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Extensive literatures have shown approaches for decoding upper limb kinematics or

muscle activity using multichannel cortical spike recordings toward brain machine

interface (BMI) applications. However, similar topics regarding lower limb remain relatively

scarce. We previously reported a system for training monkeys to perform visually guided

stand and squat tasks. The current study, as a follow-up extension, investigates whether

lower limb kinematics and muscle activity characterized by electromyography (EMG)

signals during monkey performing stand/squat movements can be accurately decoded

from neural spike trains in primary motor cortex (M1). Two monkeys were used in this

study. Subdermal intramuscular EMG electrodes were implanted to 8 right leg/thigh

muscles. With ample data collected from neurons from a large brain area, we performed

a spike triggered average (SpTA) analysis and got a series of density contours which

revealed the spatial distributions of different muscle-innervating neurons corresponding

to each given muscle. Based on the guidance of these results, we identified the locations

optimal for chronic electrode implantation and subsequently carried on chronic neural

data recordings. A recursive Bayesian estimation framework was proposed for decoding

EMG signals together with kinematics fromM1 spike trains. Two specific algorithms were

implemented: a standard Kalman filter and an unscented Kalman filter. For the latter

one, an artificial neural network was incorporated to deal with the nonlinearity in neural

tuning. High correlation coefficient and signal to noise ratio between the predicted and the

actual data were achieved for both EMG signals and kinematics on both monkeys. Higher

decoding accuracy and faster convergence rate could be achieved with the unscented

Kalman filter. These results demonstrate that lower limb EMG signals and kinematics

during monkey stand/squat can be accurately decoded from a group of M1 neurons

with the proposed algorithms. Our findings provide new insights for extending current
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BMI design concepts and techniques on upper limbs to lower limb circumstances. Brain

controlled exoskeleton, prostheses or neuromuscular electrical stimulators for lower

limbs are expected to be developed, which enables the subject to manipulate complex

biomechatronic devices with mind in more harmonized manner.

Keywords: lower limb motor control, primary motor cortex, cortical neuronal encoding, electromyography (EMG),

Kalman filter, nonhuman primates

1. INTRODUCTION

Brain machine interface (BMI), which translates the activity of
cortical neurons into specific motor output commands, has been
assumed as a promising approach to help patients who have lost
normal motor functions due to spinal cord injury or other neural
impairments to restore fundamental skills in daily living (Serruya
et al., 2002; Andersen et al., 2004; Schwartz, 2004; Lebedev and
Nicolelis, 2006; Hatsopoulos and Donoghue, 2009). Extensive
literatures have shown successful realization of the concept of
BMI on both nonhuman primates (NHP) and human subjects
(Wessberg et al., 2000; Taylor et al., 2002; Carmena et al., 2003;
Hochberg et al., 2006; Kim et al., 2008; Velliste et al., 2008; Hwang
and Andersen, 2009; Carpaneto et al., 2011; Hochberg et al.,
2012; Wodlinger et al., 2014). Among the existing BMI studies,
the majority is concerned with using motor cortical activity
to decode the movements of upper limbs. Previous literatures
have shown two-dimensional or three-dimensional hand/arm
trajectories when monkey performing cursor tracking, joystick
playing, target-pursuit or center-out tasks can be extracted from
neural spike trains using linear regression (Moran and Schwartz,
1999; Gao et al., 2003; Hatsopoulos et al., 2004; Kemere et al.,
2004; Paninski et al., 2004; Linderman et al., 2008), artificial
neural networks (ANN) (Fang et al., 2010; Huang et al., 2011;
Wang et al., 2014), or different variants of Bayesian filtering
algorithms (Wu et al., 2002; Brockwell et al., 2004; Wu et al.,
2006; Li et al., 2009; Wu et al., 2009; Wang and Principe,
2010; Kang et al., 2015; Menz et al., 2015; Hotson et al., 2016).
Analogous approaches were also proposed for predicting arm
electromyograph (EMG) signals from the discharge activity of an
ensemble ofmotor neurons ormulti-channel local field potentials
(Morrow and Miller, 2003; Pohlmeyer et al., 2007; Nazarpour
et al., 2012; Shin et al., 2012; Liao et al., 2015). In fact, among
the existing population of neural trauma victims, a large portion
suffer from the inability of standing and walking (Qin et al.,
2010). With the expectation of helping them, researchers have
begun to seek possible realizations of BMI systems for lower
limb motor function restoration. Some studies have tried to
unscramble the information correlating with user intentions
(Kilicarslan et al., 2013) or lower limb kinematics (Presacco
et al., 2011, 2012; He et al., 2014; Luu et al., 2016) or surface
EMG signals (Paek et al., 2013) during treadmill walking or
sitting/standing (Bulea et al., 2014) from noninvasive scalp
electroencephalographic (EEG) signals. To gain more specific
information about how cortical neurons modulate their activities
to initiate and control lower limb movements, it is expected to
directly collect neural activity from the cerebral cortical areas
related to lower limbs using invasive electrodes. However, there

are relatively scarce reports about these due to the lack of
proper experimental paradigms or apparatus and the difficulties
in locating the exact functional cortical areas related to lower limb
movements compared to the cases in upper limb. Nicolelis et al.
(Fitzsimmons et al., 2009) extracted kinematic parameters for
monkey bipedal walking from cortical neuronal ensemble activity
and proposed possible approaches to control artificial actuators
that reproduce walking patterns.

The construction of BMI lies on the detection of cortical
neuronal representations of limb movements. Generally
speaking, the control and organization of movements are often
considered different for upper limb and lower limb (Winters
and Woo, 2012). For example, bipedal locomotion of human is
dynamically controlled by the skillfully coordinated activations
of the redundant lower limb muscles. Under normal conditions,
the activations of these muscles are controlled by both specialized
neural circuits in spinal cord known as central pattern generator
(CPG) and command signals directly from the brain (Ogihara
and Yamazaki, 2001; Vogelstein et al., 2006). Here we concentrate
a fundamental lower limb voluntary movement: stand and squat.
We previously reported a system for training monkeys to
perform visually guided stand and squat tasks (Ma and He,
2010). Neuronal ensemble activity from the representation area
of the lower limbs in the primary motor cortex (M1), subdermal
intramuscular EMG signals in lower limb muscles, and motion
trajectories were recorded synchronously with the task. In an
acute data recording session, we have detected manyM1 neurons
tuned to certain task events (Ma et al., 2015).

