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Abstract: Recent outbreaks of Zika virus (ZIKV) highlight the urgent need to develop efficacious
interventions against flaviviruses, many of which cause devastating epidemics around the world.
Monoclonal antibodies (mAb) have been at the forefront of treatment for cancer and a wide
array of other diseases due to their specificity and potency. While mammalian cell-produced
mAbs have shown promise as therapeutic candidates against several flaviviruses, their eventual
approval for human application still faces several challenges including their potential risk of
predisposing treated patients to more severe secondary infection by a heterologous flavivirus
through antibody-dependent enhancement (ADE). The high cost associated with mAb production
in mammalian cell cultures also poses a challenge for the feasible application of these drugs to
the developing world where the majority of flavivirus infection occurs. Here, we review the
current therapeutic mAb candidates against various flaviviruses including West Nile (WNV),
Dengue virus (DENV), and ZIKV. The progress of using plants for developing safer and more
economical mAb therapeutics against flaviviruses is discussed within the context of their expression,
characterization, downstream processing, neutralization, and in vivo efficacy. The progress of using
plant glycoengineering to address ADE, the major impediment of flavivirus therapeutic development,
is highlighted. These advancements suggest that plant-based systems are excellent alternatives for
addressing the remaining challenges of mAb therapeutic development against flavivirus and may
facilitate the eventual commercialization of these drug candidates.

Keywords: flavivirus; antibody; monoclonal antibody (mAb); therapeutics; plant-made antibody;
antibody-dependent enhancement (ADE); West Nile virus (WNV); Dengue virus (DENV);
Zika virus (ZIKV); plant-made pharmaceuticals (PMP)

1. Introduction

The Flavivirus genus belongs to the family of Flaviviridae, which consists of more than 70 viruses
including insect-specific flaviviruses [1–4]. The majority of flaviviruses are transmitted by mosquitos
or ticks [5]. Many flaviviruses are important human pathogens, including yellow fever virus (YFV),
four serotypes of Dengue viruses (DENV1–4), West Nile virus (WNV), Japanese encephalitis virus
(JEV), tick-borne encephalitis virus (TBEV), and, recently, Zika virus (ZIKV). While some flavivirus
infections are either asymptomatic or cause mild symptoms, others are causative agents of serious
human diseases including hemorrhagic fever, encephalitis, meningitis, and other severe neurological
complications. Some of the flaviviruses can also persist in patients to cause long-term morbidities [6,7].
Flavivirus infections have become a global public health burden. It was estimated that close to
400 million people worldwide are at risk of being infected with DENV each year [8,9]. In 2016, an YFV
outbreak in Africa infected more than 7000 people and caused nearly 400 deaths [10]. The unexpected
outbreak of ZIKV in Latin America led to the declaration of a global public health emergency by the
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World Health Organization (WHO) in 2016 because of the link between ZIKV infection and diseases
of the central nervous system (CNS) including microcephaly and Guillain–Barré syndrome [11].
Currently, there are no licensed therapeutics for flavivirus infection; all treatment options are directed
at reducing fluid loss or inflammation caused by viral infection [5]. Although vaccines based on
inactivated or attenuated viruses against YFV, TBEV, JEV, and recently DENV have been licensed for
human use, outbreaks of these flaviviruses still occur despite the availability of these vaccines [12,13].
This exposes the difficulty of implementing successful vaccination programs and highlights the urgency
of developing therapeutics.

Flaviviruses are positive single-stranded RNA viruses with a genome size of ~11 kb. The viral
genome encodes 10 viral proteins including three structural proteins (capsid, membrane and envelope
proteins) and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5). The mature
flavivirus virion shares similar structure with icosahedral symmetry, with the surface covered by
180 copies of envelope (E) glycoproteins and membrane (M) proteins and a less organized nucleocapsid
core consists of multiple copies of capsid protein (C) and the RNA genome [14–17]. The entry of
flaviviruses into host cells relies on the proper contact of the E protein with its receptor on the target
host cell. Studies from DENV and other flaviviruses show that the E protein does not directly bind to its
receptor on the first contact with the target cell. Instead, the E protein binds first to attachment factors
such as glycosaminoglycans (GAGs) on the host cell surface. Such binding enriches the density of viral
particles on the cell surface and leads to the high-affinity interaction between the E protein and its target
receptor [18]. Many cellular receptors have been reported for flavivirus entry into different cell types,
such as C-type lectin receptors, laminin receptor, T-cell immunoglobulin and mucin domain (TIM) and
TYRO3, AXL and MER (TAM) receptors, and integrin αvβ3 [18]. Binding to these receptors has been
shown to lead to the low pH dependent endocytosis of flavivirus virions (Figure 1A). However, the
complete flavivirus entry pathway is still not fully understood and the cellular components absolutely
required for flavivirus entry have not been completely identified [19]. In the endosomes, the viral
envelope fuses with the host membrane and releases the viral capsids into the cytoplasm where viral
protein translation, RNA genome replication and virus particle assembly take place [20] (Figure 1A).
Advancement in the understanding of the life cycle of flaviviruses facilitates the development of
therapeutics to target various stages of viral pathogenesis.
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flavivirus-infected cells through antibody Fc effector functions such as complement dependent 
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the mechanism of antibody-dependent enhancement (ADE) (E). 

Figure 1. Flavivirus infection cycle and mechanisms of mAb neutralization and enhancement. The entry
of flaviviruses into host cells is initiated with the attachment of the E protein with its receptor on the
target host cell, which leads to endocytosis of flavivirus virions (A). The low pH in the endosome
triggers the fusion of the viral envelope with the endosomal membrane, releasing the viral genome to
the cytoplasm where viral replication and assembly occur (A). MAbs can neutralize flaviviruses by
blocking viral attachment, endocytosis, or membrane fusion (B). MAbs can eliminate flavivirus-infected
cells through antibody Fc effector functions such as complement dependent cytotoxicity (CDC) (C)
and antibody-dependent cell cytotoxicity (ADCC) (D). Some non-neutralizing or subneutralizing
anti-flavivirus mAbs can enhance viral infection in Fc receptor-expressing cells via the mechanism of
antibody-dependent enhancement (ADE) (E).
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2. Monoclonal Antibody as Therapy

Since the breakthrough of monoclonal antibody (mAb) production using hybridoma cell culture
in 1975, mAbs have become one of the major targets for drug discovery [21]. As of 2017, approximately
70 mAbs have been approved by the United States Food and Drug Administration (FDA) for treating a
variety of human diseases including cancers, chronic inflammatory diseases, infectious diseases and
neurodegenerative diseases [22].

