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Abstract

MALDI-TOF MS has been shown capable of rapidly and accurately characterizing bacteria. Highly reproducible spectra are
required to ensure reliable characterization. Prior work has shown that spectra acquired manually can have higher
reproducibility than those acquired automatically. For this reason, the objective of this study was to optimize automated
data acquisition to yield spectra with reproducibility comparable to those acquired manually. Fractional factorial design was
used to design experiments for robust optimization of settings, in which values of five parameters (peak selection mass
range, signal to noise ratio (S:N), base peak intensity, minimum resolution and number of shots summed) commonly used to
facilitate automated data acquisition were varied. Pseudomonas aeruginosa was used as a model bacterium in the designed
experiments, and spectra were acquired using an intact cell sample preparation method. Optimum automated data
acquisition settings (i.e., those settings yielding the highest reproducibility of replicate mass spectra) were obtained based
on statistical analysis of spectra of P. aeruginosa. Finally, spectrum quality and reproducibility obtained from non-optimized
and optimized automated data acquisition settings were compared for P. aeruginosa, as well as for two other bacteria,
Klebsiella pneumoniae and Serratia marcescens. Results indicated that reproducibility increased from 90% to 97% (p-
value%0.002) for P. aeruginosa when more shots were summed and, interestingly, decreased from 95% to 92% (p-value %
0.013) with increased threshold minimum resolution. With regard to spectrum quality, highly reproducible spectra were more
likely to have high spectrum quality as measured by several quality metrics, except for base peak resolution. Interaction
plots suggest that, in cases of low threshold minimum resolution, high reproducibility can be achieved with fewer shots.
Optimization yielded more reproducible spectra than non-optimized settings for all three bacteria.
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Introduction

Matrix-assisted laser desorption/ionization time-of-flight

(MALDI-TOF) mass spectrometry (MS) has emerged as a rapid

and accurate technology to characterize bacteria at the genus and

species levels [1–7]. Such characterization is based on unique mass

spectra associated with different bacteria and obtained by analysis

of whole cells or cellular extracts [2,8]. Peaks represent biological

molecules, typically proteins, that originate from cell surfaces,

intracellular membranes, and ribosomes [9,10], and thus are

unique and constitute fingerprints. Mass spectra can be acquired

either manually [11,12] or automatically [12,13], but automated

data acquisition can enhance the high-throughput nature of this

approach. Due to the rapidity and efficacy of this technique, there

has been keen interest in application of MALDI-based approaches

to characterize bacteria at the strain and subspecies levels [10,14–

18]. Strain level characterization is challenging because strains

within a single species are often extremely similar and yield mass

spectra with only subtle differences [18,19]. Several studies have

shown that spectra with poor quality and/or low reproducibility

may confound bacterial identification and lead to misclassifications

[8,18–20]. Consequently, strain level identification is effective only

when the reproducibility (i.e., similarity) of replicate spectra of

individual strains exceeds that of spectra of unique strains of

interest [21].

Because high quality and highly reproducible mass spectra are

required to ensure reliable strain level characterization [22,23],

many efforts have been made to optimize data collection

conditions to improve spectrum quality and reproducibility.

Optimization strategies are generally divided into two categories:

optimization of pre-analytical procedures and optimization of

post-processing procedures. Many pre-analytical parameters have

been reported to influence spectrum quality and reproducibility,

including culture age [24], growth medium [25], matrix [26],

solvent composition [27], and sample preparation and deposition

method [18,28]. Several of these parameters have been optimized

using common univariate approaches in which one variable is

changed at a time, and a series of experiments is conducted to

determine the optimal condition for each parameter [17,29–31].

Though often effective, optimization based on univariate ap-

proaches presents a number of limitations. First, optimization may

be not universal, because few studies have tested the resulting

optimal condition beyond the species or strains that undergo
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optimization. Second, univariate-based optimization procedures

are time-consuming and labor intensive. Another drawback of

univariate approaches is that it is difficult to estimate interaction

effects of parameters on reproducibility. With regard to optimi-

zation of post-processing criteria (e.g. to optimize Bruker MALDI

Biotyper score cutoffs to improve the percentage of bacteria

correctly identified [32]), spectrum quality and reproducibility are

generally not quantified.

