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Controlling herding in minority 
game systems
Ji-Qiang Zhang1, Zi-Gang Huang1,2, Zhi-Xi Wu1, Riqi Su2 & Ying-Cheng Lai2,3

Resource allocation takes place in various types of real-world complex systems such as urban traffic, 
social services institutions, economical and ecosystems. Mathematically, the dynamical process 
of resource allocation can be modeled as minority games. Spontaneous evolution of the resource 
allocation dynamics, however, often leads to a harmful herding behavior accompanied by strong 
fluctuations in which a large majority of agents crowd temporarily for a few resources, leaving many 
others unused. Developing effective control methods to suppress and eliminate herding is an important 
but open problem. Here we develop a pinning control method, that the fluctuations of the system 
consist of intrinsic and systematic components allows us to design a control scheme with separated 
control variables. A striking finding is the universal existence of an optimal pinning fraction to minimize 
the variance of the system, regardless of the pinning patterns and the network topology. We carry out a 
generally applicable theory to explain the emergence of optimal pinning and to predict the dependence 
of the optimal pinning fraction on the network topology. Our work represents a general framework to 
deal with the broader problem of controlling collective dynamics in complex systems with potential 
applications in social, economical and political systems.

Resource allocation is an essential process in many real-world systems such as ecosystems of various sizes, trans-
portation systems (e.g., Internet, urban traffic grids, rail and flight networks), public service providers (e.g., marts, 
hospitals, and schools), and social and economic organizations (e.g., banks and financial markets). The underly-
ing system that supports resource allocation often contains a large number of interacting components or agents 
on a hierarchy of scales, and there are multiple resources available for each agent. As a result, complex behaviors 
are expected to emerge ubiquitously in the dynamical evolution of resource allocation. In particular, in a typical 
situation, agents or individuals possess similar capabilities in information processing and decision making, and 
they share the common goal of pursuing as high payoffs as possible. The interactions among the agents and their 
desire to maximize payoffs in competing for limited resources can lead to vast complexity in the system dynamics.

Given resource-allocation system that exhibits complex dynamics, a defining virtue of optimal performance is 
that the available resources are exploited evenly or uniformly by all agents in the system. In contrast, an undesired 
or even catastrophic behavior is the emergence of herding, in which a vast majority of agents concentrate on a 
few resources, leaving many other resources idle or unused1–12. Herd behavior has also attracted much attention 
in traditional economics13–16. If this behavior is not controlled, the few focused resources would be depleted, pos-
sibly directing agents to a different but still small set of resources. From a systems point of view, this can lead to a 
cascading type of failures as resources are being depleted one after another, eventually resulting in a catastrophic 
breakdown of the system on a global scale. In this paper, we analyze and test an effective method to control herd-
ing dynamics in complex resource-allocation systems.

A universal paradigm to model and understand the interactions and dynamical evolutions in many real world 
systems is complex adaptive systems17–19, among which minority game (MG)20,21 stands out as a particularly perti-
nent framework for resource allocation. MG dynamics was introduced by Challet and Zhang to address the classic 
El Farol bar-attendance problem conceived by Arthur22. In an MG system, each agent makes choice (e.g., +  or − , 
to attend a bar or to stay at home) based on available global information from the previous round of interaction. 
The agents who pick the minority resource are rewarded, and those belonging to the majority group are punished 
due to limited resources. The MG dynamics has been studied extensively in the past21,23–40.

To analyze, understand, and exploit the MG dynamics, there are two theoretical approaches: mean field 
approximation and Boolean dynamics. The mean field approach was mainly developed by researchers from the 
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statistical-physics community to cast the MG problem in the general framework of non-equilibrium phase transi-
tions21,20,41,42. In the Boolean dynamics, for any agent, detailed information about the other agents that it interacts 
with is assumed to be available, and the agent responds accordingly1–9,10–12. Both approaches can lead to “better 
than random” performance in resource utilization. However, herding behavior in which many agents take iden-
tical action43 can also take place, which has been extensively studied and recognized as one important factor 
contributing to the origin of complexity that leads to enhanced fluctuations and, consequently, to significant 
degradation in efficiency1–12.

