colonization, 

but not lung  

[42] 

SR-11 χ4550 
PspA Rx1 

(aa 1–470)  
Rx1 

Ptrc, native 

signal 

Periplasm 

and 

cytoplasm 

BALB/cJ, 

CBA/N xid 

Day 0, 

56, 140  

Oral  

1.5 × 109 

Serum, VL, IL 

IgG, IgA, IgM, 

spleen, PP, 

PBMC PspA-

specific IgG IgM 

IgA APC  

WU2 (3),  

i.p. 3 × 103, i.v. 104 

66% protection, 

passive 

protection by 

serum: i.v. 33%–

89%; i.p. 43% 

[43] 

     
New Zealand 

White rabbits 
Day 0, 30  

Oral  

1.6 × 1010 
Serum, VL IgG   [43] 

SL1344 χ8501 
PspA  

(aa 3–257) 
Rx1 Ptrc, bla SS 

Periplasm/S

upernatant 
BALB/c 

Day 0 or 

Day 0, 

70 

Oral, 1.3–1.9 

× 109 

Serum IgG, VL 

IgA 
WU2 (3), i.p. 4.8 × 103 60% Protection [44] 
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Table 1. Cont. 

Strain 
1
  Antigen 

Antigen 

source
 2
 

Promoter/ 

secretion signal  
Location Mice 

3
/rabbit Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

SL1344 χ8501 
PspA  

(aa 3–257) 
Rx1 

Ptrc, no signal 

or bla SS 

Cytoplasm 

periplasm 
BALB/c Day 0 Oral, 109 Serum IgG,  NA NA [45] 

χ8937 
PspA 

(aa 3–257) 
Rx1 Ptrc, bla SS 

Periplasm 

and lysed 
BALB/c Day 0, 7 

Oral  

1.3 × 109 

Boost  

1.2 × 109 

Seum IgG, VL 

IgA 
NA NA [46] 

χ9241, χ9277, 

χ9373, χ9402 

PspA  

(3–285) 
Rx1 Ptrc, bla SS Periplasm  BALB/c Day 0 

Oral  

1 × 109 

Serum IgG, VL 

IgA. IL-4, IFN- 

ELISPOT, CD4, 

CD8, cytokines, 

memory T cell 

WU2 (3),  

i.p. 2 × 104 

46%–47% for 

strains with sopB 

mutation  

[47] 

χ9241 
PspA  

3–285 
Rx1 

Ptrc, bla  

SS+CT 
Periplasm  

BALB/c and 

C57BL/6, BALB/c 

pIgR−/− , BALB/c 

and C57BL/6 

MyD88−/−, 

MyD88−/−TRIF−/−  

Day 0, 

14, 28 or 

Day 0, 14 

i.g. 109, 

i.n. 108 

Serum, fecal IgG, 

IgA,  

Ag-specific 

CD4+ T cell 

proliferation, 

adoptive transfer 

WU2 (3) 

i.v. 2 × 106 or 2 × 107,  

i.t. 5 × 107 

0% in 

MyD88−/− mice  
[48] 

χ8133, χ9088, 

χ9558  

PspA  

(3–257) 
Rx1 Ptrc, bla SS Periplasm BALB/c 

Day 0, 

56  

Oral  

1 × 109 

Serum IgG, VL 

IgA. IL-4, IFN- 

ELISPOT, 

cytokines, Passive 

transfer of cells 

and sera  

WU2 (3),  

i.p. 5 × 104 

21%, 86%, 71% 

for χ8133, χ9088 

and χ9558; passive 

protection by 

serum 80%, 100%, 

100%; by spleen 

cells, 0%, 100%, 

60%  

[49] 
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Table 1. Cont. 

Strain 
1
  Antigen 

Antigen 

source 
2
 

Promoter/ 

secretion signal  
Location Mice 

3
/rabbit Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

χ9241 

PspA  

(aa 3–285) 

PspC  

(aa 4–404) 

Rx1  

L81905 (4) 

Ptrc, bla SS, bla 

SS+CT, phoA, 

ompA 

Periplasm  BALB/c Day 0  Oral 109 

Serum IgG, VL 

IgA, ELISPOT 

IL-4, IFN- for 

PspA or PspC 

WU2 (3), i.p. 2 × 104 

for PspA D39 (2), i.p. 

4 × 103 for PspC 

bla SS–PspA, 

63%; bla SS+CT–

PspC 60% 

[50] 

χ9241, χ9852, 

χ9884 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

28 
Oral 109 

Serum IgG, VL 

IgA 

WU2 (3).  

i.p. 4 × 104 

23%–45% for 

different rfaH 

mutations  

[51] 

χ9558 
PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  

BALB/c Neonatal 

(7-day-old) and 

infant (21-day-old) 

Day 0, 

21, 42  

Oral, i.n. 

5 × 108 

Serum IgG , VL 

IgA . IL-4, IFN- 

ELISPOT 

WU2 (3). i.p. 2 × 

103 for oral route,  

4 × 103 for i.n.  

baby mice from 

immunized mother 

40% (7 day) or 50% 

(21 day); from 

naïve mother 11% 

(7 day) or 10%  

(21 day) 

[52] 

χ9241, χ9853, 

χ9885 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm BALB/c 

Day 0, 

28 
Oral 109 

Serum IgG, VL 

IgA 

WU2 (3). i.p. 4 × 

104 

55%–77% for 

different rfc 

mutations  

[53] 

χ9095, χ9241, 

χ9555, χ9959  

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm BALB/c 

Day 0, 

42  
Oral 109 

Serum IgG, VL 

IgA 

WU2 (3). i.p. 2 × 

104 

52% for relA198, 

39% for relA 197  
[54] 

χ9241, χ9281 
PspA  

3–285 
Rx1 

Ptrc, bla SS, bla 

S +CT 
Periplasm  BALB/c 

Day 0, 7, 

14, 21  

i.n. OMV 

contain 

350 ng 

PspA from 

Salmonella 

Serum IgG, VL 

IgA 

WU2 (3). i.p. 

0.246–4 × 104 

100% protection 

against low dose, 

47% for high dose  

[55] 
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Table 1. Cont. 

Strain 
1
  Antigen 

Antigen  

source 
2
 

Promoter/ 

secretion signal  
Location Mice 

3
/rabbit Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

χ 9241, χ9555 
PspA  

3–285 
Rx1 

PpagC, PssaG, Ptrc 

bla SS 
Periplasm  BALB/c 

Day 0, 

42 
Oral 109 

Serum IgG, VL 

IgA, IL-4, IFN- 

ELISPOT 

WU2 (3). i.p. 2 × 104 

46% for regulated 

delayed antigen 

synthesis system, 

39% for PpagC 

[56] 

χ9241, χ9844, 

χ9845, χ9846, 

χ9881 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

35 
Oral 109 

Serum IgG, VL 

IgA 
WU2 (3). i.p. 4 × 104 

1-dephosphorylated 

lipid A modifications 

do not affect 

protection 

[57] 

χ9241, χ9884, 

χ9885, χ11313, 

χ11314, 

χ11315, 

χ11316, χ11317 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

35 

Oral 109; 

i.n. 107; 

i.p. 106  

Serum IgG, VL 

IgA 
NA NA [58] 

χ9241, χ9278, 

χ9848, χ9850, 

χ11318, χ11088  

PspA  

3-285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

35 
Oral 109 

Serum IgG, VL 

IgA 

WU2 (3).  

i.p. 2 × 104 

23%–37%, not 

affected by 

palmitoylation state 

of lipid A 

[59] 

χ9241, χ11088, 

χ11089, 

χ11090, χ11091 

PspA  

3-285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

35 
Oral 109 

Serum IgG, VL 

IgA 
WU2 (3). i.p. 2 × 104 

23%–31%, not 

affected by 

phosphate groups of 

Lipid A  

[60] 

χ9241 
PspA  

3-285 
Rx1 

Ptrc, bla  

SS+CT 
Periplasm  C57BL/6, Ccr2−/− Day 0 i.g. 109 

Serum IgG, IgA, 

BALF IgA 

WU2 (3).  

i.t. 104 

long-term protection 

80%; protect against 

2nd pneumococcal 

pneumonia 80%–

100%; Passive serum 

protection, 90%  

[61] 
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Table 1. Cont. 

Strain 
1
  Antigen 

Antigen  

source 
2
 

Promoter/ 

secretion signal  
Location Mice 

3
/rabbit Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

Multiple antigen 

χ9241 

PspA Rx1 

(aa 3–285) 

EF5668  

(aa 4–417) 

Fusion of Rx1 

and  

EF5668 (4) 

Ptrc, bla SS Periplasm  BALB/c 
Day 1, 7, 

42 
Oral 109 

Serum IgG, VL 

IgA, 

complement 

deposition 

WU2 (3), i.p. 2 × 104; 

3JYP2670 (3), i.v.  