In this study, we immediately followed our previous work
to investigate issues related to neural decoding toward BMI
applications. To what extent do neurons in M1 participate the
initiation or maintenance of lower limb voluntary movements?
Are the neurons showing correlation with certain task events we
have observed sufficient for decoding both lower limb muscular
activity and kinematics? Which computational models are better
for describing the neuronal representation of such visual guided
stand/squat movements? We were also curious about whether
analogous methods which have been proven practical in upper
limb scenario as mentioned above could achieve the same
performance in lower limb cases. With the guidance provided
by the data collected in acute recording sessions, we identified
those locations where more task related neurons clustered, and
subsequently carried out chronic electrode array implantation.
A recursive Bayesian estimation framework was proposed for
decoding EMG signals together with kinematics from cortical
spike trains. Two specific algorithms were implemented and
compared: a standard Kalman filter and an unscented Kalman
filter. For the latter one, an artificial neural network was
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incorporated to deal with the nonlinearity in neural tuning. Our
results indicate that lower limb EMG signals and kinematics
during monkey stand/squat can be accurately decoded from the
activity of M1 neurons.

2. MATERIALS AND METHODS

2.1. Overview
The data used in this study were collected from two male
Rhesus monkeys (monkey 1 and monkey 2). During earlier
experimental stage, acute neural recordings were performed for
locating the exact brain areas corresponding to the stand/squat
movements. After that, chronic electrode array implantation and
data recordings were carried out subsequently. In both acute
and chronic data recording sessions, subdermal intramuscular
EMG signals and limb trajectories were synchronously recorded.
Details about animal behavioral training, surgery and some
preliminary results of the acute neural data recordings can be
found in our previous papers (Ma and He, 2010; Ma et al., 2015).
The animal behavioral training and the actual experimental
protocols was designed and implemented at Arizona State
University (ASU). The experiments were complied with NIH
policy on Humane Care and Use of laboratory animals, and were
approved by the institutional Animal Care and Use Committee
of ASU.

2.2. Behavioral Tasks
The monkey performed stand/squat tasks following a series of
visual cues in a virtual reality environment. Restrained in a special
designed primate chair shown as Figure 1A, with the head and
both arms fixed and both legs staying on the movable pedal, the
monkey could stand upright by pushing down the movable pedal
or squat down by contracting legs back. A marker for optical
tracking was placed at the animal’s right ankle, corresponding to
a red ball in the virtual environment, which was defined as the
ankle cursor.

The procedures of the behavioral task in a typical successful
trial are shown in Figure 1B. The emerging of a green box at the
bottom of the screen indicated the start of a trial (Center On). To
proceed, themonkeymust squat down andmake the ankle cursor
touch the green box (Center Hit). Once the box was touched,
its color turned to red immediately. A short time later, a green
ball (Target) emerged at the top of the screen (Target On). When
perceiving this, the monkey should stand up and push down
the pedal to move the ankle cursor toward the target until their
positions were matched (Target Hit). The time point when the
ankle cursor left the bottom box was defined as Center Release,
at which the bottom box turned back to green. The monkey was
trained to fully extend the legs to hit the target green ball and
hold this standing posture up to about 400 ms. After that, it was
required to squat by retracting the legs andmake the ankle cursor
move toward the starting position (Target Release). When the
ankle cursor touched the bottom box again (Center Hit Again),
the phase of squatting was finished. About 100 ms later, a trial
was completed, and the monkey will receive several drops of
water as the reward. Each trial was preceded by an inter-trial
interval (varied randomly from 5 to 10 s) when the screen was

illuminated with bright blank scene to prevent dark adaptation
since the room was in low light condition.

2.3. Data Collection and Preprocessing
2.3.1. Acute Neural Data Recording
For acute neural data recordings, five independently controllable
electrodes were transdurally insert into the target brain area
(Figure 1C) in the left hemisphere with a multi-electrode micro-
drive (Thomas Recording, Germany). Extra-cellular neural
signals were amplified, filtered and recorded with a 64 -channel
Plexon MAP system (Plexon Inc., Dallas, TX) at 40 kHz/channel
sampling rate. Every 40 successful trials were grouped to form
a recording dataset. When a dataset was finished, the locations
or penetrating depth of the electrodes will be changed. The
locations for electrode penetrating can be found in Figures 1D,E

for each monkey. Putative neuron units were isolated through
spike sorting based on the clustering of detected action potential
waveforms in principal components (PC) feature spaces using
the Offline Sorter (Plexon Inc., Dallas, TX) software. For each
putative neuron, the coordinates corresponding to the electrode
were recorded as its location. By calculating the spike counts in
consecutive 30 ms nonoverlap bins, discrete spike times were
transformed into a firing rate sequences for further analysis.

2.3.2. EMG Data Collection
Separate surgical procedures were performed to implant Teflon
coated stainless steel wire electrodes into 8 muscles on each leg,
as listed below: right and left soleus (RS and LS), right and left
tibialis anterior (RTA and LTA), right and left semitendinosus
(RST and LST), right and left recutus femoris (RRF and LRF),
right and left extensor digitorum longus (REDL and LEDL), right
and left flexor digitorum longus (RFDL and LFDL), right and left
adductor magnus (RMG and LMG), right and left flexor hallucis
longus (RFHL and LFHL). The EMG signals were recorded at a
sampling rate of 1 kHz. Only signals from the right leg were used
in further analysis. Raw EMG signals were full-wave rectified and
filtered with a 4-pole 10 Hz low-pass Butterworth filter to get
nonnegative envelops.

2.3.3. Kinematic Data Collection
The position of the ankle LED marker were captured by a VZ
2000 tracker (PTI, Canada) with a sampling interval of 15 ms
and recorded synchronously with the neural data. The velocity
of the ankle was approximated by calculating the difference
between the position of the marker at current time and that
at the previous time, while the acceleration from the velocity
in the same way. Since the monkey was restrained on the
primate chair when performing repetitive stand/squat behaviors,
it is obvious that only the dimension corresponding to the
axis perpendicular to the transverse plane (z axis) changed
significantly in differentmovement stages. In fact, motion data on
the other two dimensions remained almost invariant during the
whole movement. Therefore, we defined the kinematics vector
as the instantaneous position, velocity and acceleration of the
ankle marker at the z axis. The EMG signals and kinematics were
also down-sampled to match the bin size of the neural firing rate
sequences.
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FIGURE 1 | The experimental setup. (A) The specially designed primate chair for the stand/squat tasks. (B) The monkey experimental protocol and the definition of

behavior events. (C) The target brain area for electrode implantation. ArS, Arcuate Sulcus; CS, Central Sulcus; IPS, Intraparietal Sulcus. (D) Locations of acute

electrode penetrations and chronic electrodes for monkey 1. The red dots indicate the locations of acute electrode penetrations, and the 4 blue rectangles indicate the

locations of the 4 chronically implanted microelectrode arrays. These locations are close to the midline (0 mm of the horizontal axis). PA, posterior- anterior. DL, dorsal-

lateral. (E) Locations of acute electrode penetrations and chronic electrodes for monkey 2. The meanings of markers in the plot are the same as those in (D).