The control scheme we analyze in this paper is the pinning method that has been studied in controlling the 
collective dynamics, such as synchronization, in complex networks11,44–50. For the general setting of pinning con-
trol, the two key parameters are the “pinning fraction,” the fraction of agents chosen to hold a fixed state, and the 
“pinning pattern,” the configuration of plus or minus state assigned to the pinned agents. Our previous work11 
treated the special case of two resources of identical capacities, where the pinning pattern was such that the 
probabilities of agents pinned to positive or negative state (to be defined later) are equal. Note that, while the 
pinned agents are frozen during system’s dynamical evolution, they are different from the “quenched” behavior 
in MG23. Especially, in our case the pinned states are a controlled state by design, but in typical MG dynamics the 
quenched behaviors are an emergent state through self organization. Here, we investigate a more realistic model 
setting and articulate a general mathematic control framework. A striking finding is that biased pinning control 
pattern can lead to an optimal pinning fraction for a variety of network topologies, so that the system efficiency 
can be improved remarkably. We develop a theoretical analysis based on the mean-field approximation to under-
stand the non-monotonic behavior of the system efficiency about the optimal pinning fraction. We also study the 
dependence of the optimal fraction on the topological features of the system, such as the average degree and het-
erogeneity, and obtain a theoretical upper bound of the system efficiency. The theoretical predictions are validated 
with extensive numerical simulations. Our work represents a general framework to optimally control the collec-
tive dynamics in complex MG systems with potential applications in social, economical and political systems.

Results
Boolean dynamics. In the original Boolean system, a population of N agents compete for two alternative 
resources, denoted as r =  +  and r =  − , which have the same accommodating capacity = = /+ −C C N 2. Similar 
to the MG dynamics, only the agents belonging to the global minority group are rewarded by one unit of payoff. 
As a result, the profit of the system is equal to the number of agents selecting the resource with attendance less 
than the accommodating capacity, which constitute the global-minority group. The dynamical variable of the 
Boolean system is denoted as At, the number of +  agents in the system at time step t. The variance of At about the 
capacity +C  characterizes the efficiency of the system. The densities of the +  and −  agents in the whole system are 
ρ = /+ A Nt  and ρ ρ= −− +1 , respectively. The state of the system can be conveniently specified by the column 
vector ρ ρ ρ= ( , )+ −ˆ T.

A Boolean system has two states (a binary state system), in which agents make decision according to the local 
information from immediate neighbors. The neighborhood of an agent is determined by the connecting structure 
of the underlying network. Each agent receives inputs from its neighboring agents and updates its state according 
to the Boolean function, a function that generates either +  and −  from the inputs3. Realistically, for any agent, 
global information about the minority choice from all other agents at the preceding time step may not be availa-
ble. Under this circumstance, the agent attempts to decide the global minority choice based on neighbors’ previ-
ous states. To be concrete, we assume4,11 that agent i with ki neighbors chooses +  at time step t +  1 with the 
probability

ρ= ≡ ( )/ ( ) + ( ) , ( )→⊕ − − + −P n t n t n t[ ] 1i
i i i i

and chooses −  with the probability  = −→ →⊕P P1i i , where ( )+n ti  and ( )−n ti , respectively, are the numbers of +  
and −  neighbors of i at time step t, with = ( ) + ( )+ −k n t n ti

i i . The expressions of probabilities, however, are valid 
only under the assumption that the two resources have the same accommodating capacity, i.e., =+ −C C . In 
real-world resource allocation systems, typically we have ≠+ −C C . Consider, for example, the extreme case of 
+ −C C . Suppose we have ρ ρ=+ −

i i  for agent i. In this case, rationality demands a stronger preference to the 
resource +  (i.e., with a higher probability). To investigate the issues associated with the control of realistic 
Boolean dynamics, we define
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where  is the response function of each agent to its local environment ρ̂i, i.e., the local neighbor’s configuration 
with ρ = ( )/+ +n t ki i

i  and ρ = ( )/− −n t ki i
i . The quantity ′Fr r  (or )Fr r  characterizes the contribution of the  

′r -neighbors (or r-neighbors) to the probability for i to adopt r. The quantity Fr r represents the strength of assim-
ilation effect among the neighbors, while ′Fr r  quantifies the dissimilation effect. Intuitively, the resource with a 
larger accommodating capacity would have a stronger assimilation effect among agents. By definition, the ele-
ments in each column in the matrix  satisfy + =′ ′ ′F F 1r r r r , i.e., the total probability for an agent to choose +  
and −  is unity.