1 × 106; A66.1 (3), 

i.n. 1 × 108 

Rx1-EF5668  

83%–100%; Rx1, 

33%–53%; EF5668 

26%–66%  

[62] 

χ9760, χ9828, 

χ11018, 

χ11026 

PspA  

PspC 

Rx1 

L81905(4) 

Ptrc,  

Plpp-lacO, bla SS 
Periplasm BALB/c Day 0,42  Oral 109 Serum IgG 

WU2 (3), i.p. 2 × 104; 

L81905 (4), i.v.  

1 × 106; A66.1 (3), 

i.n. 1 × 108  

Dual-plasmid i.p. 

75%; i.v. 100%; i.n. 

80%  

[63] 

DNA vaccine 

χ4550 
PspA 

PsaA 

R6  

(ATCC-255) 
PCMV Cytoplasm BALB/c 

Day 0, 

35  

Oral  

1.5 × 109 

Serum, NL IgG, 

IgA  

D39 (2), 

 i.n. 106 

PsaA + PspA is 

best in reducing 

nasal colonization 

[64] 

S. typhi 

ISP1820, 

χ9633, Ty2, 

χ9639, χ9640 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  BALB/c 

Day 0, 

42 

i.n.  

1 ± 0.2 × 

109 

Serum IgG , VL 

IgA, IL-4, IFN- 

ELISPOT 

WU2 (3), 

 i.p. 1 × 104 

50% for χ9633, 

75% for χ9639; 

81% for χ9640 

[65] 

ISP1820, 

χ9633, Ty2, 

χ9639, χ9640 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  

Neonatal(7 day) 

and Infant  

(21 day) BALB/c 

Day 0, 

14, 28, 

42  

i.n.  

5 × 108 

Serum IgG , VL 

IgA, IL-4, IFN- 

ELISPOT 

WU2 (3),  

i.p. 4 × 103 

neonatal mice 

33%–65%; infant 

mice 40%–75%  

[66] 

ISP1820, 

χ9633, Ty2, 

χ9639, χ9640 

PspA  

3–285 
Rx1 Ptrc, bla SS Periplasm  Adult human Day 0 

Oral 107, 

108, 109, 

1010 

ELISPOT IgA, 

serum IgA, IgG 
N.A 

Induce limited IgA 

response 
[40] 
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Table 1. Cont. 

Strain 
1
  Antigen 

Antigen  

source
 2
 

Promoter/ 

secretion signal  
Location 

Mice 
3
/ 

rabbit 
Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7 
 

Protection  Ref. 

Lactococci and Lactobacilli 

Protein antigen  

L. casei 

CECT5275  

L. plantarum 

NCDO1193  

L. helveticus 

ATCC 15009  

L. lactis 

MG1363 

PsaA 472/96 (6B)  

lactococcal P1 

promoter, 

usp45 SS  

Cell wall C57Bl/6 

Day 0, 1, 

14, 15, 28, 

29 

i.n. 109 

Saliva, NL, 

BAL IgA Serum 

IgG  

ATCC0603 (6B), 

i.n. 5 × 106  

Reduce nasal 

colonization only 

in L. helveticus-

PsaA 

[67] 

L. lactis 

F17847 

PspA  

aa 1–418 
Tigr4 (4) Pnis Cytoplasm CBA/ca 

Day 0, 21, 

42  
i.n. 109 

Serum and LL 

IgG, LL IgA  

Tigr4 (4),  

i.p. 2 × 105,  

i.n. 1–2 × 106,  

i.p.: LAB 

vaccine40%, protein 

15%–20%; extend 

survival time against 

i.n. challenge  

[68] 

L. casei 

CECT5275 

PspA 

(clade 1) 
435/96 (14) 

constitute P1 

promoter 
Cytoplasm C57Bl/6 

Day 0, 1, 

14, 15, 28, 

29 

i.n. 109 

Serum IgG, NO 

Saliva, NL IgA; 

complement 

deposition assay 

A66.1(3),  

i.p. 102, heterologous 

challenge 

33% [69] 

L. casei 

CECT5275 

PspA 

(clade 5) 

PspC 

122/02 (23F) 

491/00 (6B) 

constitute P1 

promoter 
Cytoplasm C57BL/6 

Days 0, 1, 

14, 15, 28, 

29 

i.n. 109 

Serum, VW, 

BAL IgG, IgA, 

cytokines 

ATCC 6303 (3),  

i.n. 105 

PspA 40%–60%; 

PspC 12.5%–20% 
[70] 

L. casei 

CECT5275 
PspC 491/00 (6B) 

constitute P1 

promoter, 

w/wo usp45 SS 

Cell wall 

or 

cytoplasm 

C57BL/6 

Day 0, 1, 14, 

15, 28, 29; 

Day 0, 14, 

28 or Day 0, 

1, 14, 15, 

i.n. 109 

sublingual. 

109 prime-

boost 

No IgG and IgA 

in nasal 

sublingual 

ATCC 0603(6B),  

i.n. 5 × 106 

Reduce nasal 

colonization by 

i.n. immunization, 

antibody primed 

after challenge 

[71] 
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Table 1. Cont. 

Strain 
1
 Antigen 

Antigen 

source 
2
 

Promoter/ 

secretion signal 
Location 

Mice 
3
/ 

rabbit 
Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7
 

Protection Ref. 

L. lactis 

NZ9000 
PppA T14 (14) PnisA, usp45 SS Cell wall 

3 weeks 

(young) and 6 

weeks (adult) 

Swiss Albino 

mice 

Day 0, 

14,28 
i.n. 108 

Serum BAL 

IgM, IgG, IgA 

T14(14),  

i.p. 108, AV3(3), 

AV6(6B), AV14(14), 

AV23(23F), i.n. 106 

T14, i.p. 60%–70%; 

passive protection 

40%–50%; i.n. reduce 

lung colonization of 

CPS type 3, 6B, 14, 

and 23F 

[72] 

L. lactis 

NZ9000 
PppA T14 (14) PnisA, usp45 SS Cell wall 

Male Swiss 

Albino mice 

Day 0, 1, 2, 

3, 4, boost 

at 2 weeks 

interval 

Oral, 108 

Serum, BAL, 

IF-4  IgM, IgG, 

IgA, 

Opsonophagocy

tosis , Spleen 

IL-4, IFN- 

T14(14) , AV3(3) , 

AV6(6B), AV14(14), 

AV23(23F), i.n. 106 

Reduce lung 

colonization of CPS 

type 3, 6B, 14, and 

23F 

[73] 

L. lactis 

NZ9000 
PppA T14 (14) PnisA, usp45 SS Cell wall 

3 weeks, Swiss 

albino mice 

Days 0, 14, 

28 
i.n. 108 

Serum, BAL 

IgA, IgG , BAL 

cytokine 

CPS type 3, type 14, 

i.n. 106 

With probotic, 

reduce lung and 

blood colonization 

of CPS type 3 and 

14 

[74] 

L. lactis 

NZ9000 
PppA T14 (14) PnisA, usp45 SS Cell wall 

3 weeks, Male 

Swiss albino 

mice 

Day 0, 1, 2, 

3, 4, boost 

at 2 weeks 

interval 

Oral 108 

Serum,IgM IgG; 

BAL, IgM, IgG, 

IgA; IF, IgA , 

Opsonophagocyt

osis , cytokines 

AV3(3), 

AV6(6B), AV14(14), 

AV23(23F), i.n. 106 

prevent bacteremia 

of CPS types 6B, 14, 

and 23F, decreased 

lung colonization of 

CPS type 3 

[75] 

Capsular polysaccharide antigen 

L. lactis 

MG1363 

Type 3 

capsular 

polysaccharide 

WU2 (3) 
natural 

promoter 

Mainly 

associated 

with cells 

BALB/c 
Day 0 and 

49 

i.p.  

3.5 × 106 

serum IgM, 

IgG, IgG1 and 

IgG3 

N.A. N.A. [76] 
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Table 1. Cont. 

Strain 
1
 Antigen 

Antigen  

source 
2
 

Promoter/ 

secretion signal 
Location 

Mice 
3
/ 

rabbit 
Schedule 

Route/ 

dose 
4
 

Immune 

responses 
5,6

 

Challenge 

Strain/Route/Dose 
7
 

Protection Ref. 