We previously reported that automated data acquisition yielded

less reproducible spectra than manual data acquisition [11]. To

automate MALDI data acquisition, users specify threshold values

of several parameters (e.g., base peak intensity, minimum

resolution, signal to noise ratio (S:N), etc.) necessary for the

automation algorithm to acquire spectra. We hypothesized that

the lower reproducibility associated with automated data acqui-

sition may be due to non-optimized values of data acquisition

parameters [11]. In fact, it has been noted previously that

automated acquisition settings of the MALDI-TOF mass spec-

trometer needed to be optimized for better performance of

fingerprint-based approaches [2]. Further, effects of data acqui-

sition parameters on reproducibility and quality have not been

thoroughly investigated. For each of these reasons, we sought to

optimize automated data acquisition. Preliminary work in our lab

using univariate approaches did not markedly enhance spectrum

reproducibility [11]. As a result, we chose a multivariable method,

factorial design of experiments, to characterize and optimize

automated data acquisition. Several studies have shown that this

approach to statistical design of experiments is an efficient way to

provide richer information and extract the maximum amount of

information from the most economic number of experiments [33–

36].

The specific objective of this study was to optimize automated

data acquisition to yield spectra with reproducibility comparable

to those obtained manually. Pseudomonas aeruginosa, which was

shown previously to yield spectra of significantly lower quality and

reproducibility when data were acquired via automation than

when acquired manually [11], was used as a model bacterium in

the designed experiments. Finally, the optimal combination of

automated data acquisition parameters we obtained using P.

aeruginosa was also tested with Klebsiella pneumoniae and Serratia

marcescens. Both of these bacteria are Gram-negative bacteria that

showed much lower reproducibility when data were acquired via

automation than when acquired manually [11].

Materials and Methods

Bacteria and reagents
Pseudomonas aeruginosa (ATCC 27853), Klebsiella pneumoniae

(ATCC 132), and Serratia marcescens (ATCC 13880) were purchased

from Carolina Biological Supply Company (Burlington, NC, USA)

and stored as freezer stock cultures (nutrient broth:glycerol,

87.5:12.5) at 280 uC.

Sinapinic acid was purchased from Sigma-Aldrich (St. Louis,

MO, USA). Trifluoroacetic acid (TFA) and acetonitrile were

purchased from ACROS (Fair Lawn, NJ, USA). MALDI

calibrants were purchased from Sigma-Aldrich (St. Louis, MO,

USA). Nutrient agar and nutrient broth were purchased from

Carolina Biological Supply Company (Burlington, NC, USA).

Parameter selection
Automated data acquisition is typically achieved using a

software algorithm which requires the user to specify various

parameters. These parameters control the laser power, peak

evaluation, mass spectra accumulation, and laser movement on

sample. Effects of these parameters on spectrum quality and

reproducibility have not been thoroughly studied. Moreover, the

values of some of these parameters have not been specified in the

literature. For each of these reasons, we evaluated five parameters

which are frequently reported in the literature [37–41]. The five

factors which are adjusted through the Bruker FlexControl

software (version 3.0; Bruker Daltonics) during automated data

acquisition included: A) peak selection mass range; B) base peak

S:N; C) base peak intensity; D) base peak minimum resolution;

and E) number of shots summed (Table 1). Peak selection mass

range defines the mass range for peak evaluation during

automated data acquisition. The base peak is the highest peak

observed in the peak selection mass range during automated data

acquisition. The value of S:N, intensity and minimum resolution

for the base peak must exceed the user-defined levels of these

parameters; otherwise, the entire spectrum will be excluded during

automated data acquisition.

Fractional factorial experimental design
Factorial experimental designs are those which involve two or

more factors of interest and where all possible combinations of the

factor levels are tested. In this study, spectrum reproducibility was

the response. Five independent factors (automated data acquisition

parameters) were varied (Table 1). All five factors were numeric

type (i.e., values represented by numbers) in the designed

experiments.

Factorial-based designs can be separated into two main groups

which are full factorial design and fractional factorial design [42].