Using the mean-field assumption that the configuration of neighbors is uniform over the whole system, i.e., 
ρ ρ=+ +

i , we have that the stable solution for Eq. (2) satisfies ρ ρ= ⋅ˆ ˆ , which leads to the eigenstate of  as
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The rational response ( ) of agents to nonidentical accommodation capacities of resources will lead to the 
equality ρ ρ/ = /+ − + −

⁎ ⁎ C C , i.e., the stable fraction of the agent densities in +  and −  is simply the ratio of the capac-
ities. The elements of  can then be defined accordingly using this ratio and the condition ≤ ≤′F0 1r r , which 
characterizes a stronger preference to the resource with a larger capacity. For the specific case of identical-capacity 
resources, we have =+ − − +F F , and the solution reduces to the result ρ = ( . , . )ˆ⁎ 0 5 0 5 T of the original Boolean 
dynamics4,11. The optimal solution for the resource allocation is ρ= +

⁎ ⁎A N .
A general measure of Boolean system’s performance is the variance of At with respect to the capacity +C :

∑σ = ( ( ) − ) ,
( )=

+T
A t C1

4t

T
2

1

2

which characterizes, over a time interval T , the statistical deviations from the optimal resource utilization4. A 
smaller value of σ2 indicates that the resource allocation is more optimal. A general phenomenon associated with 
Boolean dynamics is that, as agents strive to join the minority group, an undesired herding behavior can emerge, 
as characterized by large oscillations in ( )A t . Our goal is to understand, for the general setting of nonidentical 
resource capacities, the effect of pinning control on suppressing/eliminating the herding behavior.

Pinning control scheme. Following the general principle of pinning control of complex dynamical net-
works11,44–50, we set out to control the herding behavior by “pinning” a few agents to freeze their states during the 
dynamical evolution so as to realize optimal resource allocation for the entire network. Let ρ p be the fraction of 
agents to be pinned, so the fraction of unpinned (or free) nodes is ρ ρ= −1f p. The numbers of the two different 
types of agents, respectively, are ρ= ⋅N Nf f  and ρ= ⋅N Np p. The free agents make choices according to local 
time-dependent information, for whom the inputs from the pinned agents are fixed.

The two basic quantities characterizing a pinning control scheme are the order of pinning (the way how cer-
tain agents are chosen to be pinned) and the pinning pattern11. We adopt the degree-preferential pinning (DPP) 
in which the agents are selected to be pinned according to their connectivity or degrees in the underlying net-
work. In particular, agents of higher degrees are more likely to be pinned. This pinning method originated from 
the classic control method to mitigate the effects of intentional attacks in complex networks51–53. The selection of 
the pinning pattern can be characterized by the fractions η+ and η− of the pinned agents that select = +r  and 
= −r , respectively, where η η+ =+ − 1. The quantities η+ and η− are thus the pinning pattern indicators. Different 

from the previous work11 that investigated the specific case of η η= = .+ − 0 5 (half-half pinning pattern), here we 
consider the more general case where η+ is treated as a variable. The pinning schemes are implemented on ran-
dom networks and scale-free networks with different values of the scaling exponent γ in the power-law degree 
distribution54,55 ( ) ∼ γ−P k k . As we will see below, one uniform optimal pinning fraction ρ p exists for various 
values of the pinning pattern indicator η+.