L. lactis NZ9000 

Type 14 

capsular 

polysacc

haride 

N.A. 

natural 

promoters for 

structure gens 

and PnisA for 

regulatory gene 

Mainly 

supernatant 
N.A. N.A. N.A. N.A. N.A. N.A. [77] 

Bacillus Calmette-Guérin 

BCG PspA Rx1 

Phsp60, natural 

SS signal, 

mtb19 

lipoprotein SS 

Cytoplasm, 

secreted, 

membrane 

associate 

BALB/c 

C3H/HeJ 

Day 0 and 

119 
i.p. 106 

Serum IgG, passive 

protection 

WU2 (3),  

i.p. 104 

Secret, membrane 

associated protein, 

50%–80% in C3H 

mice, 70%–100% 

in BALB/c mice, 

passive protection 

by serum:100% 

protect PspA clade 

1, 13, 24, 0% for 

clade 18 

[78] 

Viral vector 

Adenovirus 

PsaA 

PspA 

PdB 

D39 (2) PCMV N.A. BALB/C Day 0, 28, 56 
i.n.  

3 × 107 
IgG D39 (2), i.n. 107 

Combination of two 

or three rAds reduce 

lung colonization 

[79] 

1. All Salmonella strains are derived from the UK-1 strain, unless otherwise specified; see references for detailed genotypes of strains; 2. The capsular polysaccharide 

(CPS) type is shown in parenthesis; 3. Mice are 5–8 weeks old, unless otherwise specified; 4. i.g., intragastric; i.n., intranasal; i.p., intraperitoneal; i.t., intratracheal, i.v., 

intravenous; 5.BAL: bronchoalveolar lavage fluid; IL, intestinal lavage fluid; VL, vaginal lavage fluid; LL, lung lavage fluid; NL, nasal lavage fluid; 6. ELISPOT 

(Enzyme-linked immunosorbent spot );7. N.A.: not available. 
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2.1.1. S. typhimurium Delivers Single Protective Antigen  

Several antigens, PsaA, PspA, PspC and Ply, delivered by different recombinant attenuated  

S. typhimurium vectors were tested in mice (Table 1). These efforts were dedicated to screening 

optimal secreting signals [50], antigen coding regions [42], combinations of antigens [62,63], antigen 

delivery methods [50,62,63], Salmonella genotype for increased immunity and safety [57–60,80] and 

concept for testing new technology platforms for Salmonella vaccines [54,56]. 

2.1.1.1. Ply 

Ply has activities of cytotoxic/cytolytic and complement activation to facilitate the growth and 

invasion of S. pneumoniae in lungs during the early stage of infection [81]. It is conserved in both 

amino acid sequence and antigenicity among clinical isolates [32]. Paton et al. used a S. typhimurium 

C5 aroA strain to deliver a detoxified Ply-PdB (W433F) by intraperitoneal (i.p.) and oral routes [41]. 

Both immunization routes resulted in significant IgG responses against Ply. However, only the oral 

route resulted in IgA responses. Until now, there is no animal protection study with Ply delivered by 

Salmonella vectors.  

2.1.1.2. PsaA 

PsaA is a conserved surface protein present in all 90 S. pneumoniae CPS groups [82–84].  

PCR-restriction fragment length polymorphism analysis of 80 serotypes demonstrated the conservation 

of the gene using ten different enzymes throughout the entire length of the gene [84]. Monoclonal 

antibody studies showed that PsaA is present in 89 serotypes of S. pneumoniae [83]. S. typhimurium 

vaccine vector delivers PsaA in two ways, one as a prokaryotic synthesized antigen [42], another as a 

eukaryotic synthesized antigen by delivery of a DNA vaccine (see Section 2.1.3) [64]. Salmonella 

strain χ9241 encoding full-length PsaA induced significantly high titers of anti-PsaA IgG in serum and 

IgA in vaginal washes, nasal washes, and lung homogenates [42]. Although the gene was cloned from 

the CPS type 4 S. pneumoniae Tigr4 strain, Salmonella-PsaA vaccine reduced nasopharyngeal 

colonization by L82016 (type 6B CPS) and E134 (type 23 CPS) in two strains of mice, BALB/c 

(haplotype H2
d
) and C57BL/6 (haplotype H2

b
), independent of whether mice were immunized by the 

oral or intranasal (i.n.) route. However, immunization could not reduce lung colonization by 

pneumococcal strains A66.1 (type 3 CPS) and D39 (type 2 CPS). The Salmonella-PsaA vaccine 

conferred no protection against i.p. challenge with S. pneumoniae strain WU2 (type 3 CPS). The work 

also indicated that the full length of PsaA with its native conformation might be important to induce 

protective immunity, which is different from PspA, in which the α-helical segment is enough to induce 

protective immune responses [85].  

2.1.1.3. PspA 

Different from PsaA, PspA is a serologically variable surface protein. It is classified into three 

families and subdivided into six clades based on the C-terminal 100 amino acids of the α-helical  

region [86]. PspA family 1 is composed of clades 1 and 2, family 2 is composed of clades 3, 4 and 5. 

Family 1 and 2 PspA cover over 95% of clinical isolates typed to date [86,87]. Their distribution 
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remains unaltered following the introduction of the PCV7 [88]. Although PspA has variability, 

different PspAs are cross-protective against different S. pneumoniae strains expressing different CPSes and 

serologically divergent PspAs [89,90]. PspA, delivered by Salmonella vectors, was tested by different 

groups using either prokaryotic expression vectors or eukaryotic DNA vectors in mice (Table 1).  

In our group, Nayak et al. first reported that PspA Rx1 (aa 1–470) with its native secretion signal 

encoded on a high copy plasmid is delivered by a S. typhimurium SR-11 cya crp strain [43].  

This construction can induce significant anti-PspA IgG, IgA and IgM antibody titers in sera, vaginal 

washes and intestinal washes in both Salmonella-susceptible BALB/cJ mice (haplotype H2
d
) and 

Salmonella-resistant CBA/N xid mice (haplotype H2
k
) [43]. Enzyme-linked immunosorbent spot 

(ELISPOT) analyses showed anti-PspA IgG, IgM and IgA ASCs (antigen-secreting cells) in spleen, 

peripheral blood and Peyer’s patches. The anti-PspA IgG and IgA can also be detected in rabbit serum 

and vaginal washes following oral immunization with the RASV strain. Mice immunized with 

Salmonella-PspA were protected against i.p. challenge with the virulent WU2 strain. The passive 

protection experiments showed that the immune serum can protect mice against intravenous (i.v.) 

(CBA/N mice) and i.p. challenge (BALB/c mice) with the WU2 strain. This work set the foundation 

for the following studies [44,50]. 

Kang et al. replaced the native secretion signal for the PspA Rx1 with the -lactamase secretion 

signal [44]. The fusion protein encoded amino acids 3–257 of PspA on a medium copy plasmid with a 

reduced synthesis level of the Asd selection marker [44]. A new Salmonella SL1344 vaccine strain 

χ8501 (crp-28 asdA16), delivering this novel plasmid pYA3494, induced serum IgG and vaginal 

IgA against PspA and conferred protection against i.p. challenge with the WU2 strain. Notably, with 

only one-time immunization, the IgG response induced by χ8501(pYA3494) against PspA was higher 

than that against LPS or OMPs, both are indications of the immunogenic potential of the bacteria. This 

was also observed in a RASV strain with a regulated programmed lysis system vectoring the same bla 

SS-PspA fusion protein (Table 1) [46]. Further experiments showed that Salmonella vaccine strains 

delivering secretory proteins induced higher antibody responses than a strain delivering cytoplasmic 

PspA protein [45]. These data showed that antigen location in RASVs is important to induce antibody 

responses following oral immunization.  

Xin et al. further evaluated the effects of different Type II signal sequences (SS), including the  

N-terminal signal sequence of β-lactamase (bla SS), N- and C-terminal sequence of β-lactamase (bla 

SS+CT), ompA SS and phoA SS, fused with the α-helical domain of PspA Rx1 (encoding PspA Rx1 

amino acids 3–285) on the immune responses [50]. The results showed that the strain carrying plasmid 

pYA4088 with bla SS–PspA fusion yielded the largest amounts of secreted PspA than other signals. 

Mice immunized with this construction developed the highest serum IgG and vaginal IgA antibody 

levels, IL-4 and IFN- secretion. Immunized mice were protected against i.p. challenge with a virulent 

S. pneumoniae strain. Thus, the PspA production level in RASVs is important for the protection 

against S. pneumoniae challenge [50].  

The protection conferred by different Salmonella strains vectoring plasmid pYA4088 has  

been documented through a series of studies (Table 1). The plasmid was used to test our  

innovation technologies, regulated delayed in vivo antigen synthesis strategy, and regulated delayed 

attenuation [54,56,91], as well as in a phase I clinical trial [40]. It was used to further explore the 

effects of different mutations, such as lipid A and O antigen, on the safety and immunogenicity of 
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Salmonella vaccine vectors [51,53,55,57–60] (Table 1). These tested mutations either directly 

contribute towards the construction of S. typhimurium vaccine strain χ9558 and S. typhi vaccine strains 

χ9633, χ9639 and χ9640 with the same genotype or can be used to further improve S. typhimurium or 

S. typhi vaccine vectors [80].  

Strain χ9558 is the representative of a new generation of RASVs displaying wild-type 

characteristics at the time of immunization and becoming attenuated after colonization of host tissues. 