2.3.4. Identifying Neural Facilitation of Muscle

Activation
During the acute data recording session, we have explored a
wide region in M1. To determine the optimal locations for
chronic electrode implantation, it was necessary to identify those
areas which clustered more neurons with high predictive power
on EMG signals or motion trajectories. Here we calculated the
spike triggered average (SpTA) of each neuron-muscle pair to
examine if a given M1 neuron facilitated certain lower limb
muscle activation.

Previous studies have demonstrated how the SpTA of EMG
signals can be used to identify the synaptic connectivity between
cortical neurons and the motor units of activated limb muscles
(Fetz and Cheney, 1980; McKiernan et al., 1998; Griffin et al.,
2008). By taking into account post-spike characteristics of the
averaged EMG such as the onset latency, peak magnitude and
duration, SpTA can be used as a predictor of the quality and
strength of facilitative contribution that a detected cortical
neuronmay have in relation to a givenmuscle (Baker and Lemon,
1998; Aguayo et al., 2009).

For each neuron-muscle pair, the SpTA was calculated by
averaging full-wave rectified EMG segments for all successful

trials starting 20 ms prior to until 60 ms after a spike event. For
each SpTA, a baseline mean and standard deviation (SD) were
calculated using the 20–10 ms of the SpTA prior to the spike
event. The onset latency is defined as the point that the SpTA
crosses a threshold defined by the baseline mean + 2 SD after the
spiking events for the first time. Similarly, offset latency is defined
as the point that the SpTA falls below a threshold (baseline mean
− 2 SD). The peak magnitude is defined as the peak value of an
SpTA after the spiking events minus the baseline mean. The peak
width at half magnitude (PWHM) is defined as the width of the
SpTA at a level that is half the measured peak. A neuron-muscle
pair will be considered to have no dependency relationship and
eliminated from statistics if the onset latency of the SpTA is less
than 5 ms or greater than 15 ms, or the PWHM of the SpTA is
less than 0.75 ms or greater than 9 ms.

After scanning enough datasets, a number of neurons which
were considered to facilitate the activation of each given muscle
were identified from the ensemble. The densities of different
muscle-innervating neurons were calculated with regard to each
muscle as the number of identified neurons divided by the
total number of neurons recorded in an unit brain area. By
plotting a series of density contours, the spatial distributions of
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these muscle-innervating neurons can be directly perceived and
utilized to determine the locations for chronic implantation.

2.3.5. Chronic Neural Data Recording
About 1 month after the acute recording session, new surgeries
were performed to implant 4 microelectrode arrays chronically
into the selected brain areas for each monkey (Figures 1D,E).
There were 16 polyimide insulated tungsten electrodes on each
array as the recording channels, which were arranged with two
rows. The diameter of each electrode was 50 microns. The
spacing between electrodes in each row was 250 microns and
the spacing between each row was 500 microns. In the following
chronic neural data recording session, behavior tasks for monkey
training and protocols for data recordings remained consistent.

2.4. Neural Decoding Algorithms
The purpose of the neural decoding algorithm is to use cortical
spike trains to estimate the lower limb EMG signals together
with the kinematics during the stand/squat tasks. We formulated
the problem in a recursive Bayesian estimation framework
(Bergman, 1999), where the activity of eachmuscle, characterized
by corresponding EMG signals, or the motion of the limb,
represented by the kinematics, were viewed as hidden states of
a dynamic system, while cortical spiking data acquired by the
implanted microelectrodes as constantly updated measurements
to the system. In the following sections, we first introduce the
general basics of the recursive Bayesian estimation theory we
count on, and then describe the two specific algorithms for
practical implementation in this study.

2.4.1. Recursive Bayesian Estimation
Here xk denotes the system states at the k-th time instant
tk = k1t. For EMG decoding, xk is specified as xk =

[u1(k), u2(k), · · · , uM(k)]T , where um(k),m = 1, · · · ,M is the
EMG envelop amplitude of the m th muscle at time tk, and
M is the total number of muscles. For kinematics decoding,
xk is specified as xk = [z(k), v(k), a(k)]T , representing the z-
position, z-velocity and z-acceleration of the ankle marker at
tk. Meanwhile, yk denotes the measurement to the system at
tk, which is in fact a vector containing the spike counts of C
neurons in the k th time bin. The estimation consists of two steps:
prediction and update. The aim is to construct the a-posterior
probability density function p(xk|y1:k) for xk conditioned on all
available measurements up to tk (y1:k).

In the prediction step, the a-priori distribution of xk is
estimated from the states at previous time instants. In terms of
an usually made assumption that xk is generated by a Markov
process, we have

p(xk|y1:k−1) =

∫

p(xk|xk−1)p(xk−1|yk−1)dxk−1 (1)

where p(xk|xk−1) models how the system state evolves from
current time to the next, and p(xk−1|yk−1) corresponds to the
a-posterior probability for the previous time instant.

In the update step, the a-posterior prediction is obtained by
correcting the a-prior prediction with the information provided

by the new measurement data yk:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)
= αp(yk|xk)p(xk|y1:k−1) (2)

where p(yk|xk) reflects the mapping between the system
states and the measurements, called the likelihood term, and
p(yk|y1:k−1) is a normalization constant α that can usually be
ignored.

Following Equations (1) and (2), p(xk|y1:k) can be calculate
recursively. In practical implementation, it requires to have
closed form solutions to these general equations. Here we
explored two specific algorithms, the Kalman filter (Grewal,
2011) and the unscented Kalman filter (UKF) (Julier et al., 1995)
for estimating the EMG signals and kinematics recursively from
the cortical signals, and details are described as follows.