Simulation Results. To gain insight, we first study the original Boolean dynamics with / =+ −C C 1 and 
 = ( , , )0 1; 1 0  for different values of the pinning pattern indicator η+. The game dynamics are implemented on 
scale-free networks of size =N 1001 and of the scaling exponent γ = .3 054 with the average degree k  ranging 
from 6 to 40. The DPP scheme is performed with pinning fraction ρ p and η+ values ranging from 0.6 to 1.0 (i.e., 
all to +  pinning). The variance σ2 versus ρ p for different values of η+ and different degree k  are shown in Fig. 1. 
We see that, in general, systems with larger values of η+ exhibit larger variance, implying that a larger deviation of 
η+ from the ratio of the capacity /+C N  can lead to lower efficiency in resource allocation. Surprisingly, there 
exists a universal optimal pinning fraction (denoted by ρ )⁎p  about 0.4, where the variance σ2 is minimized and 
exhibits an opposite trend for ρ ρ> ⁎

p p , i.e., larger values of η+ result in smaller values of σ2. The implication is 
that, deviations of η+ from /+C N  provide an opportunity to achieve better performance (with smaller variances 
σ2), due to the non-monotonic behavior of σ2 with ρ p. To understand the emergence of the optimal pinning frac-
tion ρ⁎

p , we see from Fig. 1 that the values of ρ⁎
p  are approximately identical for different values of η+, which 

decrease with the average degree k . As we will see below, in the large degree limit → ∞k , the value of σ2 can be 
predicted theoretically (c.f. Fig. 4).

Simulations using scale-free networks of different degrees of heterogeneity also indicate the existence of the 
universal optimal pinning control scheme, as can be seen from the behaviors of the variance calculated from 
scale-free networks of different degree exponents (Fig. 2)55, where smaller values of γ point to a stronger degree 
of heterogeneity of the system. We see that an optimal value of ρ⁎

p  exists for all cases, which decreases only slightly 
with γ, i.e., more heterogeneous networks exhibit larger values of the optimal pinning fraction ρ⁎

p , a phenomenon 
that can also be predicated theoretically (c.f. Fig. 5).
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Theoretical Analysis. The phenomenon of the existence of a universal optimal pinning fraction ρ⁎
p , inde-

pendent of the specific values of pinning pattern indicator η+, is remarkable. Here we develop a quantitative the-
ory to explain this phenomenon.

To begin, we note that MG is effectively a stochastic dynamical process due to the randomness in the selection 
of states by the agents. The variance of the system, a measure of the efficiency of the system, is determined by two 
separated factors. The first, denoted as δ( )X1 , is the intrinsic fluctuations of A about its expected value ⁎A , defined 
as δ ≡ ( − )⁎A A 2 , which can be calculated once the stable distribution of attendance ( )P A  is known, where 
( )P A  can be obtained either analytically (c.f., Fig. 3) or numerically. The second factor, denoted as ε( )X2 , is the 

difference of the expected value ⁎A  from the capacity +C  of the system: ε ≡ − +
⁎A C , which also contributes to 

the variance of the system. Taking into account the two factors, we can write the system variance σ2 [defined in 
Eq. (4)] as

σ δ ε≡ ( − ) = ( − + − ) = + , ( )+ +
⁎ ⁎A C A A A C 52 2 2 2 2

which is a sum of two factors: δ δ( ) =X1
2 and ε ε( ) =X2

2. In contrast to the special case of = +
⁎A C  treated in 

previous works4,11, the more general cases are that the expected value ⁎A  is not equal to the capacity +C . Nonzero 
values of ε are a result of the biased pinning pattern (η ≠ .+ 0 5) or improper response to the limited capacities of 
the resources. In fact, recent studies of the flux-fluctuation law in complex dynamical systems indicated that the 
variance of the system is determined by the two factors: intrinsic fluctuations and external driving56–62.

Stable distribution of attendance. To quantify the process of biased pinning control, we derive a 
discrete-time master equation and then discuss the effect of network topology on control.

Discrete-time master equation for biased pinning control. To understand the response of the 
Boolean dynamics to pinning control with varied values of the pinning pattern indicator η+, we generalize our 
previously developed analysis11. Let P p be the probability for a neighbor of one given free agent to be pinned so 
that the probability of encountering a free agent is = −P P1f p. The transition probability of the system from 
( )A t  to ( + )A t 1  can be expressed in terms of η+. In particular, note that the state transition is due to updating of 

the N f  free agents, as the remaining N p agents are fixed. To simplify notations, we set ( ) =A t i, ( + ) =A t k1 , 
and ( + ) =A t j2 , for , , ∈ ,i k j N[0 ]. The conditional transition probability from i at t to k at t +  1 is