It exhibits an improved safety profile in adult mice, with a reduced ability to cause meningitis when 

administered orally, i.n., or i.p. [92]. It is totally safe and noninflammatory in newborn mice at doses 

equal to 10
7
 times the 50% lethal dose of the wild-type parent [91]. In adult mice, the strain χ9558, 

carrying a pspA expression plasmid, induces significantly higher levels of anti-PspA serum IgG and 

mucosal IgA antibodies than χ8133, a vaccine strain generated by a traditional way. Splenic 

lymphocytes from mice immunized with χ9558 produce significantly more IL-4 and IFN- secretion 

cells than that from mice immunized with χ8133, as well as increased levels of both Th1-specific 

cytokines (IL-2, IL-12, TNF-α) and Th2-specific cytokines (IL-4, IL-5, IL-10). Vaccination with 

χ9558 confers a greater degree of protection against S. pneumoniae challenge than that with χ8133 

(71% vs. 21% survival, p < 0.01) [49]. Strain 9558(pYA4088) is also immunogenic in infant and 

neonatal mice born from naïve or immunized mothers when administrated orally or i.n. and induce 

protective immunity against S. pneumoniae challenge [52]. 

Another plasmid pYA3802 with bla SS-PspA-CT (PspA aa 3–285) was used to probe the protective 

immune mechanisms of RASVs via the oral route. Park et al. proved that the sIgA is important to 

RASV-PspA-induced protection against intratracheal (i.t.) challenge using pIgR
−/−

 mice which lack the 

IgA secretion pathway [48]. Peyer’s patch plays an indispensable role for induction of PspA-specific 

IgA in both systemic and mucosal compartments. MyD88-mediated innate immunity is not essential 

for induction of Ag-specific B-cell responses induced by RASV synthesizing T-cell-dependent 

exogenous Ag, but it is critical for the protection against virulent S. pneumoniae challenge. Influenza 

infection followed by pneumococcal infection can cause severe pneumonia and this secondary 

pneumococcal pneumonia is the most common cause of influenza-associated death. Seo et al. tested 

whether the vaccine against S. pneumoniae could reduce the disease burden caused by seasonal 

epidemic and pandemic influenza [61]. Mice vaccinated orally with a RASV strain carrying plasmid 

pYA3802 resulted in attenuated pulmonary inflammation and effective long-term protection against 

secondary pneumococcal pneumonia after influenza infection [61]. Thus, oral RASV-PspA 

immunization is not only an efficacious way to protect against respiratory bacterial pathogens, but is 

also a promising approach against the impact of annual epidemic and pandemic influenza outbreaks. 

These results highlight the importance of immunizing both the young and elderly populations, which 

are more susceptible to infection by both S. pneumoniae and influenza, with a RASV against  

S. pneumoniae. 

2.1.1.4. PspC 

PspC is another candidate surface antigen [93,94]. It plays an important role in the virulence  

of S. pneumoniae and protects mice against pneumococcal challenge in carriage [95] and sepsis 

models [94,96]. Xin et al. evaluated PspC from S. pneumoniae strain L82015 fused with different 
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secretion signals as mentioned above [50]. The induced immune responses varied depending on the 

signal sequence used. Strains carrying the bla SS-PspC-CT fusions yielded the largest amounts of 

secreted PspC, induced the highest serum IgG and vaginal IgA titers, highest IL-4 and IFN- 

responses, and conferred the greatest protection against virulent S. pneumoniae i.p. challenge than 

other signal sequences fused to PspC. These results are consistent with the PspA results, which 

demonstrate that the antigen synthesis levels in live bacterial vectors are critical for induction of 

protective immune responses against S. pneumoniae. Using LAB as vectors delivering PsaA also 

confirmed this conclusion [67].  

2.1.2. S. typhimurium Delivers Multiple Antigens 

To develop an effective vaccine against S. pneumoniae, multiple antigens are preferred to set 

blockages during the stages that S. pneumoniae attaches to, invades into and spreads in the host. 

Salmonella has the capacities to deliver multiple antigens with various approaches: (1) as fusion 

antigens on one plasmid delivered by one strain [62]; (2) as individual antigens on one vector delivered 

by one strain; (3) as individual antigens on different vectors delivered by one strain [63]; and (4) as a 

mixture of multiple strains, each specifying individual antigens [63]. These approaches require 

optimization of each component.  

We first tested if a RASV strain delivering one vector encoding PspA fusions could induce 

protections against multiple S. pneumoniae strains [62]. PspA is grouped into three families due to its 

diversity [86]. It is necessary to use PspAs from different families to elicit effective cross-protective 

coverage. Previously, we described the use of PspA from the Rx1 strain, which is from family 1. We 

chose another PspA from strain EF5668 from family 2. We also included the proline-rich domain of 

EF5668, which has been shown to encode protective epitopes that cross-protect against a variety  

of S. pneumoniae strains [94,97]. We evaluated fusion constructions consisting of PspA Rx1 and 

EF5668 with different orders in one vector to screen the best combination for an anti-pneumococcal 

vaccine. Both fusions elicited serum IgG and mucosal IgA to both families of PspA and strongly 

augmented percentage of cells with surface-bounded C3 on strains expressing family 1 and 2 PspAs. 

One of the fusion constructions, Rx1-EF5668, extended and enhanced protection against multiple 

strains of S. pneumoniae by i.p., i.v., or i.n. challenge [62]. This fusion construction of antigens from 

different families represents an important strategy for S. pneumoniae vaccine development.  

We then evaluated the way to deliver multiple antigen genes in separate vectors in the case that a 

fusion construct of multiple protective antigens is not the optimal choice when a multivalent vaccine is 

desired. The major challenge to achieve this goal is that the recombinant vaccine strain should stably 

maintain two or more expression vectors simultaneously, each carrying a unique selectable marker. To 

facilitate this strategy, we used a DadB
+
 vector to deliver the pspC gene, together with an Asd

+
 

plasmid carrying the pspA gene to form a dual-plasmid system, which could deliver multiple antigens 

in a vaccine strain with alr dadB and asd mutations [63]. The DadB
+
 plasmids are compatible 

with Asd
+
 vectors in a single vaccine strain without comprising the synthesis of individual antigens. 

Both plasmids are stable over 50 generations of growth, suggesting that antigen synthesis and delivery 

in vivo are not compromised in this system [63]. To further reduce the possible recombination between 

plasmids, a recF mutation was introduced into strains [63]. The Salmonella vaccine strain carrying 
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both PspA and PspC by Asd
+
 and DadB

+
 vectors, respectively, induced higher serum and secretory 

antibody responses than the strain delivering a single antigen or a mixture of two vaccine strains each 

specifying one protective antigen and offered superior protection against i.p., i.v., or i.n. challenge with 

different serotypes of S. pneumoniae [63]. The DadB
+
-Asd

+
 dual-plasmid system represents another 

important tool to develop multivalent live recombinant vaccines [63]. 

2.1.3. S. typhimurium Delivers DNA Vaccine 

DNA vaccines encoding psaA and pspA have been shown to be effective in inducing antibody 

responses and Th1 immunity [98], which are important against pneumococcal infection [98–100]. 

However, preparation and characterization of DNA vaccines need complex procedures [101]. These 

procedures increase the cost of final products. DNA vaccines also induce poor mucosal responses in 

the nasopharynx. Zhang et al. used Salmonella to deliver multi-antigen-encoding DNA vaccines 

encoding psaA and pspA genes [64]. They modified the DNA vector by replacing the selection marker 

from ampicillin to Asd to better maintain the vector and reduce the safety concern due to the use of 

antibiotic selection markers. They also eliminated the neomycin-resistance selection marker for the 

same concern. The modified vector was used to clone psaA and pspA genes. Salmonella delivering 

DNA vaccines encoding pspA or psaA, either alone or mixed together, significantly reduced  

S. pneumoniae colonization in nasal washes compared with control. Mice orally immunized with RASV 

carrying multi-antigen DNA vaccines significantly reduced nasal colonization by S. pneumoniae strain 

D39 compared to immunization with DNA vaccines administered intramuscularly (i.m.). These 

findings are related to the high level of sIgA in the nasal washer, as well as systemic IgG antibodies 

and a shift toward a Th1-mediated immune response [64]. 

One of the main problems with DNA vaccines delivered by live Salmonella vaccines is that the 

DNA cannot effectively contact with the cytosol and then the nucleus of eukaryotic cells to initiate 

transcription and translation of encoded antigen genes. Besides those described above, other 

modifications could be used to increase the efficiency of DNA vectors delivered by Salmonella. 