For cancer treatment, mAbs have been found to kill cancer cells through several mechanisms [23].
Many mAbs directly target the tumor-associated antigens on the cell surface. Such mAb-tumor antigen
interactions can activate or block certain downstream signaling pathways and, in turn, reduce tumor
cell proliferation or induce tumor cell apoptosis [24,25]. However, increasing evidence suggests
that mAbs also kill tumor cells through activation of host immune responses such as phagocytosis,
complement dependent cytotoxicity (CDC), or antibody-dependent cell cytotoxicity (ADCC) [23].
ADCC is exerted by immune cells expressing surface Fc gamma receptors (FcγRs) against cells coated
with antibody, such as cancer or virus-infected cells (Figure 1). The typical ADCC involves activation
of natural killer (NK) cells by antibodies. FcγRs expressed on the surface of NK cells recognize the
Fc portion of an antibody, which has bound to the surface of a cancer or pathogen-infected target
cell. Once the FcγR binds to the Fc region of an antibody, the NK cell releases cytotoxic factors that
cause the lysis of cancer or infected target cells [26] (Figure 1). In contrast, CDC is executed by a
protein-based system called complement that attacks target cells bound with antibodies. CDC is
triggered by the binding of C1q, a component of the complement, to the Fc region of an antibody
that is attached to the target cell. This binding activates the complement cascades, leading to the
formation of the membrane attack complex at the surface of the target cell, triggering target cell
lysis [26] (Figure 1). Activation of antibody effector functions as a major mechanism of action has
been demonstrated by many therapeutic mAbs including rituximab, trastuzumab and cetuximab.
For example, Rituximab targets CD20 of CD20-positive B-cell lymphomas and has been shown to kill
cancer cells by its potent CDC and ADCC activities [27,28]. It has also been shown that breast cancer
patients who responded with remission to Her2/neu-specific trastuzumab have a higher capacity
to mediate ADCC than patients who failed to respond to trastuzumab treatment [29]. Studies also
suggest that ADCC activity is one of the modes of therapeutic action of cetuximab against colorectal
cancer that targets the epidermal growth factor receptor (EGFR) [30]. These results highlight the key
role of activation of immune functions in anti-tumor effects by mAb-based therapeutics.

Infectious diseases are another area that mAb-based therapies have shown promising results.
Using mAbs to treat infectious diseases is inspired by the limited success of convalescent therapy
with convalescent whole blood (CWB) or convalescent plasma (CP) in treating viral infections such as
influenza, measles, and coronaviruses [31]. These treatments helped to improve symptoms and reduce
mortality when other treatment options were not available especially during an epidemic outbreak.
More recently, CWB was used to treat Ebola virus-infected patients during the 2014–2015 Ebola
outbreak in West Africa [32]. However, the efficacy and safety of using convalescent blood products as
therapeutics have not been fully evaluated [33]. The risk of transmitting pathogens via transfusion,
the need of extensive screening of blood donors, and the pathogen elimination process further hinder
the broad application of this strategy. Currently, there are nearly 40 mAbs in clinical development
worldwide, targeting more than a dozen infectious diseases including human immunodeficiency virus
(HIV), anthrax, Ebola, hepatitis, and influenza [34]. Three mAbs have been licensed for the treatment or
prevention of infectious diseases and are in clinical use [34]. Palivizumab was approved by FDA in 1998
for the prevention of respiratory syncytial virus (RSV) infection, which causes serious symptoms in the
lower respiratory tract of infants and young children [35]. In vitro studies showed that palivizumab
binds to the F glycoprotein of RSV, thereby blocking the viral fusion with host cell membrane [36,37].
Raxibacumab and obiltoxaximab are licensed to treat inhalational anthrax by directly preventing the
binding of bacterial antigens to their respective cellular receptors [38]. Multiple mAbs against HIV
has been developed and several of them have made their way into human clinical trials. For example,
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mAbs against the HIV fusion co-receptor CCR5 have been shown to broadly and potently inhibit
HIV-1 in vitro by occluding HIV’s access to CCR5 and preventing membrane fusion [39]. Furthermore,
their potent antiviral activity has been demonstrated in HIV-infected individuals in clinical trials [39].
Recently, ibalizumab, a mAb that blocks viral entry into host cells has shown efficacy for patients with
drug-resist HIV in a phase 3 human trial [40]. Both in vitro and in vivo studies with HIV Env-specific
mAbs such as b12, PGT121, and 10–1074 demonstrated that ADCC activity is an important mechanism
of mAbs in treating viral infection, especially those caused by cell-associated HIV [41]. These studies
illustrated that mAbs are promising therapeutics in treating infectious diseases that can eliminate
pathogen infection through multiple mechanisms including neutralization to block viral attachment
and fusion, and antibody-induced effector functions (Figure 1).

Compared to small molecule drugs, mAb-based therapeutics have several unique advantages.
For example, mAbs are highly specific and human or humanized mAbs generally have lower
immunogenicity or off-target toxicity. MAbs act through multiple mechanisms including direct
targeting of specific antigens to block pathogen attachment, prevent fusion with host membranes,
and modulate effector functions (i.e., ADCC, CDC) (Figure 1). Moreover, mAb therapy can be used
in combination with other traditional therapeutics, which has been shown to offer additive benefits
over individual therapies without additional toxicity [42,43]. As a result, mAb-based therapeutics
are promising candidates in treating infectious diseases, especially for those exhibiting multidrug
resistance (MDR) [44]. However, mAb therapeutics are slow to develop and expensive to produce,
rendering them affordable only for citizens in a few developed countries [45].

3. Potential Therapeutic Antibodies against Flavivirus

MAbs can protect against flavivirus infection at multiple steps during the virus entry such as
blocking virus attachment to the cell surface, interrupting viral membrane fusion, or activating
Fc-dependent effector functions [46] (Figure 1). However, weak or neutralizing antibodies at
sub-neutralizing concentrations may cause antibody-dependent enhancement (ADE) of infection,
a phenomenon most often associated with DENV [47]. ADE occurs when non-neutralizing antibodies
or antibodies at sub-neutralizing concentrations bind to both the virus and FcγR on the cell surface,
thereby facilitating virus entry and increases the infection rate (Figure 1) (see Section 4).