2.4.2. Kalman Filter
For the implementation of the Kalman filter, the state transition
and the measurement model were both assumed linear and with
Gaussian noise. Supposing model parameters are time invariant,
these models can be written as:

xk = Axk−1 + wk (3)

yk = Hxk + qk (4)

where A is the state transition matrix, H is the measurement
matrix. For EMG decoding, A,W ∈ R

M×M , H ∈ R
C×M ,

and for kinematics decoding, A,W ∈ R
3×3, H ∈ R

C×3. The
random variables wk ∼ N (0,W) and qk ∼ N (0,Q) denote
the process and the measurement noise respectively.A andH are
fitted from the training data via a least square linear regression
approach, while Q andW are regression residuals. Let x̂−

k
and x̂k

represent the a-prior estimation and the a-posterior estimation of
the system state, the error covariance matrices can be defined as

P−
k
= E[(xk − x̂−

k
)(xk − x̂−

k
)T]

for the a-prior estimation, and

Pk = E[(xk − x̂k)(xk − x̂k)
T]

for the a-posterior estimation.
The estimation started from a prediction step:

x̂−
k
= Ax̂k−1

P−
k
= APk−1A

T +W
(5)

Subsequently, x̂k was obtained via an update step with the new
measurement data at tk:

x̂k = x̂−
k
+ Kk(yk −Hx̂−

k
)

Pk = (I− KkH)P−
k

(6)

where Kk = P−
k
HT(hHP−

k
HT + Q)−1 is known as the Kalman

gain.
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2.4.3. ANN Based Neural Tuning Model
For the update procedure of recursive Bayesian estimation
indicated by Equation (2), knowledge about the mapping from
system states to the measurements is required. Here it means
a more appropriate model describing the neuronal modulation
of muscular activity and limb movements should be selected.
Previous studies have indicated that different hierarchically
organized components, including the motor cortex and several
subcortical structures and also circuits in the spinal cord, are
involved in the neural motor control process (Kandel et al.,
1995; Harel et al., 2008). Therefore, much nonlinearity exists for
the neuronal modulations to movements, which is difficult for
modeling with classical parametric techniques. The linear model
(4) is actually a straightforward approximation for the neuronal
modulations. Although easy for implementation, it may not be
consistent with the actual neural system. It is expected to have a
model which can reflect the intrinsic nonlinearity of the neural
control process.

Here we utilized a feed-forward single hidden layer ANN
to construct the model for neuronal modulations to EMG and
kinematics. With the ability of approximating any complex
nonlinear mappings directly from the input samples, ANN has
been widely applied in many fields (Suykens et al., 2012), and
is assumed to be efficient for the modeling of the neuronal
modulations. The proposed feed-forward network included an
input layer, a hidden layer and an output layer. Each neuron
in one layer had directed weighted connections to those in
the subsequent layer. Sigmoid functions were applied as the
activation functions for the hidden layer neurons. Parameters
of the network, including the connection weights and activation
thresholds, were determined through a learning process. The
modeling errors were fed back through the network via a
back-propagation mechanism, and a gradient descent method
was adopted for parameters adjusting in every learning epoch
(Graupe, 2013). The ANN based measurement model can be
written as:

yk = net(xk) (7)

where net(·) represents the neural network. For EMG decoding,
net(·):RM → R

C and for kinematics decoding, net(·):R3 → R
C.

2.4.4. Unscented Kalman Filter
As an improved algorithm to the Kalman filter, the unscented
Kalman filter (UKF) incorporates nonlinear models in
estimation, and uses a nonstochastic simulation to approximate
the nonlinearity (Julier et al., 1995). The basic procedure for
the UKF is the unscented transform, a deterministic sampling
technique for approximating a given probability distribution
with a series of weighted sample points (Sigma points), which
has been proven superior to other ordinary linearization or
approximation methods (Wan and Van Der Merwe, 2000).

In our implementation, the system states were still assumed
to evolve according to a linear function as Equation (3) in the
prediction step, while the mapping from the system states xk to
the measurements yk was computed according to the ANN based
model (7) in the update step.

Let d denote the dimension of the state variable. A set of
2d + 1 Sigma points were generated from x̂−

k
and P−

k
through

the unscented transform:

X
−(0)
k

= x̂−
k

X
−(i)
k

= x̂−
k
+

√

d + λ[
√

P−
k
]i

X
−(i+d)
k

= x̂−
k
−

√

d + λ[
√

P−
k
]i, i = 1, 2, ..., d

(8)

where [·]i denotes the i-th row of the matrix, λ = α
2(d + κ) − d

is a scaling parameter and α and κ determine the spread of
the sigma points around x̂−

k
. The square root of the matrix P−

k
was obtained by calculating the Cholesky decomposition. These
Sigma points were propagated through Equation (7) to get the
transformed results:

Ŷi
k = net(X

−(i)
k

), i = 0, 1, ..., d, ..., 2d (9)

The predicted mean and covariance of the measurement, and the
cross-covariance between the state and the measurement were
calculated from these transformed Sigma points:

Ŷk =

2d
∑

i= 0

wiŶ
(i)
k

PYYk =

2d
∑

i= 0

wi(Ŷ
(i)
k

− ŷk)(Ŷ
(i)
k

− ŷk)
T +Q

PXYk =

2d
∑

i= 0

wi(X
−(i)
k

− x̂−
k
)(Ŷ

(i)
k

− ŷk)
T +Q

(10)

where wi are a series of constant weights:

w0 =
λ

d + λ

wi =
1

2(d + λ)
, i = 1, 2, ..., 2d

The a-posterior estimate x̂k and corresponding error covariance
matrix Pk were finally obtained by:

x̂k = x̂−
k
+ Kk(yk − ŷk)

Pk = P−
k
− KkP

YY
k KT

k

(11)

where the Kalman gain was calculated as Kk = PXY
k

(PYY
k

)−1. The
initial value for the error covariance matrix P0 was set to the unit
matrix. Pk will show a convergent feature as the calculation of
Equations (8)–(11) at each time instant.

2.4.5. Performance Evaluation
Twometrics, Pearson’s correlation coefficient (CC) and the signal
to noise ratio (SNR) were used for the performance evaluation of
the algorithms.