Generally, there are two barriers for Salmonella delivering DNA vaccines into the cytosol. The first is 

that Salmonella resides in Salmonella containing vacuole (SCV) after entering the cell, which isolates 

Salmonella from other cytosolic components. This problem can be conquered by using a strain with 

the sifA mutation [102]. SifA is critical to maintain the SCV. Mutating sifA disrupts the vacuoles [103]. 

The second problem is the cell membrane/wall of Salmonella. This can be conquered by using a 

regulated delayed lysis in vivo strategy [46]. This strategy enables effective lysis of bacteria to release 

the bacterial cell components, including DNA vaccines. Combining these two approaches has led to 

promising results for a influenza vaccine [102].  

2.1.4. S. typhi Clinical Trial 

Due to the lack of an animal model, progress to develop safe S. typhi vaccines for human use is 

slow. Currently, a clinical trial is still the best measurement of safety and effectiveness of S. typhi 

vaccines or vaccine vectors. Our intensive work carried out in mice lead to the development of a  

S. typhimurium strain χ9558 with a balance between safety and immunogenicity in adult, neonatal and 

infant mice [47,49,52,54,56,91,92]. Based on the results, we constructed three recombinant attenuated 
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S. typhi vaccine vectors, χ9633, χ9639, χ9640, with essentially the same genotype as χ9558 carrying 

plasmid pYA4088 encoding the α-helical fragment of PspA Rx1 (aa 3–285) [65], but with an 

additional mutation eliminating the immunosuppressive capsular Vi antigen [65,66]. The vectors were 

constructed to test the hypothesis that the immunogenicity of live Salmonella vaccines is, at least in 

part, on its RpoS status. All three S. typhi vaccine strains are similar to the licensed live attenuated 

typhoid vaccine Ty21a in their abilities to survive in human blood and human monocytes. They are 

more sensitive to complement and less able to survive and persist in sewage and surface water than 

their wild-type counterparts [65]. Adult, infant and neonatal mice immunized with these vectors 

develop immune responses against PspA and Salmonella antigens. The percentages of protection 

against S. pneumoniae challenge in adult mice immunized with these vectors are between 50 and  

81.3% [65,66]. In the pre-clinical setting, they achieved the desired balance between safety and 

immunogenicity in adult, neonatal and infant mice [65,66]. These strains were tested in a dose-escalation 

clinical trial from 10
7
 to 10

10
 CFU to further evaluate the safety and immunogenicity and determine 

which of the three S. typhi vectors has the optimal safety and immunogenicity profile in human  

hosts [40]. The results proved that the vaccines are safe and well tolerated. Even in the highest dose 

group, no subject experienced severe reactions or serious adverse events. The vaccine is also very safe 

to the environment without any shedding of viable vaccine cells in stools. This is a very important 

feature because bacteremia and shedding are not acceptable for the development of a vaccine for use in 

neonates/infants and for use in immunocompromised hosts, especially persons infected with HIV. 

However, only a limited number of subjects had increased levels of anti-PspA IgA. The inability to 

stimulate significant immune responses to PspA is not clear. It may relate to the high pre-immunization 

antibody titers against S. typhi and PspA likely due to previous Salmonella infection and pneumococcal 

vaccination, possible over-attenuation or limited in vivo slow growth of the attenuated S. typhi strains. 

In this last regard, the use of the regulated delayed synthesis of PspA in vivo might have been due to too 

much repression and insufficient cell divisions of the vaccine strains to adequately reduce repressor 

concentration by cell division. Based on the trial results, the vaccine strains have been further modified 

to increase protective antigen production and delivery to increase immune responses. An improved 

version of S. typhi based on the most promising vaccine strain χ9640 carrying vectors encoding 

multiple protective pneumococcal antigens is being developed and evaluated.  

2.1.5. Issues  

Human-restricted S. typhi is the choice for oral human vaccines because it can effectively invade 

mucosal tissues and enter systemic sites, leading to strong mucosal, humoral and cellular immune 

responses. S. typhimurium only causes self-limited gastroenteritis in human. It is less capable to invade 

beyond the gut mucosa in healthy humans and less able to stimulate long-lasting immunity [104]. Thus, 

it is not actively pursued as an oral human vaccine [105]. To evaluate the attenuation and 

immunogenicity of S. typhi vaccine strains, infection of mice with S. typhimurium is used as an 

experimental model because S. typhimurium infection in mice results in typhoid-like diseases in mice, 

which likens S. typhi infection in human. Although Salmonella shows promise as a vaccine vector and 

has been extensively tested, there is still no licensed RASV. In addition to the issue of immunogenicity, 

the key concern associated with RASVs is safety, especially in newborns/neonates, the elderly and 
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those who are immunocompromised or have chronic diseases. Clinical results demonstrated that our 

RASVs χ9633, χ9639 and χ9640 are safe and non-shedding, but less immunogenic [40]. This is 

different from what we observed in mice with S. typhimurium as a model. Our S. typhimurium vaccine 

vector χ9558 carrying plasmid pYA4088 induced significant anti-PspA IgG/IgA antibody titers in 

mice, S. typhi vaccine strains χ9633, χ9639 and χ9640 with the same genotype carrying the same 

plasmid did not induce significant anti-PspA IgG/IgA responses in the clinical trial. The next step is to 

increase their immunogenicity while maintaining safety. Attaining the desired balance between safety 

and immunogenicity is difficult, especially for S. typhi vaccines, which lack a relevant animal model. 

To develop a S. typhi vaccine, evaluation of S. typhimurium strains of similar genotype and phenotype 

in mice is used as a close mimic of S. typhi in humans. Considering the differences between the human 

and mouse mucosal lymphoid system [106,107], several humanized immune system mouse models 

displaying classical manifestations of human typhoid fever including meningitis, liver pathology and 

mortality were developed [108–111]. However, they still have problems with variations in ability of  

S. typhi to attach to, invade into, survive intracellularly and distribute into internal effector lymphoid 

tissues. These disadvantages and the high cost of these humanized mice still limit their current use. 

Further research and improvement of these humanized mouse models should ultimately aid in 

developing a safe and effective S. typhi vaccine vectors for humans [108]. 

Currently, the mouse is still the most cost-effective model for testing safety and efficacy of RASVs. 

Most studies with S. typhi RASVs used adult mice, but a few studies have adopted using newborns and 

neonates in developing pneumococcal vaccines [52,66,91] (Table 1). We still lack safety and 

efficiency data in aged or in malnourished mice. Baby mice and aged mice have different T- and  

B-cell responses  that affect induction of optimal immune responses to vaccines [112–122]. In 

newborn/neonate mice, the presence of maternal antibody enhanced immune responses and protections 

against S. pneumoniae challenge [52,66]. These responses include increased IgG, IgA and  

IL-4-secreting levels in mice immunized with S. typhimurium vaccine and enhance levels of mucosal 

IgA, IFN-γ, and IL-4 in mice immunized with S. typhi vaccines [52,66]. All these factors affect the 

performance of the vaccines. Considering that the newborn/neonatal and aged people are the main 

high-risk groups, more efforts should be put into using young and aged mice to evaluate the candidate 

RASV-S. pneumoniae vaccines. We may need age-specific RASVs for different age groups. 

2.2. LAB Deliver Pneumococcal Antigens 

2.2.1. Benefit of LAB: Safety, Adjuvant and Prevention of S. pneumoniae 

LAB are a group of Gram-positive bacteria that produce a common end product—lactic acid—from 

the fermentation of sugars [123]. These non-sporulating bacteria include species of Lactobacillus, 

Lactococcus, Leuconostoc, Pediococcus and Streptococcus [123]. Due to limited biosynthetic abilities 

for pre-formed amino acids, B vitamins, purine and pyrimidine, their habitats are restricted to the 

place, such as intestine, where the required compounds are abundant [123]. They have positive effects 

on human and animal health [124,125] and were widely used for food without causing any known 

health problem for thousands of years. This status is considered GRAS (generally recognized as safe).  
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LAB can be used as adjuvants for their immunostimulatory properties [126–130]. This GRAS status 

of LAB in adults and infants and their abilities to stimulate immune responses make them very 

attractive candidates for the development of mucosal vaccines [131]. Most LAB induce Th1 type 

responses, some LAB can induce different arms of the immune response [132], like L. reuteri induces 

Th2 responses and L. rhamnosus induces Th17 responses [126,129]. Lactobacillus and Lactococcus 

are the main vaccine vehicles to delivery heterologous proteins or DNA to mucosal tissues (see 

reviews [123,133–135]).  