Different types of factorial design yield different numbers of

experiments. For example, if three factors are investigated and

each factor has four levels which are to be tested, a full factorial

design would require 64 (43) experimental runs. As the number of

factors and/or the number of levels of each factor increases, the

experimental design becomes prohibitively large [36]. A full

factorial design is generally used when the number of factors is

small, for example, less than four [43]. If k factors could be set at

two levels each, then a 2k factorial design can be implemented. For

three factors, each at two levels, a 23 factorial design would require

only 8 experimental runs. These designs are often used as

screening designs to aid in identifying important factors and

interactions [36]. Although using two levels of each factor is

efficient, the experimental design can still become quite large as k

increases. Therefore, a fractional factorial design denoted as 2k-p (k:

the number of factors; p: the fraction index) was used in this study

based on assumptions that higher-order interactions are negligible.

Higher-order interactions are those which involve three or more

factors. In this study, we focused on the interactions involving two

factors. Because of the sparsity of effects principle [36], we

assumed that the higher-order interactions were negligible and did

not need to be estimated. As a result, a 25-1 design was used. This

yielded 16 experimental runs. It is important to note the 16 runs

are not chosen at random or haphazardly. The 16-run orthogonal

design is selected in order to eliminate confounding between main

effects and minimize confounding between two-factor interactions

[36].

The two levels for each factor were selected as they represent

commonly used values [2,18,20,44] and prior work in our lab [11].

Specifically, in the literature, many mass ranges have been used for

peak selection, for example, 2 to 20 kDa [11,18,40,41,45], 2 to

6 kDa [37], 3 to 20 kDa [38], and 7 to 10 kDa [2]. Base peak S:N

is usually set as 2 or 3 in literature [2,11,38]. Base peak intensity

can vary from 100 to 600 [2,11]. Few studies have specified base

peak minimum resolution. In our previous work, this value was set

at 400 [3,11,18]. The number of shots summed in different studies
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often varies from 100 to 1000 shots [2,13,38–41,46]. Based on

these reported values, two levels of each factor were selected and

are shown in Table 1. The low level is designated as -1 and the

high level is designated at +1 for coding purposes (Table 1).

In addition to the high and low levels of each factor, we also

included center points (designated as 0) (Table 1) to assess whether

the response changed linearly as the factor moved from its low to

high level or if curvature in the response was present. Center

points are those experiments where all five factors are set at their

center value (Table 1). In this study, three center points were

added, resulting in a total of 19 experiments (Table 2). The design

of experiment software used in this study was Minitab Statistical

Software (version 16) (Minitab Inc, PA, USA).

Sample preparation
A nutrient agar plate was streaked from freezer stock and

incubated at 37 uC for 24 hours. A single colony was inoculated

into 5 ml sterile nutrient broth, and the broth was incubated at

37uC for 24 hours on an orbital shaker at 200 rpm. Samples were

prepared as previously described [11]. Briefly, 1 ml of culture

(O.D. 600 = 0.8) was centrifuged at 14,0006g for 5 minutes. After

removal of the supernatant, the cell pellet was resuspended in 1 ml

of sterile double-distilled water (ddH2O) (Millipore Corp.; Bed-

ford, MA, USA) and centrifuged again at 14,000 6 g for 5 min.

The supernatant was decanted and the resulting cell pellet was

resuspended in 100 ml of sterile ddH2O. Sinapinic acid matrix

solution was prepared as previously described [11]. Equal volumes

of cell suspension and matrix solution were mixed. Aliquots (2 ml)

of this mixture were spotted onto a MSP 96 ground steel target

plate (Bruker Daltonics; Billerica, MA, USA) and allowed to air

dry.

MALDI-TOF MS analysis
MALDI-TOF MS analyses were performed using a Bruker

Microflex LRF MALDI-TOF mass spectrometer (Bruker Dal-

tonics; Billerica, MA, USA) equipped with a nitrogen laser

(l= 337 nm) under the control of FlexControl software (version

3.0; Bruker Daltonics). Mass spectra were automatically collected

in positive linear mode with varying combinations of automated

data acquisition parameter values (Table 2). Ion source 1 voltage

was set to 20 kV, ion source 2 voltage was set to 18.15 kV, and the

Table 1. Factors and levels used in the fractional factorial
experimental design.

Level a

Name Factor 21 0 +1

Peak selection mass range (kDa)b A 1 4.5 8

S:N B 1 2 3

Base peak intensity C 100 200 300

Minimum resolution D 100 250 400

Number of shots summed E 100 300 500

a21 represents the low level; 0 represents the center point; +1 represents the
high level.
bPeak selection mass range represents a continuous mass range. The mid-point
of the mass range was 10 kDa. The interval of the mass range was represented
by an absolute value. Specifically, the peak selection value for level 21, 0 and +
1 were 9 to 11 kDa, 5.5 to 14.5 kDa and 2 to 18 kDa, respectively.
doi:10.1371/journal.pone.0092720.t001

Table 2. Experimental design matrix of the fractional factorial designs and the resulting reproducibility of mass spectra.