CC is calculated from the actual signal x and the estimated
value x̂ for each channel by:

CC =

∑K
k= 1(xk − x̄)(x̂k − ¯̂x)

√

∑K
k= 1(xk − x̄)2

√

∑K
k= 1(x̂k −

¯̂x)2
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where K is the length of the signal. An CC value close to 1
indicates better fit between the real and estimated data.

SNR is defined as the ratio between the variance of the actual
data and the mean square error (MSE) of the estimates, and is
calculated as:

SNR = 10 log10

∑K
k= 1(xk − x̄)2

∑K
k= 1(x̂k − xk)2

for each channel. It is quantified in decibels (dB) scale, where 0
dB means the signal and the noise are in equal proportion, and
larger positive value means more useful signals are extracted. The
SNR is sensitive to the errors introduced by amplitude scaling and
offsets, and has also been adopted in Fitzsimmons et al. (2009).

3. RESULTS

3.1. Synchronized Multiple Data
Recordings
Synchronized multiple data recorded during 2 successive trials
from monkey 1 is shown in Figure 2, including the spike trains
of 16 task-related neurons (Figure 2A), the raw EMG signals of 5
right lower limb muscles (Figure 2B), and the trajectories of the
marker attaching on the monkey’s right ankle (Figure 2C). The
occurring time instants for certain behavior events are indicated
by short bars at the bottom. Data within the inter-trial interval
(about 5 s) are omitted for displaying. Notably, the firing rates
of most cortical neurons kept low when resting (quiet squatting,
Center Hit to Target On). An ensemble of neurons began to
discharge more frequently after target presenting (Target On),
while their firing rates have been on a significant increase during
such pre-movement epoch (Target On to Center Release). Later,
amplitude oscillations were observed for some EMG channels
around the initiation of the standing (Center Release), indicating
the activation of corresponding muscles. For the subsequent
epochs involving standing up (Center Release to Target Hit),
standing still (Target Hit to Target Release), and squatting down
(Target Release to Center Hit Again), some obvious event-related
neural discharging patterns can be revealed via a series of peri-
event histogram analyses, which have been reported in our
previous study (Ma et al., 2015). Compared to the previous
work, here we may go a further step to explore the neuron-
muscle associations more quantitatively for the neural decoding
problems based on these observational or statistical results.

3.2. Spatial Distributions of Different
Muscle-Innervating Neurons
In the acute neural recording session, we explored the M1 area
in the left hemisphere by changing the locations and penetrating
depths of independent movable electrodes at a distance of 1
mm. The exact range of the region was in the coordinate system
determined by the stereotaxic apparatus: 8.00–22.00 mm from
anterior to posterior (PA), 0.00–16.00 mm from dorsal to lateral
(DL), and 0.00–5.00 mm in the depth. A total number of 96
datasets were collected, and 1598 task-related neurons were
isolated (909 fromMonkey 1, 689 fromMonkey 2).

Based on the SpTA analyses mentioned above, the neurons
which may facilitate the activation of each given muscle were
identified from the ensemble. Figure 3 shows the density
contours of the identified neurons with regard to 8 muscles in
the horizontal (Figure 3A) and the coronal (Figure 3B) view
using the data from monkey 1. The central sulcus (CS), as a
prominent landmark, is also indicated designedly in the plots.
All density values are normalized to [0, 1] and smoothed by a
median filter. The hotter color indicates the higher density. These
plots are to some extent “maps” for finding the neurons which
may contribute to improving the accuracy of the EMG decoding.
In the horizontal view, several concentration centers of muscle-
innervating neurons for the 8 muscles can be clearly identified
(Figure 3A). In the coronal view, we noticed that the depth
between 0.5 ∼2.5 mm was where muscle-innervating neurons
aggregated most densely (Figure 3B).

It is notable that some density contours are quite analogous,
like those for the RRF-innervating neurons and the RTA-
innervating neurons. But clear divergence exists for some other
groups, like the RRF and the REDL. Here we evaluated the
similarities of the spatial distributions of different muscle-
innervating neurons via a distance measure based cluster
method. To be specific, the density contours for different types
of muscle-innervating neurons can be viewed essentially a series
of matrices. The Euclidean distances between every two matrices
were calculated for a cluster analysis. The results of the cluster
are shown in Figure 4, for the horizontal (Figure 4A) and
the coronal view (Figure 4B) respectively, using the data from
Monkey 1. Several groups of muscles could be identified from
the cluster results: RRF and RMG, RFHL and RFDL, RTA and
REDL, either in the horizontal or the coronal view. Dramatically,
the results using the data fromMonkey 2 are almost the same.We
seek possible illustrations for these results with some knowledge
in anatomy. In fact, RMG and RRF are both thigh muscles.
RFHL and RFDL are leg muscles, and are both innervated by
the Tibial Nerve. RTA and REDL are also leg muscles, but are
innervated by the Deep Fibular Nerve (Moore et al., 2011).
These results suggest that, for muscles sharing larger similarities
in anatomy, the corresponding M1 neurons have closer spatial
distributions.

3.3. EMG Decoding
The chronic neural recording session lasted 2 weeks and 13
datasets were collected for each monkey. In each dataset, 40 ±

5 successful stand/squat trials were recorded, and an average of
34 task-related neurons can be identified from all detected units.
A 4-fold cross-validation was employed for model parameter
estimation, in which 3-folds were used for training and 1-fold for
testing.

Figure 5 shows typical plots of the predicted EMG
envelops(blue dashed line, by the standard Kalman filter;
red dash dot line, by the UKF) from a test subset in comparison
with the actual EMG signals(dark gray solid line) during 4
successive trials conducted by Monkey 1. The amplitude of all
signals are normalized to the interval [0, 1]. The exact time
of 5 important behavior events are indicated in each subplot
(light gray dashed line). It is perceived from the plots that both
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FIGURE 2 | Synchronized multiple data recorded during 2 successive trials from monkey 1. (A) Spike trains of 16 cortical neurons. Short bars indicates the

actual spiking time and each row corresponds to a neuron. (B) EMG signals of 5 lower limb muscles. (C) Position trajectories of the marker on the right ankle of the

monkey. The exact time instances of important behavior events are indicated on the bottom time line by short bars: Center Hit (CH), Target On (TOn), Center Release

(CR), Target Hit (TH), Target Release (TR), Center Hit Again (CH2), and the exact meaning of these events can be found in Section 2.2. Data within the inter-trial interval

(2–5 s) are omitted for displaying.

of the proposed decoding methods were capable to accurately
predict the overall trends of the EMG signals during the
standing and squatting task, as well as some significant waveform
features such as the quiescence before Target On, the gradual
amplitude increase during the pre-movement epoch (Target
On to Center Release), and the transient changes during the
movement stages. Compared to the standard Kalman filter, the
UKF method could produce more approximate EMG envelop
values. These results clearly imply that not only the timings for
muscle activation/relaxation, but also the strength of lower limb
muscular activity can be extracted from the cortical ensemble
signals.