Live LAB have been shown to be effective adjuvants to improve the immune responses against 

respiratory pathogens [75,136]. In vitro, L. rhamnosus can inhibit S. pneumoniae adherence to human 

epithelial cells [137]. Ingestion of LAB reduces nasal colonization by S. pneumoniae in humans [138]. 

Oral administration of L. lactis in mice can improve clearance of pathogens from the lungs, reduce 

lung injuries, and increase survival of mice against S. pneumoniae infection [139,140]. The mechanism 

is related to an up-regulation of the respiratory innate and specific immune responses, like improved 

production of TNF-α in bronchoalveolar lavage (BAL) fluid, enhanced recruitment of neutrophils into 

the alveolar spaces, increased activation of BAL phagocytes, and improved production of BAL IL-4 

and IL-10 [141]. These responses stimulate the IgA cycle, increase IgA
+
 cells in the intestine and 

bronchus, and increase BAL anti-pneumococcal IgA and IgG levels [141]. Nasal administration of  

L. fermentum in mice can increase protective responses against S. pneumoniae challenge by 

stimulation of neutrophil activity or by the increase of the number of activated macrophages and 

lymphocyte populations in the tracheal lamina propria [142,143]. Nasal administration of L. lactis 

improves local and systemic immune responses against S. pneumoniae with reduced nasal 

colonization, increased clearance rate of S. pneumoniae from lungs, reduced dissemination of 

pneumococci into blood and reduced damage to respiratory tissues, which is also related to the  

up-regulation of the innate and adaptive immune responses in both local and systemic compartments as 

well as different cytokine responses [143,144]. These responses increase the pulmonary lymphocyte 

population, anti-pneumococcal IgA and IgG in bronchoalveolar lavage (BAL) and serum, and 

phagocyte activation in lungs, blood and bone marrow [143]. Increasing resistance to pneumococcal 

respiratory infection was shown in both normal [140] and malnourished mice fed with L. casei [139]. 

However, the ability to induce these responses is varied among LAB species. Thus, different LAB 

strains are evaluated as vaccines or vaccine vectors delivering pneumococcal antigens against  

S. pneumoniae [67,76,131,145,146]. 

2.2.2. LAB System: Promoters and Strains 

Several pneumococcal candidate antigens, PsaA, PspA, PspC and PppA delivered by LAB, most in 

L. lactis NZ9000 or its parent MG1363, have been tested against S. pneumoniae challenge in animal 

models. The strain NZ9000 is derived from the strain MG1363 with the nisRK genes integrated into 

the pepN gene, which facilitate the use of the NIsin-Controlled gene Expression system-NICE [147,148]. 

Two strategies were adopted to develop LAB vaccines against S. pneumoniae: recombinant lactic acid 

bacterial vectors and non-genetically modified Gram-positive enhancer matrix (GEM) particles. We 

will focus on the live vaccine strategy. The GEM approach was discussed elsewhere [149–152]. 
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To induce immune responses, especially antibody responses, higher antigen production is preferred. 

Thus strong promoters are adopted. Although several promoters were used in LAB [133], two 

promoters were used more in LAB-S. pneumoniae vaccines. One is the lactococcal promoter P1 and 

another is the nisin-regulated promoter [69,71,153]. The P1 promoter, which was used to express 

psaA, pspA and pspC [69,71,153], is a constitutive promoter. It is a medium strong promoter from the 

L. lactis genome [154]. However, continuous high-level production of heterologous proteins could 

result in intracellular accumulation, aggregation and degradation of proteins in the cytoplasm and lead 

to deleterious effects to the cells [134]. To solve this problem, two methods were adopted. One way 

was to use a system that can regulate protein synthesis. The most widely used system is the NICE system.  

The nisin-regulated promoter system has several advantages. The transcription of the promoter Pnis 

can be efficiently controlled by the extracellular concentration of the antimicrobial peptide nisin 

through the two-component regulatory system, sensor NisK and regulator NisR [148,155,156], which 

provides a simple way to control gene expression. The benefits of this system are: the small size of the 

promoter, which can be trimmed down to less than 50 bp; hyper-production of protein, which can 

reach up to 50% of the total protein; tightly controlled gene expression with undetectable protein 

synthesis without induction; very high dynamic induction range to 1,000-fold dependent on the 

concentration of nisin and can be used in a variety of LAB [147,157]. For maximum induction, the 

nisin concentration is 10 ng/mL (3 nM), which is the MIC (minimum inhibitory concentration) value 

for nisin [148]. As an antimicrobial peptide, nisin can repress the growth of Gram-positive bacteria and 

is regarded as a food-grade preserver. In strains, like L. lactis F17847, with the NICE system, the 

induction of antigen synthesis with nisin before immunization is necessary. Other strains, like L. lactis 

NZ9700, can produce nisin to omit this process. However, it also means that the NICE system is 

converted into a non-regulated system. Basically, the NICE system is a system that regulates protein 

synthesis in vitro, not in vivo.  

Another way to reduce the metabolic burden on the LAB vector is to secret the protein into the 

periplasm, onto the cell wall or into the supernatant. The secreted protein can directly interact with the 

environment. Several protein secretion systems in LAB have been discussed [133,134,158]. Currently, 

the Usp45 signal was most frequently adopted. Usp45 is the most abundant protein secreted by  

L. lactis. The secretion of Usp45 is through the Sec pathway. Adding negative charge peptides at the 

N-terminal part of the mature moiety will improve the translocation efficiency across the cytoplasmic 

membrane [159,160]. Thus, this secretion signal is widely used to deliver heterologous antigens [69,153]. 

However, some researchers do not use this secretion protein. The reason may lie in the fact that location 

of the protective antigen protein is not important for induction of the immune response by LAB. Thus, 

for LAB-delivered antigens, the amount of antigen produced is more important than the location of the 

antigen, especially when delivered by mucosal routes, i.n., intragastric, and oral routes [161–163]. This 

is in contrast to Salmonella, in which periplasmic secreted antigen induced higher antibody responses 

than cytoplasmic antigen [44]. Although the surface synthesis protein may increase its presentation to 

the immune cells, it is also prone to be proteolytic degraded extracellularly or denatured by the acid or 

bile in the gastrointestinal tract in oral vaccinations [158]. 

Recombinant LAB delivering pneumococcal antigens is mainly by the i.n. route. LAB strains were 

used to deliver PsaA, PspA and PspC by nasal immunization [67,69,153] and PppA by oral route [73]. 
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In these reports, the plasmid-based antigen gene expression system was used. Until now, there are no 

reports using chromosomal-based antigen gene expression system in LAB for S. pneumoniae vaccines.  

2.2.3. Antigens 

2.2.3.1. PsaA 

Mice intranasally immunized with some species of Lactobacillus synthesizing PsaA developed 

systemic anti-PsaA IgG and IgA responses and displayed reduced pneumococcal colonization upon 

nasal challenge [67]. The immune responses depended on the amount of PsaA production, which vary 

in Lactobacillus from 20 to 250 ng/10
9
 cells [67]. L. plantarum and L. helveticus induce significant 

IgA responses in nasal and bronchial washes and IgG in serum as well as reduced nasal colonization of  

S. pneumoniae 6B compared with the saline control group. However, when compared with strains 

carrying the control vector, only the recombinant L. helveticus led to a significant reduction of 

pneumococcal nasal colonization. Although L. casei does not generate significant antibody responses, 

it results in reduced colonization compared with the saline group, but not the vector control. These 

results reflect that LAB strains have different adjuvant properties. The three LAB strains synthesize 

similar amounts of PsaA (150–250 ng/10
9
 cells). They persist in the mice nasopharynx after 

inoculation for three days except L. casei [67]. Short persistence with the low level of antigen 

production is not enough for the stimulation of antibody responses in nasal and systemic sites. Thus, 

using LAB for a vaccine needs to consider the protein synthesis levels, persistence and intrinsic 

adjuvant properties of different LAB [67].  

2.2.3.2. PspA 

L. casei and L. lactis were used to deliver PspAs. L. casei delivered PspAs from clades 1 and 5 under 

the control of the constitutive P1 promoter. The PspA synthesized retains in the cytosol [69,70]. Mice 

intranasally immunized with L. casei-PspA1/5 develop significant anti-PspA IgG, but no IgA in nasal 

washes, saliva or vaginal washes [69,70]. Previous experiments showed that PspA antigen is not 

effective for inducing IgA without adjuvant [164,165], thus L. casei seems not to display adequate 

adjuvant activity [69]. The anti-PspA1 antibody can effectively bind to PspA clade 1 and clade 2 and 

induce different amounts of complement deposition on the pneumococcal surface depending on the 

serotypes and PspA clades of S. pneumoniae. Mice immunized with L. casei-PspA1 show increased 

survival times when compared to mice immunized with saline against lethal i.p. pneumococcal 

challenge [69]. However, the percentage of protection against i.p. challenge was only 33.3% although 

the mice were immunized six times [69]. L. casei-PspA1 bacteria can be recovered up to five days 

after the i.n. inoculation with 10
9
 CFU on two consecutive days. The presence of PspA antigen does 

not affect the ability of strain colonization in the nasal pharynx [69]. Another construction with  

L. casei delivering PspA5 conferred protection against i.n. pneumococcal challenges in mice. This was 

accompanied by the increased secretion of IFN- by lung cells against invasive pneumococcal 

challenge [70].  