Figure 1. Variance σ2 as a function of the pinning fraction ρp for scale-free networks of different 
connection densities. The average degree of the networks for simulation are =k 6, 10, 14, to 40 in (a–d), 
respectively, and the value of the pinning pattern indicator η+ ranges from 0.6 to 1.0 for each panel. The results 
are averaged over 200 realizations for scale-free networks of size =N 1001 and degree exponent γ = .3 0. In 
each realization, the system evolves for 10000 time steps, and σ2 is calculated from the corresponding ( )A t , with 
the first 3000 time steps discarded to avoid the influence of transient state.
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Figure 2. Variance σ2 as a function of the pinning fraction ρp for scale-free networks of varying degrees of 
heterogeneity. The scaling exponents of the networks are γ = .2 1, 2.5, 2.7, and 3.0 in (a–d), respectively, and the 
value of the pinning pattern indicator η+ ranges from 0.6 to 1.0 for each panel. The results are averaged over 200 
realizations for scale-free networks of size =N 2001 and average degree ≈k 4. In each realization, the system 
evolves for 10000 time steps, and σ2 is calculated from the corresponding ( )A t , with the first 3000 time steps 
discarded to avoid the influence of transient state.

Figure 3. Theoretical prediction of the probability density distribution of attendance A. The distribution 
( )P A  is obtained from the transition matrix Eq. (7) for =N 1001. The value of the pinning pattern indicator η+ 

is set as 0.5, 0.7, 0.9 and 1.0 in (a–d), respectively, and the pinning fraction ρ p ranges from 0.02 to 0.9.
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where η η+ − ( − ) /− +P P N i N N[ ]p f f p f  is the probability for a free agent to choose +  with the first and second 
terms representing the contributions of the pinned −  and free −  neighbors, respectively. In the Boolean system, 

Figure 5. Theoretical prediction of variance σ2 for systems with different degree scaling exponents. The 
system has size =N 1001 and power-law degree distribution ( )P k  with different values of the degree exponent: 
(a–d) γ = .2 1, 2.5, 2.7, 3.0, respectively. In each case, the value of the pinning pattern indicator η+ ranges from 
0.6 to 1.0.

Figure 4. Theoretical prediction of the variance σ2 in comparison with the simulation results. The system 
has size =N 1001 and power-law degree distribution ( )P k  with scaling exponent γ = 3. The theoretical 
prediction does not depend on the value of the average degree. In direct simulations, the values of the average 
degree are =k 6, 10, 14, and 40. The simulation results denoted by symbols are the same as those plotted in 
Fig. 1, with the pinning pattern indicator to be η = .+ 0 8.
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the values of attendance A oscillate about its equilibrium value11. The transition probability between the state at t 
and +t 2 can be expressed as a function of η+:
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Equation (7) takes into account the effect of pinning patterns, which was ignored previously11. The resulting 
balance equation governing the dynamics of the Markov chains becomes

∑ ∑( ) = ( , + | , ) ( ) ≡ ( , ) ( ),
( )

P j P j t i t P i T j i P i2
8i i

which is the discrete-time master equation. The stable state that the system evolves into can be defined in the 
matrix form as

= , ( )P P 9A A

where  is an ( + ) × ( + )N N1 1  matrix with elements  = ( , )T j iji , and PA is the corresponding vector of ( )P A  
with A ranging from 0 to N.

The probability distribution ( )P A  is a binomial function with various expectation values, as shown in Fig. 3. 
In addition, the probability ( )P A  is zero for ∪η η∈ , ( − ),+ +A N N N[0 ] [ 1 ]p p , which defines the boundary 
condition in the sense that there are ρ= ⋅N Np p pinned agents. Once the stable distribution ( )P A  is obtained 
from Eq. (9), the cumulative variance of the system can be calculated from

∑σ = ( )( − ) .
( )=

+P A A C
10A

N
2

0

2

The theoretical prediction of σ2 as a function of ρ p can thus be made through (a) identifying the function 
ρ( )P p p , (b) defining the matrix  that depends on η+ and ρ( )P p p , and (c) calculating the stable state ( )P A .