Factor

Experiment
Peak selection
range (kDa) S:N Threshold intensity Minimum resolution

Number of
shots summed

Interreplicate
imilarity (%)a

1 1 1 300 400 500 95.563.4

2 8 3 100 400 100 86.667.9

3 8 1 300 100 500 97.061.4

4 8 3 300 100 100 92.163.4

5 1 3 300 400 100 87.666.0

6 1 3 300 100 500 97.760.9

7 1 1 100 100 500 98.060.9

8 1 3 100 100 100 92.462.3

9 8 1 100 400 500 96.361.5

10 8 3 300 400 500 97.961.1

11 4.5 2 200 250 300 95.263.4

12 8 3 100 100 500 96.562.3

13 8 1 300 400 100 91.564.4

14 1 3 100 400 500 96.362.3

15 1 1 100 400 100 87.167.7

16 4.5 2 200 250 300 94.362.7

17 4.5 2 200 250 300 95.461.8

18 1 1 300 100 100 92.965.3

19 8 1 100 100 100 92.863.0

aValues reported are the average correlation coefficients of 10 replicates 6 the standard deviations of the correlation coefficient.
doi:10.1371/journal.pone.0092720.t002
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lens voltage was set to 9.05 kV. Other parameters were set as

described previously [11]. Mass calibration was performed using

standard calibrants: ACTH (1–17) 2094.427 Da, ACTH (18–39)

2466.681 Da, Insulin oxidized B 3494.6513 Da, Insulin

5734.518 Da, Cytochrome C 12360.974 Da and Myoglobin

16952.306 Da (Sigma-Aldrich, St. Louis, MO, USA).

Raw spectra were post-processed and peaks were picked using

FlexAnalysis software (version 3.0; Bruker Daltonics). Masses from

2 to 20 kDa were used for spectrum evaluation and post-

processing. Minimum peak resolution was set at 400 Da. The

minimum S:N threshold was set at 2, while the minimum peak

intensity threshold was set at 100. Baseline subtraction was

performed using the TopHat algorithm [47].

Quantification of spectrum quality and reproducibility
Measures of spectrum quality included base peak intensity, base

peak resolution, base peak S:N, number of peaks, and mass range.

To quantify reproducibility, peak lists generated by FlexAnalysis

were imported into BioNumerics software (version 6.1; Applied

Maths; Sint-Martens-Latem, Belgium) using a custom script

created by the manufacturers of the software for this application.

Figure 1. Characterization of spectra exhibiting varying levels reproducibility. Metrics of quality include standard deviation (A), base peak
intensity (B), base peak resolution (C), base peak S:N (D), number of peaks (E), and mass range (F).
doi:10.1371/journal.pone.0092720.g001
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Similarity coefficients of replicate spectra were calculated using the

Pearson product-moment correlation coefficient [48].

Statistical analysis
Each of the 19 runs from the designed experiments (Table 2)

consisted of 5 technical replicates of P. aeruginosa. All 19

experiments were carried out on the same day in a randomized

order and distribution on the MALDI target, resulting in 95 mass

spectra. These spectra constituted one dataset. In total, two

datasets were obtained on two consecutive days. Both datasets

were subjected to analysis of reproducibility, spectrum quality,

main effects, and interactions of factors. Specifically, reproduc-

ibility and spectrum quality of each designed experiment were

reported using the averaged values of 10 replicates of P. aeruginosa

from the two datasets. Main effects and interactions of factors on

reproducibility were analyzed based on analysis of variance

(ANOVA) and t-tests using a 5% level of significance [36]

(Minitab Inc, PA, USA).

Optimization
Most optimization efforts using univariate approaches have not

evaluated optimized experimental conditions beyond the species

or strains that undergo optimization. We hypothesized that the

optimized settings may improve spectrum quality and reproduc-

ibility of spectra from bacteria other than P. aeruginosa. Therefore,

two other gram negative bacteria, Klebsiella pneumoniae and Serratia

marcescens, both of which showed low reproducibility when using

non-optimized settings [11], were also analyzed via MALDI using

optimized settings. For either optimized or non-optimized settings,

20 spectra were acquired representing 20 technical replicates for

each bacterium. The reproducibility and quality of spectra from

each bacterium before and after optimization were reported using

the averaged values of the corresponding 20 mass spectra.