Intranasal immunization with L. lactis with intracellularly produced PspA using the NICE system 

induced not only serum anti-PspA IgG, but also lung lavage anti-PspA IgA [68]. This result further 
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strengthens the conclusion that LAB strains have different adjuvant activities. Immunization with  

L. lactis-PspA significantly protected mice against i.p. challenge with the S. pneumoniae TIGR4 strain 

than protein administered intranasally or control groups did. The protection induced by L. lactis-PspA 

is similar to that induced by PspA/Alum administered by the subcutaneous (s.c) route. This was 

attributed to the Th1-mediated immune responses induced. In an intranasal challenge model, L. lactis-PspA 

afforded the highest protection among the levels elicited with purified PspA administrated i.n. or s.c. 

with adjuvant or in control groups [68]. About 20% of control mice survive the challenge suggesting 

that L. lactis may contribute to non-specific host immunity. 

2.2.3.3. PspC 

Ferreira et al. reported that L. casei-PspC (from CPS type 6B) without an SS cannot confer 

significant protection against i.n. pneumococcal challenge although it induces IFN- secretion in lung 

cells and IL-17 secretion in both lung and spleen cells [70]. This may relate to the low homology of the 

PspC amino acid sequence between the vaccine (CPS type 6B) and the challenge strain (CPS type 3). 

Further, Hernani et al. tested L. casei-PspC with or without an SS using different immunization 

protocols, intranasal, sublingual and primer-boosting with PspC protein. However, none of these 

protocols induced significant levels of anti-PspC antibodies in vaginal or nasal washes and serum 

before challenge [71]. Despite these results, nasal immunization of mice with L. casei-PspC without a 

SS significantly reduced pneumococcal colonization by strain 0603 with an increase of anti-PspC IgA 

in the nasopharynx five days after challenge [71]. L. casei carrying cell-wall-associated PspC only 

marginally reduced pneumococcal colonization after challenge. Thus, the reduced colonization of  

S. pneumoniae may be attributed to the non-specific adjuvanticity of L. casei. These results show that 

protection is only achieved by using a PspC with high identity at the N-terminal region to the PspC 

expressed by the L. casei vaccine strain. Considering the polymorphism of PspC [94], using different 

PspC molecular types to cover more pneumococcal strains will be necessary [71].  

2.2.3.4. PppA 

An antigenically conserved antigen, PppA [166], delivered by L. lactis NZ9000 on the cell  

surface, was tested as live or inactive vaccines using intranasal and oral routes in adult and young  

mice [72–75]. Nasal and oral immunizations of L. lactis-PppA induced anti-PppA IgM, IgG and IgA 

responses in serum and bronchoalveolar lavage fluid in both adult and young mice. The responses are 

significantly higher in young mice than in adult mice. The challenge results showed that intranasal 

immunization with L. lactis-PppA could confer protection against homologous S. pneumoniae i.p. 

challenge by either active immunization or passively by antibody from immunized mice and increased 

resistance to respiratory infection with different pneumococcal serotypes (3, 6B, 14, 23F) in young and 

adult mice [72–75]. Oral immunization with L. lactis-PppA provided cross-protective immunity 

against four CPS types of pneumococcal strains with reduced lung bacterial counts [73]. Passive 

protection experiments proved that antibody is critical for protection [72]. There are no antibodies 

against L. lactis found in the serum or the BAL fluid in adult and young mice immunized with the 

recombinant strain. Thus, the host immune responses are directed against the protein expressed by  



Vaccines 2014, 2 71 

 

 

L. lactis, not the vector [72]. These researches also show that vaccination at an early age of mice with 

the L. lactis-PppA strain is more effective [72].  

2.2.3.5. CPS Antigens 

LAB were also used to deliver type 3 or type 14 CPS with the eps natural promoter to express the 

eps genes or the nisin-induced promoter to express the regulatory genes, respectively [76,77]. The CPS 

synthesized in LAB either associated with the cells (type 3 CPS) [76] or in the supernatant (type 14 

CPS) [77]. The mice immunized with L. lactis expressing 0.5 μg of type 3 CPS or 0.5 μg of purified 

type 3 CPS from pneumococcus elicited similar titers of T-cell-independent anti-CPS IgM and IgG 

antibodies in the serum [76]. The LAB did not affect the T-cell-independent nature of the anti-CPS 

antibody responses [76]. Thus, L. lactis is a potential host for capsular synthesis. However, there is no 

animal protection study with CPS delivered by LAB vectors.  

2.2.4. Issues  

2.2.4.1. Multi-dose and Immunization Route 

Though LAB are normally ingested orally, most work with LAB delivering S. pneumoniae  

antigens used i.n. immunization (Table 1). One of the reasons is that LAB are non-invasive bacteria, 

which implies that antigen delivery to antigen-presenting cells is not as effective as when using 

invasive attenuated pathogenic bacteria. Intranasal vaccination with recombinant LAB can elicit 

protective immunity in both mucosal and the systemic compartments [167,168]. To avoid mucosal 

tolerance, administration of high dose (10
8
) of LAB for consecutive five days is preferred to induce 

IgA responses [73,141]. Most reports use three or more immunizations (Table 1). This increases the 

costs of the vaccines. Though LAB have been tested in clinical trials as food supplements/adjuvants 

for several vaccines, such as rotavirus vaccine, oral polio virus vaccine, influenza vaccine and oral 

cholera vaccine [169–171], it is unknown if the necessary doses to use for humans will be feasible and 

cost effective [131]. Also, for the nisin induction system, pre-induction and extensive washing to 

remove nisin are required before immunization. Thus, the complex immunization procedure should be 

addressed with the development of a new protein synthesis system and better procedures for preparing 

the LAB vaccines.  

Another issue related to the LAB vaccine is the safety concerns of i.n. immunization. I.n. 

immunization of mice with recombinant LAB induces excellent immune responses to the expressed 

antigens. Since the cribriform plate is a thin, well-hidden bone in the nasal cavity with numerous 

perforations for allowing passage of the olfactory nerves to the brain, there exists a potential route for 

bacteria to enter the cranial cavity if administered by i.n. route. Immunization with Salmonella by i.n. 

route results in brain colonization if the bacteria is not fully attenuated [92]. The GRAS feature of 

LAB is mainly based on the oral route. Thus, it would be helpful to check whether there is a problem 

using i.n. immunization with LAB-vectored vaccines.  
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2.2.4.2. Antibiotic Selection 

Another disadvantage with the LAB-S. pneumoniae vaccines is the use of antibiotic-resistance 

markers, which are considered unacceptable in live vaccines due to the potential for antibiotics in the 

final product and the possible contamination of the environment with recombinant drug-resistant 

bacterial strains. The regulatory agencies also prohibit the usage of antibiotics in vaccine formula. Two 

antibiotics are commonly used in the LAB vectors. The first one is erythromycin. Erythromycin can 

inhibit the protein synthesis by binding the 50s subunit of the bacterial 70s rRNA complex. Most 

plasmids used in LAB vaccines have an erythromycin-resistance selection marker. This antibiotic is 

necessary to select the recombinant plasmid. LAB strains with recombinant plasmid are grown with 

erythromycin prior to immunization to maintain the plasmid. Adding the antibiotics not only increases 

the costs of the final product, but also raises the concern about the plasmid stability. The most used 

pTREX vectors have poor segregational stability in the absence of antibiotic selection [172]. LAB 

could lose the recombinant plasmid in vivo and lead to compromised immune responses. To conquer 

this problem, the use of the balanced-lethal strategy could be attempted with LAB vaccines. Another is 

the nisin. Nisin is a polycyclic lantibiotic produced by L. lactis to eliminate other competing  

Gram-positive bacteria. It is commonly used as a safe food preservative against bacteria, yeast, and 

molds. Nisin can bind to lipid, dissipate the membrane potential, induce efflux of cytoplasmic 

components and inhibit bacterial cell growth [173]. It is used as the inducer for LAB strains with the 

NICE regulatory system. Induction with nisin and extensive washing is thus required for synthesis of 

the antigens before inoculation into the immunized hosts [72], which adds complexity to the 

production process and increases the costs. Both erythromycin and nisin are broad-spectrum antibiotics 

against many bacteria. Although nisin is not a big problem for the LAB vaccines, the use of 

erythromycin raises concerns that this antibiotic may interfere with the normal flora in the human 

intestinal tract or nasopharynx. It was reported that the erythromycin-resistance gene can easily 

transfer from LAB to Listeria spp. at a frequency as high as 10
–4

 [174]. Nisin can also exert some 

immunomodulatory effects at high concentration [175]. Therefore, LAB vaccine with biocontainment 

properties to prevent their spreading of heterologous DNA is necessary. To conquer this problem, 

auxotrophic bacterial strains complemented by a wild-type gene in a cloning or expression vector was 

developed, such as the purine, threonine, pyrimidine, thymidine and alanine auxotroph [176–180]. 