Effect of network topology on pinning control. The topology of the network system has an effect on 
the probability P p. For the particular case of scale-free networks with degree exponent γ = 3, our previous work11 
demonstrated that preferential pinning of the large-degree agents leads to ρ=P p p

. Here, we consider systems 
with degree distribution γ( ) = ( − )/( )γ γ−P k k k1 min

1 , where kmin is the minimum degree of the network. For the 
DPP scheme where pinning occurs in the order from large to small degree agents, the relation between the mini-
mum degree of pinned agents (denoted by )′k  and the pinning fraction ρ p is

∫ρ ( ′) = ( ) . ( )′
k P k kd 11p k

kmax

For a given pinning fraction ρ ( ′)kp  in which all the agents with > ′k k  are pinned, the probability P p for one 
neighbor of a given free agent to be a pinned agent is given by

∫

∫
( ′) =

( )

( )
.

( )

′P k
kP k k

kP k k

d

d 12
p

k

k

k

k

max

min

max

Here, Eqs. (11) and (12) are applicable to the DPP scheme on networks of any degree distribution ( )P k  with-
out degree correlation. The underlying assumption in Eq. (12) is that the degrees of the neighboring agents are not 
correlated, i.e., the neighbors of the pinned agents obey the same degree distribution ( )P k  of the whole system. 
For a scale-free network, P p as a function of ρ p can be expressed as
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ρ ρ( ) =




′ 




= .
( )

γ γ
γ

− −
−P k

k 13p p p
min

2 2
1

For the special case of γ = 3, Eq. (13) reduces to the specific relationship obtained earlier11: ρ ρ( ) =P p p p
. 

As indicated by Eqs. (7–10), the specific form of matrix  with respect to ρ p can be obtained by substituting Eq. 
(13) into Eq. (7), leading to the distribution ( )P A  and finally the variance of the system σ2 as a function of ρ p. 
Figure 4 displays the theoretical predicted σ2 (dashed curves) for various values of the pinning fraction ρ p and of 
the pinning pattern indicator η+. The trend and, more importantly, the existence of the optimal pinning fraction 
ρ⁎

p , agree well with the simulation results (marked with different symbols). In the limit → ∞k , the system 
approaches a well-mixed state that can be fully characterized by Eq. (13), indicating that the simulation results 
approach the curve predicted by the mean-field theory as the average degree k  is increased.

Figure 5 shows the theoretical prediction of σ2 for scale-free networks with different values of the degree 
exponent γ, which agrees well with the results from direct simulation as in Fig. 2. For the case of highly heteroge-
neous networks γ( = . )2 1 , the theoretical prediction deviates slightly from the numerical results for the reason 
that the networks in simulation inevitably exhibit certain topological features that are not taken into account in 
the theoretical analysis of ρ( )P p p , such as the degree correlation.

Optimal pinning. Our analysis based on the master equation (8) applies to systems with = =+ − − +F F 1 
and identical resource capacity. We now consider the more general case of varying  values to further understand 
the optimal pinning control scheme.

Deviation of expected attendance from resource capacity. The dependence of ⁎A  on η+ can be 
obtained through the general form of the response matrix . For convenience, we use the column vector 
η η η= ( , )+ −ˆ T to denote the fraction of the agents pinned at +  and − , where η η+ =+ − 1, ω ω ω= ( , )+ −ˆ T is the 
fraction of free agents adopting states +  and − , respectively, with ω ω+ =+ − 1. The state of the system can be 
expressed as ρ ρ η ρ ω( ) = + ( )ˆ ˆ ˆt tp f , from which we have

ω ρ ρ η ρ( ) = ( ) − / , ( )ˆ ˆ ˆt t[ ] 14p f

At the next time step, the expected value of the state based on ρ( )ˆ t  through the response matrix  can be writ-
ten as

ˆ ˆ ˆ ˆρ ρ η ρ η ω( + ) = + + ( ) . ( ) t P P t1 [ ] 15p f p f

Substituting Eq. (14) into Eq. (15), we get the relationship between ρ( + )ˆ t 1  and ρ( )ˆ t . A self-consistency pro-
cess stipulated by Eqs. (14) and (15) can yield the stable state of the system with the expected number of agents 
choosing +  given by

ρ ρ η η
=

( − ) − ( + ) + ( + − )

( + − ) − ( + )
.