Most neutralizing antibodies against flaviviruses identified so far are found to target the
E protein [48,49] (Table 1). Structural studies of the E protein of several flaviviruses have revealed that
it shares a common three-domain architecture among several important flaviviruses (Figure 2) [50–54].
E protein domain I (DI) is an eight-stranded β barrel located at the center of the E protein, while
domain II (DII) consists of two long finger-like structures with a highly conserved 13-amino acid
fusion loop that is responsible for the membrane fusion during viral entry. Domain III (DIII) is an
immunoglobulin-like structure at the C-terminus of the E protein. It has been suggested to play a
critical role in receptor recognition during virus attachment. Antibodies isolated from WNV, DENV, or
ZIKV-infected human or mouse sera have been mapped to all three domains of E protein. In addition
to the E protein, protective antibodies against other flavivirus proteins have also been characterized.
For example, antibodies against M and NS1 protein have been shown to protect mice against lethal
DENV or WNV infections, respectively [55,56]. However, most antibodies against non-E proteins are
typically non-neutralizing, which make them less likely to be considered as candidates for therapeutics.
Thus, in this review we will focus on antibodies against the E protein.
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3.1. Antibodies Targeting DIII

To date, the most potent neutralizing antibodies against flaviviruses are mapped to domain III of
the E protein [8,57–59]. Antibodies mapped to DIII are typically virus or serotype-specific and less cross
reactive, perhaps due to the lowest sequence identity between different flaviviruses among the three
domains of the E protein [58]. Several important epitopes in DIII have been identified through panning
of memory B cells collected from either flavivirus-infected patients or challenged mice. These epitopes
include the lateral ridge [57,60,61], C-C′ loop [61,62] and A strand [59,63] in DIII.

The first well characterized anti-DIII mAb with strong therapeutic potential was the anti-WNV
E16 [57,64]. This mAb was originally isolated from mice immunized with a recombinant WNV
E protein [57]. In vitro neutralization assays showed that E16 and humanized E16 (hE16) neutralize
WNV infection at 10–20 nanomolar (nM) concentrations. Post-exposure therapeutic studies revealed
that one single-dose injection protected mice from a lethal WNV challenge [57]. Crystal structure of the
E16 antigen-binding fragment (Fab) and the WNV E protein DIII complex revealed that E16 has contact
with 16 amino acid residues from four discontinuous segments located in the N-terminal region and
three strand connecting loops (BC, DE, FG) of DIII, respectively; together they form a surface patch on
the lateral ridge of DIII [57]. Results from studies of a cryo-EM structure of the E16 Fab-WNV complex
and in vitro assays suggest that E16 primarily inhibits viral entry at a post-attachment step, probably
through interrupting the conformational rearrangement of E protein before membrane fusion [57,64].
Studies with E16 Fc mutants or FcγR-mutant mice indicated that E16 also control WNV infection
through ADCC and C1q-related effector functions (Figure 1) [65]. In light of its superior preclinical
results, hE16 entered a Phase II human clinical trial in 2009 [66]. However, the trial was eventually
terminated due to the difficulty of recruiting a sufficient number of WNV-infected patients with the
required clinical symptoms during the trial period [67].

Two DENV1 specific mAbs were also mapped to the lateral ridge of DIII [68,69]. DENV1-E105
and E106 showed strong post-exposure protection in an immunocompromised mouse model [69].
Even though both mAbs neutralize all DENV1 genotypes in 3–4 nM ranges, they cannot neutralize
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other serotypes of DENV [68,69], making them likely suspects of inducing ADE upon secondary
infection by other DENV serotypes (see Section 4 below).

Due to the recent outbreaks of ZIKV, antibodies against this flavivirus have been intensively
investigated in search of effective therapeutics. Several highly potent mAbs have been mapped
to the lateral ridge of DIII. ZV54 and ZV67 are mAbs isolated from mice immunized with live
ZIKV [61]. The antibodies neutralized all four tested ZIKV strains and passive transfer of these
two mAbs protected mice from a ZIKV lethal challenge in an interferon γ deficient mouse model.
Crystal structure of the ZV67-ZIKV DIII complex suggests that ZV54 and ZV67, which only differ in
two contact residues, bind to ZIKV DIII lateral ridge very similarly to WNV E16 or DENV1-E106 [61].
This indicates that the DIII lateral ridge epitopes are highly conserved among different flaviviruses.
Interestingly, Z004, a mAb that potently neutralizes both ZIKV and DENV1 also recognizes the lateral
ridge of ZIKV or DENV1 DIII [60].

Antibodies recognizing the C-C′ loop in DIII were first described in a structural and functional
study of a pool of antibodies generated by mice infected with a mixture of two DENV2 strains [62].
These antibodies showed different potency for neutralizing various strains of DENV2 with protective
effect only for specific strains. Further studies suggest that they inhibit DENV2 infection at a
post-attachment step. Consistent with the findings from DENV2, crystal structures of a DENV1
antibody (DENV1-E111) bound to the C-C′ loop of DIII of two different genotypes of DENV1 reveal
that the potency of neutralization may rely on the extent of exposure of the C-C′ loop in DIII of a
particular genotype [70]. More recently, two anti-ZIKV mAbs targeting the C-C′ loop (ZV48 and ZV64)
were found to neutralize only two of the four tested ZIKV strains [61]. In contrast, the two mAbs
targeting the lateral ridge of DIII (ZV54 and ZV67) could neutralize all four tested strains of ZIKV [61].
These results indicate that antibodies recognize the C-C′ loop have less predictable potencies than
those recognizing the lateral ridge of DIII.

DENV E protein DIII β-strand A has been shown as an important region for antibody binding
from early studies [71–73]. Antibodies mapped to this region have shown potent neutralization
of some DENV serotypes, but not to all four serotypes [62,63,74]. Structural studies of two such
mAbs (1A1D-2 and 4E11) complexed with DENV E proteins indicate that the antibody probably
binds to the A-strand epitope during a “breathing” state of the virion, thereby disrupting the mature
virion architecture and preventing its binding to cell surface receptors [74,75]. Using a computational
chemistry approach, Tharakaraman et al. redesigned the 4E11 antibody by a combination of five
affinity-enhancing mutations; the resulting antibody, 4E5A, showed a 450-fold increase in DENV4
binding affinity while retaining potent affinity to DENV1–3 [63]. Consistent with the results of binding
affinity, this mAb demonstrated a strong neutralization potency to all four DENV serotypes. With a
similar approach, a humanized version of 4E5A was developed with six replacement and one deletion
mutations [59]. The resultant mAb, named ab513, demonstrated strong neutralizing potency against
all four serotypes of DENV, even in FcγR-mediated phagocytosis. In multiple mouse models of DENV
infection, ab513 exhibits strong therapeutic effects against all four DENV serotypes, demonstrating
its potential as an effective therapeutic agent in humans. Ab513 is currently under development by
Visterra Inc. (Cambridge, MA, USA) and is expected to enter Phase I clinical trials by 2018 [76].