Differences in spectrum quality and reproducibility before and

after optimization were identified using t-tests with a 5% level of

significance (Minitab Inc, PA, USA).

Results and Discussion

Design matrix and reproducibility
The highest reproducibility achieved for P. aeruginosa using

optimized automated data acquisition was 98.0% (Table 2), which

is higher than the previously reported value (88.3%) (p-

value%0.001) for non-optimized automated data acquisition,

and was comparable to the reproducibility (96.1%) obtained

manually [11]. The corresponding experimental settings for this

high reproducibility were: peak selection mass range = 9 to

11 kDa, S:N = 1, base peak intensity = 100, base peak minimum

resolution = 100, and number of shots summed = 500. In

contrast, low reproducibility was also observed in these 19

experiments, ranging from 86% to 88%, which was comparable

to the previously reported value (88.3%) for non-optimized

automated data acquisition [11]. These results show clearly that

the values of parameters used in the automated data acquisition

procedure influence reproducibility.

Spectrum reproducibility and quality
To further investigate spectrum quality and reproducibility

obtained using different automated data acquisition settings, we

assessed metrics of spectrum quality as a function of reproducibil-

ity for all 19 experiments. Specifically, we examined spectra

exhibiting varying levels of reproducibility with regard to the

Table 3. Analysis of variance for reproducibility.

Sourcea DF Seq SS Adj SS Adj MS F P

Main effects 5 200.105 200.105 40.021 112.51 0.009

A 1 0.643 0.643 0.643 1.81 0.311

B 1 0.951 0.951 0.951 2.67 0.244

C 1 2.380 2.380 2.380 6.69 0.123

D 1 26.631 26.631 26.631 74.87 0.013

E 1 169.501 169.501 169.501 476.52 0.002

Two-way interactions 10 28.278 28.278 2.828 7.95 0.117

A * B 1 1.596 1.596 1.596 4.49 0.168

A * C 1 2.593 2.593 2.593 7.29 0.114

A * D 1 4.488 4.488 4.488 12.62 0.071

A * E 1 0.398 0.398 0.398 1.12 0.401

B * C 1 0.072 0.072 0.072 0.20 0.696

B * D 1 0.001 0.001 0.001 0.00 0.965

B * E 1 3.430 3.430 3.430 9.64 0.090

C * D 1 2.162 2.162 2.162 6.08 0.133

C * E 1 1.253 1.253 1.253 3.52 0.201

D * E 1 12.285 12.285 12.285 34.54 0.028

Curvature 1 4.399 4.399 4.399 12.37 0.072

Residual error 2 0.711 0.711 0.356

Pure error 2 0.711 0.711 0.356

Total 18 233.494

aA, B, C, D and E represent peak selection mass range, S:N, base peak intensity, minimum resolution, and number of shots summed, respectively.
doi:10.1371/journal.pone.0092720.t003
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standard deviation of the reproducibility and their spectrum

quality, including base peak intensity, base peak resolution, base

peak S:N, number of peaks, and mass range (Fig. 1).

As expected, our analysis revealed that spectra with higher

reproducibility tended to have lower standard deviations (Fig. 1A).

With regard to spectrum quality, spectra with higher reproduc-

ibility tended to have higher base peak intensities (Fig. 1B), higher

base peak S:N (Fig. 1D), greater numbers of peaks (Fig. 1E), and

broader mass ranges (Fig. 1F). These results indicate that highly

reproducible spectra are associated with high spectrum quality.

Interestingly, we observed a counterintuitive relationship

between base peak resolution and reproducibility. Highly repro-

ducible spectra tended to have lower resolution base peaks than

spectra with lower reproducibility (Fig. 1C). While base peak

resolution is an important parameter to assess spectrum quality

(high resolution is typically desired), our results suggest that spectra

with high reproducibility more commonly had lower base peak

resolutions. To investigate the possibility that our result was based

on anomalous spectra, we manually and rigorously examined each

spectrum to ensure each spectrum contained at least 5 peaks which

had intensities higher than 100 arbitrary units. These results

suggest that efforts to increase base peak resolution when

optimizing MALDI-TOF settings may not necessarily increase

spectrum reproducibility. Our results further suggest that a

conventional standard for assessing spectrum quality, base peak

resolution, may have more limited applicability to microbial

characterization via MALDI than to more traditional applications

of mass spectrometry (e.g., protein identification). Accordingly,

future attempts to optimize automated data acquisition should not

place undue emphasis on base peak resolution.