Figure 6 shows the CC and SNR between the predicted
and real EMG signals in each channel for the 2 monkeys,
demonstrating the mean and the standard error of the mean
(SEM). It is suggested that the UKF based decoding method can
achieve higher CC and SNR values. For Monkey 1, the mean
CC values for 7 channels of EMG signals (RFDL, RRF, RST,
RTA, RMG, RS, REDL) were greater than 0.75, and the mean
SNR values for 6 channels (RFDL, RRF, RST, RTA, RMG, RS)
exceeded 3.5, when using the UKF as the decoding algorithm.
In contrast, when using the standard Kalman filter to predict
the EMG signals, there were only 4 channels (RFDL, RRF, RTA,
and RMG) of which the mean CC values exceeded 0.75, and

only 3 channels (RRF, RTA, and RMG) of which the mean SNR
value was greater than 3.5. Similar results can be perceived for
Monkey 2. Afterwards, we performed a right tail t-test with 416
observations (13 datasets, 4-folds, 8 channels of EMG signals)
and significance level α = 0.05 for each monkey to test
whether the UKF based method improved the EMG decoding
performance significantly. The t-test verified that the predicted
signals with the UKF had higher CC and SNR values compared to
those with the standard Kalman filter for all EMG channels (p <

0.001). In fact, the UKF improved the CC for 13.6% and the SNR
for 17.5%.

3.4. Kinematics Decoding
The same procedures for model training and testing as in
EMG decoding were adopted for the kinematics decoding.
Figure 7 presents the predicted trajectories for the position,
velocity and acceleration of the ankle marker in comparison
with the real data (dark gray solid line). It is shown that both
methods can provide reliable tracking for the trajectories of
the position when the legs of the monkey were moving either
downward or upward. For the velocity, the predictions can
approximate the overall trend but discrepancies were found
within some time intervals. However, both methods cannot
achieve satisfactory predictions for the acceleration. Table 1
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FIGURE 3 | The density contours of the identified neurons with regard to 8 muscles, generated with the data from monkey 1. The density values were

normalized to [0,1], and smoothed with a median filter, quantified by the color-bar. (A) Horizontal view. The x-axis represents the Dorsal-Lateral (DL) dimension and y

the Posterior-Anterior (PA) dimension. Each grid represents a 0.4 × 0.4 mm area. The white line indicates the position of the central sulcus. (B) Coronal view. The

x-axis still represents the DL dimension and the y-axis indicates the depth. The resolution of each grid is 0.4 × 0.4 mm.

FIGURE 4 | Cluster analysis based on the pattern of density contours of different muscle-innervating neurons corresponding to each given muscle. (A)

Clustering results on the horizontal view (DL-PA). (B) Clustering results on the coronal view (DL-depth).
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FIGURE 5 | Normalized actual EMG envelop waveforms (dark gray solid) and the reconstructed results by the standard Kalman filter (KF, blue dashed)

and the UKF (red dash dot) in four successive stand/squat trials. The data are from one of the chronic datasets from Monkey 1. The subplot in each row

corresponds to a muscle, where the name is labeled on the left. The occurring time of 5 important behavior events are indicated by a series of light gray dashed lines

in each subplot, where the names of 3 events could be found on the top line of the figure: Target On (TOn), Target Hit (TH), and Center Hit Again (CH2). The event

occurring right before Target Hit is Center Release, and the event right after Target Hit is Target Release. The exact meaning of the behavior events can be found in

Section 2.2. The CC between the actual and predicted signals are listed on the right of each subplot for the two algorithms.

summarizes the CC and SNR between the predicted and real
trajectories (mean± SEM). For tracking the position, high mean
CC and SNR values were achieved. A right tail t-test with 52
observations (13 datasets, 4-folds) and significance level α =

0.05 for each monkey verified the superiority of the UKF based
method (p < 0.001). For approximating the velocity, the CC
and SNR values were relatively low, but higher than 0.5. For
decoding the acceleration, both algorithms encountered not good
enough performance, with the mean of the CC < 0.5, and
SNR < 1.

3.5. Stability Analysis of the Neural
Decoding Algorithms
We examined the stability of the neural decoding algorithms
by investigating the convergence of the a-posteriori estimate

error covariance matrix Pk and the Kalman gain Kk. The matrix
Pk defines the estimation error at each time step, while Kk

represents the relative importance of the measurement residual
with respect to the a-prior estimation x̂−

k
. For reliable estimations,

it is expected that the errors converge to considerable small
values as the recursive iteration increases. As Pk gets small,
it means there is no requirement to alter the estimation too
much at each time instant, therefore, Kk will also get small. So
the numerical stability of Pk and Kk are appropriate indexes
for evaluating the stability of the neural decoding algorithms.
Figure 8 plots the L2 norm of Pk and Kk across iterations. It
is shown that the L2 norm of both Pk and Kk converge to a
small value after about 20–30 iterations. It is also suggested
that the UKF can achieve faster convergence rate for Pk
and Kk .
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FIGURE 6 | The CC and SNR for the EMG decoding. The mean and the standard error of the mean (SEM) are shown. The SEM is indicated by the error bar. (A,B)

are for Monkey 1. (C,D) are for Monkey 2.

FIGURE 7 | Real position, velocity and acceleration (dark gray solid) and the reconstructed results by the standard Kalman filter (blue dashed, KF) and

the UKF (red dash dot) in four successive trials. The CC values between the actual and reconstructed trajectories are listed on the right for each subplot.
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TABLE 1 | The CC and SNR values between the predicted and actual data for kinematics decoding (mean ± SEM).