3.2. Antibodies Targeting DI, DII

Although E DIII contains the epitopes for the most potent and serotype-specific neutralizing
antibodies, analysis of sera from flavivirus-infected human patients showed that antibodies mapped
to DIII only account for a very small portion of the total E protein specific mAbs [77–79]. In contrast,
the majority of E protein-specific antibodies from infected human sera were mapped to DI and DII of
the E protein. In general, these anti-DI, DII antibodies are less potent in their neutralizing activity but
are more cross-reactive among different serotypes/strains of various flaviviruses than those against
DIII [49,77,79,80]. Several DI-DII epitopes have been identified, such as the DI-DII hinge, the highly
conserved fusion loop of DII and the BC loop of DII [54,77,79,81–85].
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The most commonly recognized epitope within the DI and DII region is probably the fusion
loop epitope (FLE). FLE antibodies and their interactions with the E proteins have been well
characterized [49,54,79,86–88]. They account for a significant portion of E protein-specific antibodies
isolated from flavivirus-infected human sera [49,79,89,90]. FLE antibodies are cross-reactive and,
therefore, may have both neutralizing and enhancing activities. The risk of enhancing heterologous
flavivirus infection typically prevents FLE antibodies from being considered as therapeutic candidates.
However, one of the FLE mAbs, 2A10G6, has been shown to bind to a DRXW motif within the
fusion loop and has a broad neutralizing capability against all four serotypes of DENV, as well as
YFV, TBEV, and WNV [84]. In addition, this mAb also demonstrated its therapeutic potency against
lethal challenges of DENV and WNV in multiple mouse models [84]. More recently, its activity in
high-affinity binding to the E protein and potency in neutralization and protection against lethal
challenges of infection in mice has also been extended to ZIKV [54]. These results indicate that the
highly conserved fusion loop region may contain epitopes for broadly neutralizing anti-flavivirus
antibodies with therapeutic potential. In addition, FcγR- and complement-mediated pathways may
play a role in the FLE antibody response to flavivirus infection, which may explain why even poor
neutralizing FLE antibodies could protect mice from WNV lethal challenges [91].

Besides FLE antibodies, antibodies mapped to DI and DII hinge region were also found in natural
infections of WNV and DENV [83,85,92]. Comparison of one of these antibodies, WNV CR4354, with
hE16 showed that CR4354 inhibits WNV infection nearly as potently as hE16 and the neutralization
occurs also at a post-attachment step similar to that of hE16 [92]. A cryo-EM structure of DENV1
complexed with the Fab of 1F4, a human mAb specific for DENV1, showed that 1F4 binds to the
DI and the hinge of DI and DII within an E protein monomer [83]. Unlike CR4354, 1F4 not only
inhibits infection at a post-attachment step, but also blocks viral attachment in a WNV receptor
expressing cell line (Figure 1). Interestingly, a common feature is that both CR4353 and 1F4 bind
to the intact virus but not the recombinant E protein. This indicates that these mAbs recognize a
particular conformation of an epitope in the DI and DII hinge region that is preserved only in the intact
virus [83,85,92]. Through screening of a large panel of naturally occurring human antibodies against
DENV, Smith et al. identified a broadly neutralizing antibody 1C19 that recognizes a unique epitope
on the BC loop of DII [82]. Surprisingly, 1C19 not only neutralizes all four DENV serotypes, but also
competes with all weakly neutralizing FLE antibodies and 1F4 that are mapped to the DI/DII hinge
region. This indicates that the BC loop is probably close enough to the DI/DII hinge on the intact virus
so that the epitopes of 1C19 and 1F4 overlap with each other. This may be worth further exploring for
antibody therapeutics development.

3.3. Antibodies that Recognize Quaternary Structures

Through screening of human mAbs from natural flavivirus infections, a new class of potent
E protein-specific antibodies was identified. Surprisingly, epitope mapping could not assign
these antibodies to a single E protein monomer. Instead, they bind to more complex quaternary
structure epitopes on the E protein dimers [67,85,90,93–97]. Some of these antibodies are serotype
specific [67,94,98] but others can be broadly neutralizing [90,96]. In general, these antibodies
inhibit the E protein structural rearrangement during membrane fusion. However, some of them,
such as HM14c10 and 5J7, neutralize the viral infection primarily through blocking viral attachment
(Figure 1) [67,98].

The first reported mAb that binds to two adjacent E protein monomers was WNV CR4354 [99].
Subsequently, several DENV serotype-specific antibodies were mapped to the quaternary structure
epitopes, such as anti-DENV1 mAb HM14c10 [67], anti-DENV2 mAb 2D22, and anti-DENV3 mAb
5J7 [85,94,98]. These mAbs showed potent neutralization activities against serotype-specific DENV
infections. Similar to CR4354, these mAbs bind to regions between two adjacent E monomers, or in the
case of 5J7, three E molecules [98]. These inter-monomer regions can be mapped to all three domains
of the E protein depending on the specific mAb. Interestingly, a ZIKV-specific antibody (ZIKV-117)
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isolated from a ZIKV-infected patient, showed binding to DII of two neighboring dimers at the
dimer-dimer interface [97,100]. The therapeutic efficacy of ZIKV-117 has been demonstrated in both
pregnant and non-pregnant ZIKV mouse models. Another group of human antibodies isolated from
DENV-infected patients, called “E-dimer-dependent epitope” (EDE)-specific antibodies, recognize a
highly conserved site among all four serotypes at the E dimer interface, which is also the binding site for
prM during virus maturation [101]. EDE-specific antibodies showed potent neutralization to all four
DENV serotypes with 50% neutralization in low nM or even picomolar (pM) concentration range [90].
More excitingly, several of the EDE-specific antibodies were found to be protective against ZIKV
infection in animal models [96,102]. For example, EDE1-B10 displayed strong cross-neutralization
activity against multiple ZIKV strains and significantly reduced mortality in mice challenged with a
lethal dose of ZIKV. Furthermore, the same mAb also reduced fetal demise in ZIKV infected pregnant
mice [96]. These results support the feasibility of developing therapeutics against both ZIKV and
DENV infections.

Table 1. Flavivirus antibodies with therapeutic potential.

Antibody Name Target Virus Epitope Development Stage References

hE16, pE16 WNV Lateral ridge of DIII Phase II trial [57,66,103]

CR4374 WNV E protein DIII Preclinical/mouse model [77]

CR4354 WNV E protein Hinge between DI, DII Preclinical/mouse model [77,92]

CR4348 WNV E protein DII Preclinical/mouse model [77,92]

Plant-made E60 DENV1–4 E protein DII fusion loop Preclinical/mouse model [104]

DENV1-E105, E106 DENV1 E protein DIII lateral ridge Preclinical/mouse model [69]

1F4 DENV1 E protein DI, DI-DII hinge Preclinical/mouse model [83]

1C19 DENV1–4 E protein DII BC loop Preclinical/mouse model [11,82]

HM14c10 DENV1 E protein dimer-dimer interface Preclinical/mouse model [67,95]

2D22 DENV2 E protein dimer-dimer interface Preclinical/mouse model [85,93,94]

5J7 DENV3 Across three E protein Preclinical/mouse model [98,105]

Ab513 DENV1–4 E protein DIII Preclinical/mouse model [59]

2A10G6 DENV1–4, WNV,
Zika, YFV, TBEV E protein fusion loop Preclinical/mouse model [54,84]

ZKA64 Zika E protein DIII Preclinical/mouse model [58]