Effects of automated data acquisition parameters on
reproducibility

Statistical analysis was used to identify main effects and two-

factor interaction effects of automated data acquisition parameters

on reproducibility. The estimated effect for any factor or

interaction is the difference between the average response at the

high level of that factor or interaction and its low level. For

example, the estimated effect of factor A would be (if �yy represents

the response of interest): �yyz
A {�yy{

A . The plus and minus superscripts

represent values of the responses at the high and low levels,

respectively. If this difference is large (in absolute value) then factor

A would be considered statistically significant. The analysis of

Figure 2. Main effects plots. Effects of threshold minimum
resolution (A) and number of shots summed (B) on spectrum
reproducibility during characterization of P. aeruginosa using automat-
ed data acquisition with MALDI-TOF MS.
doi:10.1371/journal.pone.0092720.g002

Figure 3. Interaction of threshold minimum resolution and number of shots summed. Effects on spectrum reproducibility during
characterization of P. aeruginosa using automated data acquisition with MALDI-TOF MS.
doi:10.1371/journal.pone.0092720.g003
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variance results are displayed in Table 3. Factors and interactions

that had a p-value less than 0.05 were considered significant.

Based on the p-values, threshold peak resolution (D) (p-

value%0.013) and number of shots summed (E) (p-value%0.002)

were found to be significant. The main effects are shown in

Figure 2. The mean value of reproducibility obtained with the

high level of threshold resolution decreased in comparison with

that obtained with the low level of threshold resolution (Fig. 2A). It

is also illustrated in Figure 2 that the effect of number of shots on

reproducibility shows a positive trend, in which spectrum

reproducibility increased with the number of shots summed

(Fig. 2B).

An interaction between minimum resolution and number of

shots summed (D*E) (p-value % 0.028) was observed (Fig. 3)

indicating that the number of shots summed is more important in

the case of higher threshold resolution (e.g., 400). In contrast,

when using a lower threshold resolution, for example 100, fewer

shots appeared to yield reproducibility comparable to that

obtained using more shots and a higher threshold resolution

(Fig. 3). This finding is intriguing, because it suggests that fewer

shots may be used to obtain spectra of reproducibility comparable

to that obtained with many more shots. Reducing shot number has

the potential to reduce the time required for analysis. This might

be particularly valuable information in a clinical microbiology lab

setting in which the number of samples processed per day is very

high.

A prediction equation (Eq. 1) was fitted for P. aeruginosa to

predict reproducibility for each experimental run, where ŷ is

predicted reproducibility (%), D is threshold minimum resolution

and E is number of shots summed.

ŷy~93:64{1:29Dz3:255Ez0:876D � E ðEq: 1Þ

Based on the interaction plot (Fig. 3), setting the number of

shots at 500 and resolution at 100 yielded an overall higher

average reproducibility than any other combination of the two

Figure 4. Representative mass spectra acquired via non-optimized and optimized automation settings. Mass spectra of P. aeruginosa, K.
pneumoniae and S. marcescens were acquired via non-optimized and optimized settings using automated data acquisition with MALDI-TOF MS.
doi:10.1371/journal.pone.0092720.g004
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factors. A response optimization algorithm was also used to find

best combinations of threshold minimum resolution and number

of shots summed for high reproducibility. This showed the same

settings as the interaction plot suggested (data not shown). As a

result, we input the threshold minimum resolution at its low level

and number of shots summed at its high level, which were 21 and

+1, respectively, into the fitted equation (Eq.2). As shown in Eq. 2,

the predicted reproducibility for P. aeruginosa was 97.3%.

ŷy~93:64{1:29({1)z3:255(z1)z0:876({1) � (z1)

~97:3
ðEq: 2Þ

Effects of optimization on automated data acquisition
Finally, we compared spectrum quality and reproducibility

using non-optimized and optimized automated data acquisition

settings. The non-optimized settings were previously described

[11], in which peak selection ranged from 2 to 20 kDa; S:N was 2;

base peak intensity was 100; minimum resolution was 400 and

number of shots summed was 300. The optimized settings were

those used in Eq. 2 as described above.