Monkey 1 Monkey 2

CC SNR(dB) CC SNR(dB)

Prediction using Position 0.85 ± 0.05 5.53 ± 0.44 0.83 ± 0.05 5.05 ± 0.52

the standard Velocity 0.61 ± 0.06 1.58 ± 0.75 0.64 ± 0.05 1.67 ± 0.84

Kalman filter Acceleration 0.37 ± 0.05 0.55 ± 0.34 0.33 ± 0.03 0.45 ± 0.33

Prediction using Position 0.90 ± 0.05 6.12 ± 0.83 0.88 ± 0.05 5.93 ± 0.74

the UKF Velocity 0.66 ± 0.08 1.89 ± 0.95 0.68 ± 0.08 1.52 ± 1.17

Acceleration 0.36 ± 0.10 0.53 ± 0.58 0.34 ± 0.08 0.47 ± 0.27

FIGURE 8 | The L2 norm of the a-posteriori estimate error covariance matrix Pk (A) and the Kalman gain matrix Kk (B). The x-axis indicates the iterations (k)

and is expressed in logarithm form. Red solid line and black dashed line represent the UKF and the standard Kalman filter situation respectively.

4. DISCUSSION

In this study, we demonstrate feasible approaches for decoding
lower limb muscular activity and kinematics from cortical
neural signals during monkey performing a series of visual cued
stand/squat tasks in a virtual environment. This study provides
important insight regarding the cortical innervation of voluntary
lower limb movements, while previous work have paid ample
attentions to the upper limbs. The results clearly demonstrate
that lower limb EMG signals and kinematics can be predicted
from the firing rate sequences of multiple cortical neurons, which
suggests the possibility for more comprehensive lower limb BMI
systems.

The work in Bulea et al. (2014) has demonstrated sitting

and standing intention can be discriminated from scalp EEG

signals. However, more details about the timing and strength of

multiple muscle activity and kinematics are still difficult to be

extracted from the general noninvasive signals. There are not

too many literatures concerning lower limb motor control using

invasive methods due to the lack of systematic experimental

protocols like Center-Out in upper limb circumstance and the
uncertainty about brain areas for electrode implantation. Similar
to the work in Fitzsimmons et al. (2009), we performed invasive
neural recordings, but we concentrated voluntary stand/squat
instead of the cyclic bipedal walking. By exploring a wide

region in M1 with movable electrodes, we have identified the
spatial distributions of different muscle-innervating neurons
corresponding to each given muscle, which can provide
important guidance for implanting chronic electrodes. The
recursive Bayesian estimation based methods proposed here are
proved effective for implementation, and could produce accurate
EMG and kinematic estimation.

In Pohlmeyer et al. (2007), the prediction of EMG signals
of several arm and hand muscles in button pressing or grasp
movements captured most EMG features, and got R2 values
between 0.60∼0.70. In Li et al. (2009), the moving trajectories of
the hand of the monkey can be reconstructed off-line with SNR
between 2 and 5 dB, or CC between 0.6 and 0.9. In our study, the
neural decoding accuracies of the 8 lower limb muscles and the
ankle marker position are comparable to these studies (Figure 6,
Table 1). Such results suggest that current upper limb BMI design
concepts can be extended to lower limb occasions.

4.1. Implications for the Cortical Neural
Encodings of Voluntary Lower Limb
Movements
Previous upper limb BMI studies found neurons in M1 (Moran
and Schwartz, 1999; Paninski et al., 2004; Wahnoun et al., 2006;
Truccolo et al., 2008), ventral premotor cortex (Prabhu et al.,
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2009; Carpaneto et al., 2011), dorsal premotor cortex (Hao
et al., 2013) encode various task related parameters, like reaching
direction, joint orientation, or hand gestures, and have developed
different neural decoding algorithms based on such observations
(Hatsopoulos et al., 2004; Hao et al., 2013, 2014). As indicated in
Winters andWoo (2012), motor control process of lower limbs is
often considered different from that of upper limbs. We wonder
either abstract representation ofmovements or explicit encodings
of muscular activity and limb states can be extracted from the
neural responses in M1 lower limb area, which determines the
feasibility for constructing lower limb BMI systems.

Our findings suggest M1 neural ensemble may provide
specific encodings to the execution of such visual guided
standing/squatting task. When the visual cue was launched at
Target On, the animal commenced to plan its movement in order
to get success (Figure 1B). At this moment, the firing rates of
a large portion of neurons have begun to increase. After the
movement was initiated (at Center Hit), a good control about
the position of the legs must be maintained since the monkey
was required to match the ankle marker to the figures on the
screen in right sequence, while most neurons were observed
keeping relatively high firing rate. We think this fact reflects
the sustained activity of task-related neurons from planning to
executing in voluntarymovement. In contrast, most recordedM1
neurons showed high variant firing patterns and exhibited weak
modulation to the movement in a treadmill bipedal walking task
(Huo et al., 2010). The execution of walking can be attributed to
sort of cyclic movements, during which low level centers, like the
CPG, take over more control details. Thus, the synchronization
of M1 neural activity were absent. However, also in Huo
et al. (2010), almost all recorded neurons became increasingly
synchronized in firing patterns to each step, especially before and
during stance phase, when the monkey walked on the treadmill
after a spinal cord hemi-section surgery. These observations
imply that M1 neurons are intensively involved into the control
of walking when spinal cord is impaired. For the visual guided
standing/squatting tasks, accurate responses to certain cues must
be produced in time, of which the complexity is far more than the
cyclic walking, and beyond the spinal cord circuits can handle. To
sum up,M1 neurons participate the specific control of lower limb
movements more in those circumstances during which low level
centers are damaged or unable to produce accurate responses
for purposeful tasks. Compared to another bipedal walking study
(Fitzsimmons et al., 2009), the SNR for the predictions of EMG
signals on the right leg musculature was 1.55 ± 0.39, which was
lower than ours (Figure 6). This fact indicates the neural activity
patterns during the visual cued standing/squatting is sufficient for
achieving better decoding performance than the cyclic walking.

4.2. Functional Division of M1 Neurons
Corresponding to Muscles
To determine the best locations for chronic electrode
implantation, we investigated the contribution of a number
of M1 neurons to facilitate given muscles. In fact, the elaborate
organization of M1 neurons in lower limb control process
can be revealed by plotting the density contours of neurons

corresponding to each given muscle (Figure 3). The detected
neurons appear sort of functional division corresponding to
muscles or muscle groups. On one hand, there are significant
discrepancies among the spatial distributions of different
muscle-innervating neurons. On the other hand, analogous or
overlapping spatial distributions of neurons can be identified
for muscles innervated by the same nerve (Figure 4). The
spatial range of the lower limb representative area in M1 has
been repeatedly confirmed in the last decades using imaging
techniques such as functional magnetic resonance imaging
(fMRI), but the exact muscle-neuron associations and the
specific locations of different muscle-innervating neurons are
still not clear. Compared to these methods, the simultaneous
multiple data recordings in this study achieved better time and
spatial resolutions. Since the actual number of neurons is huge,
we cannot yet declare we have constructed an exact map between
M1 neurons and lower limb muscles. The most direct benefit is
that we are more clear about which locations are optimal for the
chronic electrode implantation. Meanwhile, these findings are
helpful for understanding the organizations of the motor control
pathway for lower limbs.