ZV54 Zika E protein DIII Lateral Ridge Preclinical/mouse model [61]

ZV67 Zika E protein DIII Lateral Ridge Preclinical/mouse model [61]

Z23 Zika E protein DIII Preclinical/mouse model [81]

Z3L1 Zika E protein DI, DII Preclinical/mouse model [81]

Z004 Zika/DENV1 Lateral Ridge in DIII Preclinical/mouse model [60]

ZIKV-117 Zika E protein dimer-dimer interface Preclinical/mouse model [97,100]

EDE1-B10 Dengue/Zika E protein dimer-dimer interface Preclinical/mouse model [96]

4. Antibody-Dependent Enhancement of Viral Infection

One of the most difficult hurdles in vaccine and antibody-based therapeutic development against
flaviviruses is the risk of ADE. This phenomenon was first demonstrated in vitro and later in vivo for
DENV pathogenesis that explains the development of severe dengue hemorrhagic fever (DHF) and
dengue shock syndrome (DSS) upon secondary infection by a heterologous DENV serotype [106,107].
Since then ADE has been observed in a variety of viruses associated with serious human diseases [108].
More recently, human mAbs from patients previously infected by DENV have been shown to cross-react
with ZIKV and cause ADE in ZIKV-infected FcγR-expressing cells [109–112]. Bardina et al. further
demonstrated that human plasma containing anti-DENV or WNV antibodies could enhance clinical
symptoms and increase mortality in a ZIKV mouse model [113]. Similarly, anti-ZIKV antibodies have
been shown to enhance DENV infection in vivo [58]. These results have raised safety concerns for
the development of vaccines and antibody therapeutics against flaviviruses as ZIKV is spreading



Int. J. Mol. Sci. 2018, 19, 54 9 of 26

in areas where DENV or WNV is endemic and mosquito species transmitting DENV are capable of
transmitting ZIKV as well [114].

The most commonly known mechanism for ADE is that when viruses bind to non-neutralizing
antibodies or antibodies at sub-neutralizing concentrations, the virus-antibody complex can also
bind to the FcγR on myeloid cells (i.e., monocytes, dendritic cells, macrophages) through the
antibody Fc region, thereby facilitating virus entry and increasing infectivity [108,115] (Figure 1).
Alternatively, the complement activation pathways have also been reported in inducing ADE in a
variety of viruses including flaviviruses [108,115]. Experiments with WNV and DENV showed that
complement component C1q may restrict ADE in flavivirus infection in an IgG subclass-dependent
manner [116] probably by reducing the stoichiometric threshold for neutralization [117]. A recent
study suggested that E-specific antibodies may also induce ADE in a FcγR-independent manner
by facilitating interactions between the flavivirus E protein fusion loop and lipids in the host cell
membrane [118]. These findings highlight the complexity of ADE and may explain the discrepancy
between laboratory data and clinical observations.

Because ADE may potentially magnify the severity of flavivirus infection, reducing ADE has been
a major focus of antibody-based therapeutics development. One way of minimizing ADE is to design
or screen for broadly and potently neutralizing antibodies. For example, the anti-DENV mAb ab513,
which can potently neutralize all four serotypes of DENV, will have a low risk of ADE in enhancing any
DENV infection [59]. However, ab513 still showed a certain degrees of ADE in an FcγR expressing cell
line at sub-neutralizing concentrations. Nevertheless, ab513 is by far the most promising mAb-based
therapeutic against DENV with a low risk of ADE when sufficient dosage would be administered
to patients.

L234A and L235A double mutations (LALA) in the IgG Fc domain have been shown to
abrogate the binding of IgG to FcγRs [119]. The LALA variants have been found to share
equivalent antigen-binding properties and neutralization potency as the WT antibodies [120,121].
Using this strategy, LALA variants of a few mAbs against ZIKV and DENV have been shown to
have similar neutralizing potency as their WT equivalents, both in vitro and in vivo but without
promoting ADE [94,96,100]. Although LALA mutations eliminate the risk of ADE, they also forego
immune-mediated effector functions that may be important for the full efficacy of antibodies against
viral infection [122,123]. For example, Hessell et al. showed that the LALA variant of a broadly
neutralizing antibody against HIV dramatically decreased its ability to protect macaques from infection
challenge due to the lack of ADCC activity [121]. Therefore, there is a critical need to develop
mAb therapeutics against flaviviruses that forego ADE but retain their ability to fight infections via
FcγR-mediated effector functions such as ADCC and CDC (Figure 1).

5. Plant-Produced Antibodies against Flaviviruses

5.1. Plants as a System for the Development and Production of Antibody-Based Therapeutics

Despite the development of aforementioned therapeutic candidates, the eventual approval of
human therapeutics against flaviviruses may largely depend on (1) the elimination of the biosafety
concern of ADE and (2) the speed and economics of antibody production. Due to the unique nature of
plant expression systems, plants may provide solutions to overcome both the biosafety and economic
challenges of flavivirus therapeutic development [124,125]. The current state-of-the-art platform for
mAb production is based on mammalian cell cultures. While it has superb capabilities in producing
high quality of mAbs, it requires heavy upfront capital investment and a long lead time to establish
a mammalian culture facility [126]. In contrast, plant-based expression systems can generate large
amounts of biomass for mAb production without the requirement of prohibitive capital investment
for building fermentation facilities and the need of constructing expensive duplicate facilities for
scaled-up production is also obviated [127,128]. Multiple techno-economic studies demonstrated that
plant expression systems indeed can substantially reduce the production cost of protein biologics
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including mAbs, providing direct evidence to support the long-held belief that plants can lower the
production cost of biologics [129,130]. Current FDA-approved mAb drugs are expensive, making them
unaffordable for citizens of the majority of countries in the world [45]. Plant-produced mAbs will
allow the production of mAb therapeutics affordable for people in the developing world, where the
majority of serious flavivirus cases exist [131].

Innovations in plant expression vector development, particularly vectors for transient expression,
have produced new plant expression systems with the flexibility and speed that cannot be matched
by those based on mammalian cell culture [132–135]. For example, plant transient expression with
“deconstructed” plant viral vectors allows the production of up to 5 mg of vaccines and mAbs per
gram of leaf fresh weight (LFW) within 10 days of vector inoculation [132,135–142]. The rapid and
high-level protein production capability of transient expression systems make them the optimal system
to quickly and versatilely produce mAb-based therapeutics against flaviviruses such as DENV, WNV
and ZIKV that have multiple lineages with unpredictable outbreaks in various parts of the world.