Although these balanced-lethal systems were developed for the food industry, and their application in 

vaccine research have not been reported, they paved the way for their application in vaccine research.  

2.2.4.3. Selection of Different LAB 

Salmonella need to be attenuated to achieve a balance between safety and immunogenicity for 

vaccine application. It is not necessary to generate and evaluate mutations in LAB due to their GRAS 

feature. However, LAB have different abilities to modulate the immune system, the careful selection 

of LAB should be noted as a key factor that influences the results. Different LAB strains induce 

distinct cytokine profiles and exert different effects on the immune system [126,181–183]. 

Immunostimulating properties of LAB have been proved to be strain-, dose-, and even growth-phase-

dependent [139,140,183,184]. Only L. casei CRI 431, L. lactis NZ9000 and L. rhamnosus CRL1505 
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have proved to be able to increase the resistance of mice to challenge with respiratory pathogens. A 

human study showed that L. rhamnosus GG has different immune modulation functions [185]. It 

stimulates immune functions in healthy persons, but down-regulated an inflammatory response in 

allergic persons. An oral S. typhi vaccine administrated with L. rhamnosus GG induced higher numbers 

of IgA-secreting cells, while with L. lactis induced higher numbers of CR3 receptor expression on 

neutrophils [183]. L. lactis-PspA can induce effective IgA responses, but L. casei-PspA is poor for 

induction of an IgA response [68]. Although the PsaA is synthesized on the surface of different LAB, 

including L. lactis, L. casei, L. plantarum and L. helveticus (Table 1), only lactobacilli lead to a 

decreased pneumococcal recovery from the nasopharynx upon a colonization challenge, but not  

L. lactis due to its low level of PsaA synthesis, which is not enough for inducing adequate humoral 

responses [67]. Thus, the selection of LAB should consider the intrinsic properties and the appropriate 

doses of each LAB. Optimum dose, frequency and duration of treatment for using LAB vaccines 

should be carefully compared and demonstrated through rigorously designed studies.  

2.3. BCG Delivers PspA  

Bacillus Calmette-Guérin (BCG), a live attenuated strain of Mycobacterium bovis, was used as an 

effective vaccine for M. tuberculosis. It has been given to 3 billion people worldwide since 1948, with 

a very low incidence of serious complications, even for young children and infants [186]. Besides the 

common benefits as a bacterial vector [186], it has the immunostimulatory properties that can augment 

the immune responses against routine immunizations in infant [187]. This live attenuated vaccine 

establishes a persistent infection and induces both cellular and humoral immune responses. Currently, 

BCG is shown effective in preventing the several forms of TB in toddlers, which may be a benefit for 

delivering pneumococcal antigen for newborns and infants since they are the main target population to 

prevent S. pneumoniae infections. BCG was used to deliver PspA antigen in the cytoplasm, associated 

with cell membrane or in a secreted form. Although the peak antibody titers elicited by BCG 

expression pspA with or without a secretion signal did not differ markedly, protective responses were 

observed only in mice immunized with BCG expressing pspA with its native signal peptide, which 

leads to the exportation of PspA, or as a fusion with the Mtb19 lipoprotein signal peptide, which 

results in it being anchored to the cell membrane. These results were observed in both BALB/c and 

C3H/HeJ mice using an i.p. challenge model [78]. The antiserum can also passively protect CBA/B 

(Xid) mice, which are highly sensitive to S. pneumoniae challenge [188], against other S. pneumoniae 

virulent strains exhibiting heterologous PspAs and CPS types [78]. Thus, the BCG-PspA is another 

potential live vaccine for inducing humoral immune responses against pneumococcal infections. 

However, the induction of cellular immune responses were not addressed in this report. Recently, 

progress in rBCG research may pave the road for further use of BCG as an effective vaccine vector for 

S. pneumoniae [189].  

3. Viral Vector Delivers Pneumococcal Antigens 

There are a few reports using viral vectors to deliver pneumococcal antigens. Arévalo et al. used 

replication-defective recombinant adenoviruses Ad5 (rAds) to deliver PspA, PsaA and PdB, either 

individual or combined [79]. rAds can direct high levels of viral gene expression in mammalian cells 
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and induce strong immune responses [190]. The rAds used here cannot replicate in the host due to the 

lack of the packaging elements [191]. The results show that mice intranasally immunized with rAds 

carrying each of the three antigens develop robust antigen-specific serum IgG responses. Mice 

immunized with rAds carrying three antigens develop slightly reduced antibody responses against 

PspA, PdB and PsaA compared with the mice immunized with rAd carrying the individual antigen at 6 

and 10 weeks. Two-dose vaccination induced stronger antibody responses, but cannot increase 

them further by a third boosting. rAd/PdB alone does not reduce the lung colonization carriage. 

Both rAd/PdB+rAd/PsaA or rAd/PdB+rAd/PspA can lead to reduced lung colonization of  

S. pneumoniae. rAd/PdB+rAd/PspA+ rAd/PsaA is most effective in reducing the bacterial load in the 

lung after challenge.  

4. Conclusions  

Protein-based vaccines are the future for S. pneumoniae vaccine research [26]. However, protein 

vaccines have problems of high costs related to their complex manufacturing process.  

Iyer et al. reported that candidate antigens, such as PsaA, Stkp, PcsB, show different requirements for 

stability when combined with different adjuvants and excipients [192]. PsaA needs sodium phosphate 

to be stable when it absorbs to Alhydrogel, but StkP does not need. Thus, for a multi-antigen vaccine, 

separate storage of each protein for long-term storage stability might be necessary, leading to further 

cost increases for a mixed protein vaccine. Recently, a fast-dissolving tablet formulation of a live 

attenuated enterotoxigenic E. coli was developed [193]. The tablets rapidly disintegrate in vivo but 

preserve the bacteria at 2–8 °C for at least 12 months with only 0.4 log10 loss of viability during 

storage. These results provide a practical option for formulating ETEC vaccines or other live bacterial 

vaccines for oral immunization and help to facilitate delivery of lifesaving vaccines, particularly in 

low-resource settings [193]. Our experiments showed that RASV vaccine strains stocked at −80 °C do 

not change their titers after storage for five years [194]. Whether there is a change in the 

immunogenicity still needs to be probed. These results along with other attributes discussed above 

demonstrate the cost benefits of using recombinant live vector technologies.  

S. pneumoniae causing disease involves multiple steps, including attaching to, invading into and 

spreading in the host [27]. An effective vaccine could block any one of these steps, but preferably all 

of them. S. pneumoniae also have over 90 serotypes with different pathogenic attributes. The vaccine 

should protect against infections by most of the serotypes. The ideal vaccine should include multiple 

antigens to stop multiple steps of infection and confer protection against multiple serotypes. In the 

future, work should focus on delivering multiple antigens and test protection with multiple challenge 

models against multiple serotypes. Currently, the challenge studies in evaluating recombinant live 

vaccine vectors used serotypes 2, 3, 4, 6B, 14, and 23F (Table 1), which did not include some 

serotypes, like 1, 5, 6A, 7F, 9V, 18C, 19A, 19F in the 13-valent conjugate vaccine. An effective 

vaccine needs to protect against all these serotypes. The inclusion of multiple antigens protecting 

against S. pneumoniae strains in multiple families with regard to the PspA and PspC antigens is 

therefore important. The inclusion of conserved antigens such as PsaA and Ply and the conserved 

proline-rich domains of PspA and PspC should further augment the protective efficacy of these 

vectored vaccines [62,63]. 
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Much progress has been made in improving the technologies to design, construct and evaluate live 

bacterial vectored vaccines against S. pneumoniae. These improvements enhance safety, tolerability 

and effectiveness in inducing protective immunity. Three S. typhi vaccines based on these technologies 

have been tested in a phase I clinical trial. As for LAB based vaccines, there is still room for 

improvement. In the future, combining the benefits of LAB and Salmonella will be possible.  

With the advancement of knowledge about bacteria—not only Salmonella and LAB, but also other  

bacteria interacting with hosts—and by using new technologies, we should finally be able to develop 

safe, efficient, and relatively inexpensive needle-free vaccines against S. pneumoniae, as well as  

other pathogens.  
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