4.3. Nonlinear Method Achieves Better
Decoding Performance
We try to seek better computational models to relate the multi-
dimensional neural firing rate sequence to the EMG signals
or kinematics. It is noticeable that higher decoding accuracy
was achieved when using the UKF with an ANN based neural
tuning model to estimate the EMG signals and the trajectories
of the ankle position. Considering the intrinsic nonlinearity
in the neural system as described before, a linear model as 4
may not fit the real neural data very well, though it is easy
for implementation. The superiority of incorporating nonlinear
models for neural decoding has been revealed by some previous
studies. In Li et al. (2009), a quadratic neural tuning model
relating position, velocity with the binned neural firing rates
can considerably improve the decoding accuracy of the 2D
hand moving trajectory. In Pohlmeyer et al. (2007), the R2

between the real and predicted upper limb EMG signals was
0.69 when using linear estimation method, and increased to
0.75 when using nonlinear estimation method. The results in
these reports are consistent with ours as mentioned above. The
ANN reflected the nonlinearities between the system states to
be estimated and the observed multi-dimensional neural firing
rate sequences, and improved the decoding accuracy significantly
when it was incorporated as the measurement model in the
recursive estimation process.

4.4. EMG Decoding vs. Kinematics
Decoding
We notice that the decoding accuracies for the EMG signals
and kinematics are different. As shown in Figure 6, the mean
CC values for the 8 channels of decoded EMG signals are all
above 0.6, and the mean SNR values are all above 2 dB. For
the trajectories of the ankle marker position, the prediction is
accurate (mean SNR>5 and mean CC > 0.75). For velocity,
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the prediction captures the overall trend (SNR around 2 and
CC around 0.6). However, the estimation of the acceleration is
not satisfactory. In fact, the same situation have been noticed
in previous studies. In Wu et al. (2002), the reconstruction for
hand position and velocity are satisfactory while for acceleration
is poor. They thought the acceleration was a second order
difference of position, thus the measurements of it tended to be
very noisy in real data. They also indicated the acceleration has a
weak effect on the model relative to position and velocity.

After Target On, the monkey was in a plan stage, but actual
movement has not been initiated until Center Release. The actual
position, velocity and acceleration during the plan stage retained
still (Figure 7, real data). Although the overall prediction
accuracy for the ankle position was very high, the estimated
values often failed to capture such quiescence (Figure 7, upper
panel, predicted data). However, many neurons have begun to
fire intensively and the amplitudes of the EMG signals have
shown an analogous activated profile at the same time (Figure 7).
In contrast to the ankle position, the estimated EMG values
in this stage captured the dramatic increase of the real signals.
Generally speaking, EMG signals are stochastic and noisy, and
have greater bandwidth, which suggests more difficulties for the
neural decoding algorithms. So the mean CC and SNR for the
estimated ankle position trajectories are higher than those for the
estimated EMG signals. But compared to the kinematics, EMG
signals are closer to the cortical neural activity. When initiating
and maintaining a movement, M1 neurons modulate their firing
patterns to facilitate the contractile force in the skeletal muscles
via a hierarchic downstream pathway. The planned movement
are produced by the synergic activity of multiple muscles, and is
more indirect with the cortical neurons. So the estimated EMG
signals from the cortical activity can capture the trend of the real
signals well even in the pre-movement epoch.

4.5. Potential Applications for FES and
Mind Controlled Prostheses
The BMI technology constructs a bridge between the subject’s
mind and the external actuators. It has been assumed as the most
promising technique for neuro-prostheses control and neuro-
rehabilitation implementation. Here we expect the findings in
our explorations on monkey stand/squat behaviors could be
helpful for transforming BMI design concepts to potential clinical
applications.

One of the possible applications is using the predicted EMG
signals as the inputs of the functional electric stimulation (FES) to
activate specific lower limbmuscles of the paralyzed patients. FES
is an effective method for preventing the muscle mass loss and
promoting the functional recovery after nervous system lesion.
In Moritz et al. (2008), a monkey can directly control stimulation
of muscles using the activity of neurons in M1, thereby restoring
goal-directed movements to a transiently paralyzed arm. Here
we have demonstrated the timing and strength of the activity of
multiple lower limbmuscles can be predicted from cortical neural
spike trains. With the predicted data, the timing and intensity of
the FES for target muscles can be tuned according to the subject’s
mind to conduct more purposeful stimulation. Such approaches

are expected to achieve similar results as inMoritz et al. (2008) for
restoring various voluntary lower limb movements, like standing
and squatting.

The predicted lower limb kinematics could be incorporated
as the control source to drive artificial legs, exoskeleton or
walking assistant robots designed for lower limb paralyzed
patients or amyotrophic lateral sclerosis (ALS) patients. The
actuators can be controlled to track the estimations of position
and velocity extracted from cortical neural signals. Compared to
traditional methods using accelerometer or other sensors (Reza
et al., 2014), brain control enables the patients to manipulate
complex biomechatronic devices in a more harmonized
manner.

Meanwhile, the proposed algorithms are easy for
implementation in micro-chip or real time embedded system.
The Kalman filters does not require long windows to collect
data as the multiple linear regression method and provides
an explicit generative model, which is propitious to real time
implementations for capturing rapid motions. The realization of
the ANN and the unscented transform have also been proven
feasible on current programmable micro controllers.

5. CONCLUSIONS

In this study, we focus on neural signals collected during
monkey performing visual guided stand/squat tasks. We have
demonstrated lower limb EMG signals and ankle moving
kinematics during stand/squat could be accurately decoded from
a group of M1 neurons with the proposed algorithms. Our
findings provide new insights for extending current BMI design
concepts on upper limbs to lower limb circumstances. Brain
controlled exoskeleton, prostheses or neuromuscular electrical
stimulators for lower limbs are expected to be developed for the
future extension of this work.
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