Plants may also address ADE, the most difficult impediment of flavivirus therapeutic
development. Since ADE relies on the interaction of the Fc region of antibodies with FcγRs, which is
highly sensitive to the N-linked glycosylation pattern of the Fc region, the unique plant N-glycans may
impact the properties of plant-produced mAbs, including ADE activities. In fact, the most exciting
aspect of plant systems for mAb development is their amenability for glycoengineering. In contrast
to mammalian cells, plants have a small repertoire of glycoenzymes. As a result, unlike mammalian
cell-derived mAbs that exhibit a mixture of multiple N-glycans, plant-produced mAbs usually bear a
single dominant N-glycan structure (Figure 3). Plant glycoproteins contain core α1,3-fucose and xylose
that are not present in human glycoproteins in significant amounts [143]. These quantitative differences
in N-glycan distribution between plant and human cells were a major concern, as plant-enriched
glycans might trigger immune responses leading to production of plant-glycan specific antibodies that
could reduce therapeutic efficacy or even cause adverse effects. However, all available reported results
including both animal and human studies indicate that plant-derived N-glycans do not influence the
overall immunogenic profile of plant-produced protein therapeutics [144]. Paradoxically, the small
repertoire of glycoenzymes has benefited plants as hosts for developing mAbs with homogeneous
human glycans [145]. In contrast, mammalian cells have a large glycome that impedes the manipulation
of the N-glycosylation pathways [146]. By knocking out plant-specific glycan genes and introducing
mammalian glycosylation genes, glycoengineering is able to generate plant hosts that produce mAbs
with authentic human N-glycans with a degree of glycan homogeneity that cannot be produced by
mammalian cells or by in vitro treatments [147–149]. This has silenced the concern that plant-derived
mAbs would trigger the production of plant-specific antibodies in the host. This is due to the lack
of any structural bases for inducing such immunity because these mAbs carry only genuine human
glycoforms with the original amino acid backbone and any plant-specific impurities are eliminated by
FDA-compliant downstream processing [143,145,150]. For example, a Nicotiana benthamiana line called
∆XF that does not produce plant-enriched N-glycans was created by suppressing the expression of
two plant glycoenzymes [143]. A homogenous (>90%) GnGn N-glycan structure has been observed
in various mAbs produced in ∆XF plants. These ∆XF plant-produced mAbs have also been shown
to have significantly enhanced neutralization or ADCC potency [148,151]. The efficacy of ZMapp, a
cocktail of three anti-Ebola mAbs produced in ∆XF plants, showcased the advantage of plant-produced
mAbs. ZMapp was shown to have superior potency to their mammalian cell-produced counterparts
and were able to rescue 100% of rhesus macaques even when given five days after a lethal Ebola
challenge [152], leading to ZMapp’s compassionate use in human patients during the 2014 Ebola
outbreak. The availability of a portfolio of plant lines that can produce biologics with tailor-made
mammalian N-glycans on demand provides the opportunity to overcome efficacy and safety challenges
against the development of mAb-based therapeutics including ADE.
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5.2. Plant-Produced Antibodies against WNV

Our laboratory has long been interested in the development of mAb-based therapeutics and
vaccines against flaviviruses using plant expression systems. We first addressed the questions of
if plants can produce mAbs robustly and if the plant-produced mAbs share similar properties and
efficacy with their counterparts produced in mammalian cells, questions that were not answered at
that time. We chose to use hE16 mAb against WNV as the test case. WNV can infect the CNS and lead
to encephalitis and meningitis, with the elderly and immunocompromised at greatest risk. Over the
last two decades, WNV has spread to the western hemisphere with more frequent outbreaks and
increased cases of neuroinvasive diseases. Global WNV epidemics call for the development of more
efficacious therapeutics and production platforms that can rapidly and inexpensively transfer effective
therapeutics to the clinical setting. Our results showed that hE16 can be expressed at a very high level of
0.8 mg/g LFW within 8 days of infiltration in N. benthamiana plants with a transient expression system
based on a tobacco mosaic virus-based deconstructed vector [103]. Furthermore, plant-produced
hE16 (phE16) was detected to have identical binding affinity and kinetics for WNV E protein and DIII
compared to hE16 produced in mammalian cells (mhE16) [103]. Our results also showed that phE16 and
mhE16 also shared equivalent neutralization potency against WNV. Most importantly, a single-dose
injection of phE16 protected mice from a lethal WNV challenge in both the pre- and post-exposure
models; a result indistinguishable from that of mhE16 [103]. These findings are highly significant
as they were the very first demonstration of post-exposure efficacy for a plant-produced mAb at
that time. Downstream processing is an important component of a mAb production technology. We
demonstrated that phE16 can be efficiently purified to homogeneity with a simple three-step extraction
and purification scheme in a scalable and current Good Manufacture Practice (cGMP)-compliant
manner [103]. To further investigate the feasibility of manufacturing plant-made mAbs in large scale,
we explored lettuce as a host plant for producing hE16 [140]. Similar to tobacco plants, lettuce is
already cultivated on a large scale commercially and can produce large quantities of biomass rapidly.
Our study demonstrated that hE16 can be expressed and assembled as robustly and efficiently in
lettuce as in N. benthamiana plants [140]. In fact, the highest level of hE16 accumulation occurred within
four days of leaf infiltration [140], almost a week faster than in tobacco. Lettuce-produced phE16 has
the same antigen-binding specificity and neutralization potency against WNV as mhE16. Significantly,
phE16 can be purified to >95% homogeneity by a single protein A affinity chromatography step with



Int. J. Mol. Sci. 2018, 19, 54 12 of 26

levels of residual DNA, endotoxin and protein A below the FDA specifications for injectable mAb
drugs [140]. This can be mostly attributed to the fact that lettuce plants produce negligible amounts of
phenolics and alkaloids compared to tobacco plants. In fact, we demonstrated that direct loading of
lettuce extract onto protein A resin did not foul the resin over 20 purification cycles. Therefore, this
study demonstrated the feasibility of using commercially produced lettuce for high-level and rapid
mAb production [140]. This allows our production system to have access to unlimited quantities of
inexpensive plant material for industry-scale production. The robustness and scalability of the hE16
expression in lettuce, coupled with the simplified purification process and unlimited nature of plant
material generation, provide a production platform for anti-flavivirus mAbs that is low-cost, safe, and
amenable to large-scale manufacturing.

To eliminate plant-enriched glycans and the risk of unnecessary immune responses, hE16 and
a single chain variant E16scFv-CH were produced in the glycoengineered N. benthamiana line, ∆XF.
Both ∆XF-produced mAbs (∆XFphE16 and ∆XFphE16scFv-CH) displayed uniform mammalian-type
N-glycosylation pattern of GnGn without the detection of residual plant-enriched glycans compared
to the same mAbs expressed in WT N. benthamiana [148]. ∆XFhpE16 and ∆XFhpE16scFv-CH
demonstrated equivalent antigen binding affinity and kinetics, and slightly enhanced neutralization
of WNV compared to the mhE16. A single dose of ∆XFphE16 or ∆XFphE16scFv-CH protected mice
against WNV-induced mortality, even four days after infection, at equivalent efficacy as mhE16
(Figure 4) [148]. Thus, this demonstrates the development of anti-WNV mAb therapeutic single-chain
variants that are equivalent in efficacy to phE16, simpler and cheaper to produce, and likely safer to
use as therapeutics due to their mammalian N-glycosylation.
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were infected with 102 PFU of WNV and then given a single dose of ∆XFpE16 (50 µg), ∆XFpE16scFv-CH

(500 µg) or mHu-E16 (50 µg or 500 µg) via an intraperitoneal route at day +4 after infection. Survival
data from at least two independent experiments (n = 10 mice per dose) were analyzed by the log-rank
test (From [148] with permission from John Wiley and Sons).