Representative mass spectra obtained before and after optimi-

zation are shown in Figure 4, and corresponding spectrum quality

and reproducibility metrics are summarized in Table 4. Generally,

base peak intensity, number of peaks, and mass range increased

when optimized data acquisition settings were used for all three

bacteria (Table 4; Fig. 4). No difference was observed for S:N

between non-optimized and optimized settings. With regard to

base peak resolution, spectra obtained using optimized settings had

a lower base peak resolution than those obtained using non-

optimized settings for all three bacteria.

Optimization increased spectrum reproducibility (Table 4). For

example, reproducibility for P. aeruginosa, K. pneumoniae and S.

marcescens before optimization was 90.465.5%, 93.665.1% and

84.669.9%, respectively, while after optimization, reproducibility

was 97.261.2%, 97.561.8% and 93.962.9%, respectively

(Table 4). Multidimensional scaling (MDS) was used to visualize

effects of optimization on reproducibility (Fig. 5). For all three

bacteria, replicate spectra (20 replicates for each bacterium)

acquired using optimized settings grouped more closely than

replicate spectra (20 replicates for each bacterium) acquired

without optimization.

The reproducibility (97.2%) of P. aeruginosa using optimized

settings was strikingly similar to that predicted using the fitted

equation (97.3%). Values of peak selection mass range, S:N and

threshold peak intensity can have multiple selections. Other

selections of these three parameters with constant values of

threshold minimum resolution (100) and number of shots summed

(500) also yielded spectra with reproducibility comparable to

predicted values (data not shown).

We further compared the reproducibility obtained using

optimized automated data acquisition settings with reproducibility

previously reported which was obtained from spectra acquired

manually [11]. They were comparable for all three bacteria.

Specifically, reproducibility reported previously for manual data

acquisition was 96% to 97% for P. aeruginosa, 95% to 96% for K.

pneumoniae and 93% to 96% for S. marcescens [11]. For automated

data acquisition using optimized settings, the reproducibility was

approximately 97% for P. aeruginosa, 98% for K. pneumoniae and

94% for S. marcescens (Table 4).

The optimized settings were effective in increasing spectrum

reproducibility for bacteria beyond the one that served as the
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model for optimization, suggesting that these settings, to some

extent, are effective in improving the reproducibility of spectra for

a range of bacteria. However, our model and equation are based

on data acquired using P. aeruginosa, a Gram-negative bacterium.

With regard to other bacteria, particularly Gram-positive bacteria,

the relevance of settings obtained here may have limited utility,

and coefficients of models may need to be adjusted. Accordingly, it

may be necessary to run designed experiments for specific strains

to obtain unique optimum settings. Conversely, such optimization

may not always be necessary. For example, Mellmann et al. 2009

[49] reported high reproducibility using parameters for automated

data acquisition that had not been rigorously optimized for the

bacteria characterized in that work.

Conclusions

A fractional factorial design was applied to optimize five data

acquisition parameters (peak selection mass range, S:N, threshold

peak intensity, threshold minimum resolution and number of shots

summed) and one response (reproducibility of replicate spectra).

Both threshold minimum resolution and number of shots summed

affected reproducibility, and an interaction was observed between

these two data acquisition parameters. In the case of low threshold

minimum resolution, high reproducibility could be achieved with

fewer shots. After optimization, reproducibility of replicate spectra

approached/exceeded those obtained manually for P. aeruginosa, K.

pneumoniae and S. marcescens, suggesting that the main effects and

interaction found in this study may be applicable to a broad range

Figure 5. Multidimensional scaling (MDS) representation of spectrum reproducibility. MDS representing reproducibility associated with
spectra of P. aeruginosa (A), K. pneumoniae (B) and S. marcescens (C) acquired via non-optimized (red) and optimized (green) settings.
doi:10.1371/journal.pone.0092720.g005

Optimization of Automated MALDI Data Acquisition

PLOS ONE | www.plosone.org 9 March 2014 | Volume 9 | Issue 3 | e92720



of bacteria. To our knowledge, this is the first report of use of

designed-experiments to optimize automated data acquisition

during MALDI-TOF fingerprint-based experiments.
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