( )

+ − + + − − + + + − − +

+ − − + + − − +

⁎A N
F F F P F F

P F F F F

1 1

1 16
p p p

p

In a free system without pinning, the rational response  of agents to nonidentical capacities of resources leads 
to Eq. (3), implying the relationship = /( + )+ + − + − − +C N F F F . From Eq. (16), we can obtain ε as a function of 
the value of the pinning pattern indicator η+, the elements of the matrix , the pinning fraction ρ p, and the 
parameter P p associated with network topology. We have

ε η η

ρ

= − = ⋅ ( − ) + ⋅

( + ) − ( + − )

( + ) ⋅ + − ( + − )
,

( )

+ + − + − + +

+ − − + + − − +

+ − − + + − − + − + − +

⁎A C N F F

F F P F F

F F F F F F P

[ 1 ]

[ 1 ]

[ 1 ] 17

p p

p

which has the form of separated variables associated with η+ and ρ p.

Optimal pinning pattern and fraction. Optimizing the system requires minimum ε( )X2 , i.e., ε = 0 in  
Eq. (17), leading to two independent solutions:

η

η
= = ,

( )
+

−

+ −

− +

+

−

⁎

⁎

F

F
C
C 18a

ρ ρ( ) =
+

+ −
,

( )

+ − − +

+ − − +

⁎ ⁎P
F F

F F 1 18b
p p p
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which respectively correspond to the optimal value of the pinning pattern indicator η+
⁎ and the optimal pinning 

fraction ρ⁎
p . Here, for convenience, we define a parameter: β ≡ ( + )/( + − )+ − − + + − − +F F F F 1  so that  

Eq. (18b) can be expressed concisely as ρ β ρ( ) = ⋅⁎ ⁎P p p p . Once the values of η+ and ρ p satisfy either Eq. (18a) or 
Eq. (18b), we can obtain ε( ) =X 02 . The variance σ2 depends on the fluctuation factor δ( )X1  only.

Equation (18a) specifies the pinning pattern with the same ratio as that of the resource capacity. The Boolean 
dynamics studied previously11 is a special case where the optimal pinning pattern indicator is η η/ =+ −

⁎ ⁎ 1 (i.e., 
)η = .+

⁎ 0 5  for systems with =+ −C C , and the variance σ2 is simply determined by the factor δ( )X1  alone.
From Eq. (18b), we see that the optimal pinning fraction ρ⁎

p  is independent of η+ but depends on both the 
network structure through ρ( )P p p  and on the response function . Additionally, the condition ρ ∈ ,[0 1]p  and 
nonzero denominator require

+ − > . ( )+ − − +F F 1 0 19

The function ρ( )P p p  for scale-free networks, as in Eq. (13), increases monotonically with ρ p. Figure 6(a) dis-
plays the curves ρ= ( )y P p p1  and β ρ= ⋅y p2 , i.e., both sides of Eq. (18b). The existence of nonzero ρ⁎

p  for 
=y y1 2 demands

ρ

ρ
β

( )
> .

( )ρ =

dP

d
20

p p

p 0p

For scale-free networks, ρ( )P p p  diverges at ρ =0p . Equation (20) thus holds, implying that the DPP pinning 
scheme has a nonzero optimal pinning fraction ρ⁎

p , leading to ε = 0. However, for homogeneous networks, Eq. 
(20) may not hold. In this case, a more specific implicit condition can be obtained from Eq. (20) through the 

Figure 6. Optimal pinning fraction. (a) Intersections of the curves ρ= ( )y P p p1  and β ρ= ⋅y p2  denote 
nonzero optimal pinning fraction ρ⁎

p  given by Eq. (18b). The scale-free networks have the degree exponents 
γ = .2 1, 2.5, 2.7, and 3.0, respectively. The response function is for = =+ − − +F F 1 (corresponding to 
= )+ −C C . (b) Contour map of ρ⁎

p  in the parameter space of + −F  and − +F  for scale-free networks with γ = 3. 
In the lower-left region below the boundary + =+ − − +F F 1 (white dashed line), nonzero solution of ρ⁎

p  
cannot be obtained. (c) Optimal pinning fraction ρ⁎

p  as a function of β/1  for scale-free networks. The analytical 
results from Eq. (18b) (red solid curve) and the simulation results (black open squares) agree well with each 
other. The red arrow marks the theoretical prediction of the boundary, where nonzero ρ⁎