WNV is a neurotropic virus and causes CNS infections. Even though phE16 (Figure 5A),
∆XFhpE16, and ∆XFhpE16scFv-CH have shown excellent efficacy, their window of clinical treatment
will be limited when delivered through peripheral routes. These mAb-based molecules cannot pass the
blood–brain barrier (BBB), thereby failing to accumulate in the brain in sufficient levels to neutralize
WNV, which can efficiently enter the CNS. Therefore, it is desirable to develop hE16 variants that can
cross the BBB more efficiently. With this in mind, we explored the design of a tetravalent molecule
(Tetra phE16) assembled from hpE16scFv-CH with a second phE16scFv fused to the light chain (LC)
constant region (Figure 5B) [153]. Our results indicated that Tetra phE16 was efficiently expressed
and assembled in plants, despite its size and complexity. To assess the impact of differences in
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N-glycosylation on hE16 variant assembly and function, we expressed additional phE16 variants with
various combinations of heavy chain (HC) and LC components, which revealed that proper pairing of
HC and LC was essential for the complete N-glycan processing of antibodies in both plant and animal
cells. Associated with its distinct N-glycoforms, Tetra phE16 displayed differential binding to C1q
and various FcγRs. All plant-derived Tetra phE16 glycovariants showed at least equivalent in vitro
neutralization and in vivo protection compared to mhE16. Excitingly, none of the plant-derived Tetra
hE16 glycovariants had any ADE activity, alluding to the potential of plant-produced antibodies to
minimize the adverse effect of ADE [153]. This study demonstrated the feasibility of producing large,
complex and functional IgG-like tetravalent mAb variants in plants and also provided insight into
the relationship between mAb N-glycosylation, FcγR and C1q binding, and ADE. The successful
production and assembly of Tetra phE16 and the demonstration of its therapeutic activity brings us
closer to developing bifunctional mAbs that can pass the BBB and have a longer window of efficacy.
For example, bifunctional mAbs with a similar structure as the Tetra phE16 but with one of the
two scFvs binding to a specific receptor (e.g., insulin receptor [154]) on the BBB may have the desired
bi-functionality: one scFv would facilitate its transport into the brain and the other scFv would retain
its therapeutic activity against WNV in the brain (Figure 5C).
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BBB and facilitate the bifunctional antibody to cross the BBB via transcytosis.

Overall, these studies with phE16 and its variants demonstrated that plant-derived mAbs in
various glycoforms can function effectively as post-exposure therapy against a potentially lethal
flavivirus disease. Plants are an efficient platform to produce phE16, its single-chain, and tetravalent
variants with high-yield, speed, enhanced scalability, and cost-effectiveness, satisfying all major metrics
for successful therapeutic candidates. This technology can lead to safer, more efficacious therapeutic
candidates, and be readily applied in the future to mAbs against other emerging flavivirus infections,
and may be most useful in resource-poor settings such as the developing world.

5.3. Plant-Derived Antibodies against DENV and ZIKV

There are four serotypes of DENV (DENV1–4), and together, they represent one of the largest
global disease burdens to date, with over 3 billion people at risk for infection and ~390 million
infections in tropical and subtropical regions of the world annually [155]. DENV infections highlight
the devastations that ADE may cause and the difficulty in developing mAb therapeutics and
vaccines against flavivirus. Primary infection with one DENV serotype usually produces self-limiting
Dengue fever (DF). However, secondary infection with another DENV serotype increases the risk
of developing severe disease, including life-threatening vascular leakage syndrome, known as
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DHF/DSS [156,157]. The development of DHF/DSS in secondary infection is most likely caused by
ADE as antibodies generated during a primary infection may be non-neutralizing or sub-neutralizing
against a heterologous DENV serotype in a secondary infection [158]. Instead, these cross-reactive
antibodies can enhance infection of the second DENV serotype in FcγR-expressing cells and lead
to DHF/DSS [159] (Figure 1). The frequency and severity of DHF/DSS has increased significantly
in recent years in regions that used to have outbreaks of mild DF [160,161]. This may be due to the
geographic expansion of the DENV mosquito vectors and co-circulation of the four DENV serotypes in
the same region promoted by global trade and international travel [162,163]. The risk of ADE severely
hinders the development of mAb-based therapies for DENV because patients who are treated with
mAbs against one serotype of DENV may be at risk to develop DHF/DSS through ADE if they are
exposed to another serotype of DENV subsequently. Therefore, in order for mAbs to be effective
therapeutics against DENV infection, their risk in inducing ADE needs to be eliminated.

Although it was previously reported that an aglycosylated anti-DENV mAb and LALA-backbone
mAb mutants could eliminate the risk of ADE [94,96,100,164,165], the complete abolishment of binding
to all FcγRs also may render the antibody unstable [166,167], and lose the necessary effector function
for its full therapeutic efficacy [117,122,123,168,169]. Therefore, the optimal mAb-based therapeutics
against DENV must be able to neutralize the virus and preferably retain the ability to induce ADCC
and CDC, but not induce ADE.

Since the N-linked glycosylation of a mAb affects its FcγR and C1q binding, pharmacokinetics,
effector function and efficacy [170], it is possible to identify specific mAb N-glycoforms that promote
specific binding to a subset of FcγRs, which may eliminate ADE but retain ADCC and/or CDC activities
of the mAb. Previous studies on this subject were scarce due to the difficulty in obtaining mAbs with a
homogenous glycoform. Mammalian cells usually produce mAbs with glycan heterogeneity, even in
glycoengineered cell lines [171]. The availability of glycoengineered plant lines that produce mAbs
with various defined and uniform mammalian N-linked glycans provides a unique opportunity for
us to evaluate the contribution of mAb carbohydrate moieties to Fc-mediated functions including
ADE [143,145].

Our laboratory used E60 mAb as a model antibody to investigate if plants can help to reveal
specific N-glycoforms that overcome ADE. E60 is a mAb that was found to be cross-reactive
with the highly conserved fusion-loop in DENV E DII and efficiently neutralizes all four DENV
serotypes [164,172]. As a result, E60 should have the potential to become a therapeutic with efficacy
against all serotypes of DENV. However, E60 produced by mammalian cells (mE60) exhibits ADE
during DENV infection both in vitro and in vivo [164]. As a result, mE60 has no therapeutic activity
and may even render treated subjects more susceptible to develop life-threatening DHF/DSS in
secondary infection [164]. We expressed E60 in both WT and ∆XF N. benthamiana plants. Our results
demonstrated that E60 produced in WT (WTpE60) and ∆XF (∆XFpE60) plants exhibited a single
predominant expected N-glycoform with a high degree of homogeneity [104]. Furthermore, these E60
glycovariants retained specific binding to the E DII antigen with similar kinetics as mE60. WTpE60 and
∆XFpE60 also displayed neutralizing activity against multiple DENV serotypes with a potency similar
to that of mE60 [104]. Most importantly, our results demonstrated that both WTpE60 and ∆XFpE60
forewent their ADE activity on FcγR-expressing K562 cells, in contrast to mE60 that exhibited strong
ADE activity (Figure 6) [104]. Detailed N-glycan analysis indicates that WTpE60, ∆XFpE60 and mE60
displays GnGnXF3-GnGn-, and AAF6/AGnF6-type complex glycans, respectively [104]. This suggests
that the α-1,6 fucose, the terminal β1,4-galactose (AA or AGn) or the combination of both in mE60
may be responsible for the induction of ADE. Our on-going in vivo studies suggest that E60 produced
in plants may also have potent post-exposure therapeutic activities in protecting mice against lethal
challenges of DENV in both infection only and ADE mouse models [173].
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Figure 6. Antibody-dependent enhancement of pE60 variants. Serial dilutions of E60 variants were
mixed with DENV-2 and added to FcγR-expressing K562 cells. Forty-eight hours later, cells were fixed,
permeabilized and stained with anti-DENV E antibody 4G2 and analyzed by flow cytometry for DENV
infection of cells (From [104] with permission from JGV).

ZIKV is closely related to the four serotypes of DENV and its infection has been linked to the
development of severe fetal abnormalities that include microcephaly and Guillain–Barré syndrome in
adults [174–176]. In 2015, over 1.5 million people were infected with ZIKV in Brazil [177]. The recent
ZIKV outbreaks further complicated the development of mAb therapeutics against flaviviruses. ZIKV
and DENV will continue to co-circulate in many areas of the world because of their common mosquito
vectors and geographical distributions. Importantly, antibodies against DENV and ZIKV have been
found to enhance the replication of each other in vitro, strongly indicating ADE may occur between
these two closely-related viral diseases [58,178]. As such, minimizing the ADE risk of heterologous
flavivirus infection should be an important consideration for any ZIKV and DENV therapeutic
development. Specifically, mAb therapeutics against DENV or ZIKV need to forego ADE, not only for
heterologous serotypes/strains of the same virus, but their ADE activities should also be eliminated
for the other closely related flavivirus.

In response, our laboratory has developed several mAbs against both ZIKV E DIII and DI-DII
epitopes. When these anti-ZIKV mAbs were expressed in N. benthamiana plants, they can be
produced and assembled efficiently. Moreover, some of them have potent neutralizing activity against
ZIKV as well as DENV (Figure 7). We also produced these mAbs in mammalian cells as controls.
The comparison between anti-ZIKV mAbs produced in mammalian cells and plants revealed that
glycovariants of plant-made mAbs had drastically reduced ADE activity in enhancing DENV infection
in contrast to their mammalian-cell counterparts [179]. Likewise, plant-produced anti-DENV E60
glycovariants also forwent their ADE activity for ZIKV infection [173]. Of note, in contrast to an
aglycosylated mAb or LALA mutant, plant-produced glycovariants carry N-glycans that bind C1q and
a subset of FcγRs, potentially preserving CDC and ADCC activity. Therefore, our study demonstrates
that plant mAbs may be a preferred therapeutic candidate against DENV and ZIKV compared to
mammalian cell-produced, aglycosylated or LALA mutants, as mAbs produced in mammalian cells
induce ADE, and aglycosylated or LALA mAb mutants lose both ADCC and CDC activity and may
have a shorter half-life in circulation. Our study provides so far unknown insight into the relationship
between mAb N-glycosylation and ADE, which contributes to our understanding of how sugar
moieties of antibodies modulate Fc-mediated functions and viral pathogenesis. Although further
elucidation of the precise mechanisms of ADE abatement is warranted, our results will have important
implications for mAb therapeutics beyond the DENV and ZIKV models. Thus, the ability to potentially
eliminate ADE by plant-produced mAbs will lead to the development of safer and more efficacious
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antibody-based therapeutics against other ADE-prone viruses such as coronaviruses, paramyxoviruses,
and lentiviruses [180].Int. J. Mol. Sci. 2018, 19, 54 16 of 25 
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Figure 7. Neutralization of ZIKV by a plant-produced mAb. ZIKV (Puerto Rico strain) was incubated
with serial dilutions of a ZIKV E protein-specific mAb and used to infect Vero cells. Cells were overlaid
with fresh culture medium containing 0.8% agarose, fixed in paraformaldehyde, and then stained with
crystal violet. EC50 value is listed in the graph.

6. Conclusions

The expanding global epidemics of flaviviruses ignite the urgent development of therapeutics
against these devastating pathogens. MAb-based therapies have shown promise in providing specific
and effective treatments against several flaviviruses including WNV, DENV and ZIKV. However,
there is still no licensed human therapeutics for treating any flavivirus infections. Obstacles blocking
the approval of mAb drugs against flavivirus include issues related to drug safety, economics and
the speed of drug production. The risk of ADE in enhancing the severity of symptoms during
secondary infection by a heterologous flavivirus in mAb-treated patients presents the most serious
impediment for mAb therapeutic development. Flaviviruses such as DENV, WNV and ZIKV have
multiple serotypes, strains and lineages with unpredictable outbreaks in various parts of the world.
This requires a mAb production platform that is versatile and can rapidly produce anti-flavivirus mAbs
on a large scale. The cost of producing mAbs is another major issue for the realistic implementation
of treatment programs in the developing world, where the majority of flavivirus cases exists. While
mammalian cell-produced mAbs are superb in many aspects, they are expensive, slow to produce,
and have been shown to have strong ADE activity. In contrast, research by our laboratory and others
have demonstrated that plant-based expression systems are able to rapidly and robustly produce
high levels of anti-flavivirus mAbs at a significantly lower cost on a large scale, addressing both
the versatility and economic issues of the mammalian expression systems. More importantly, we
have demonstrated that plant-produced mAb glycovariants forego ADE while maintaining potent
neutralizing and therapeutic activities against several important flaviviruses, and potentially retaining
ADCC and CDC activities. We speculate that plant-based systems will facilitate the development of
efficacious, safer, and affordable mAb therapeutics against flaviviruses and their eventual licensure
and commercial production.
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