p  solutions exist on the 
left side. (d) For ER random networks, ρ⁎

p  as a function of β/1 . Theoretical results from Eq. (18b) (red open 
circle) and simulation results (black open squares) are shown. The boundaries 1 and 2 obtained theoretically 
(pointed to by solid arrows), respectively, stand for the constraint in Eqs. (19) and (22). In (c,d), the value of 
− +F  varies but + −F  is set to 0.9. The scale-free and random networks used in the simulations have =k 40 and 
=N 2001.
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following analysis. In particular, without an analytical expression of ρ( )P p p , the derivative of ρ( )P p p  with respect 
to ρ p can be obtained from Eqs. (11) and (12):

ρ

ρ ρ

( )
=

( ′)

′
⋅

′
( ′)
=
′ ( ′)
( ′)
=
′
.

( )

dP

d
dP k

dk
dk

d k
k P k
k P k

k
k 21

p p

p

p

p

For degree preferential pinning, in the limit ρ → 0p , the maximum degree for free agents is ′ →k kmax. We 
thus have

ρ

ρ
β

( )
= > ,

( )ρ =

dP

d
k

k
22

p p

p 0

max

p

which requires that the network be heterogeneous. For = =+ − − +F F 1, we have / >k k 2max , ensuring the 
existence of a nonzero ρ⁎

p  value for ε = 0.
The contour map of the optimal pinning fraction ρ⁎

p  in the parameter space of + −F  and − +F  for scale-free 
networks with γ = 3 is shown in Fig. 6(b). The boundary + =+ − − +F F 1 associated with condition Eq. (19) is 
represented by the white dashed line, where nonzero solutions of ρ⁎

p  do not exist below the lower-left region. 
Figure 6(c,d) show ρ⁎

p  for ε = 0 as a function of β/1  for scale-free and random networks, respectively, where − +F  
is varied and + −F  is fixed to 0.9. The theoretical prediction of ρ⁎

p  [red solid curve in (c) and red open circle in (d)] 
is given by the intersections of the curves y1 and y2 in Fig. 6(a). For scale-free networks, since Eq. (20) holds, Eq. 
(21) is the only constraint on the value of β/1  (red dashed arrow), with the region at the right-hand side yielding 
nonzero ρ⁎

p  solutions. The red solid curve in Fig. 6(c) represents the theoretical prediction, and the open squares 
denote the simulation results from scale-free networks of size =N 2001, power-law exponent γ = 3, and average 
degree =k 40.

For random networks, the existence of nonzero ρ⁎
p  solutions requires that Eqs. (19) and (21) or (22) hold. For 

the Poisson degree distribution, the maximum degree of the network can be calculated from

!
≈ .

( )

−e k
k N

1
23

k

max

max

We can obtain an estimate of the value of β/1  that satisfies Eq. (22), as indicated by the blue arrow (labeled as 
boundary 2) in Fig. 6(d). The right-hand side of this point satisfies both Eqs. (19) and (22), implying the existence 
of nonzero ρ⁎

p . Comparison of the results from random and scale-free networks with different scaling exponents 
(Figs 2,5 and 6) shows that, stronger heterogeneity tends to enhance the values of ρ⁎

p , which can also be seen from 
Eq. (20).

To better understand the non-monotonic behavior of σ2 with ρ p, we provide a physical picture of the behav-
ioral change for ρ p greater or less than ρ⁎

p . The effect of pinning control is determined by the number of edges 
between pinned and free agents, which are pinning-free edges. For a small pinning fraction ρ p, the average effect 
per pinned agent on the system (represented by the number of pinned-free edges per pinned agent) is relatively 
large. However, as ρ p is increased, the average impact is reduced for two reasons: (a) an increase in the edges 
within the pinned agents’ community itself (i.e., two connected pinned agents), which has no effect on control, 
and (b) a decrease in the number of free agents, which directly reduces the number of pinned-free edges. Consider 
the special case of η =+ 1 and =+ −C C . For small ρ p, the pinned +  agents have a significant impact so that the 
free agents tend to overestimate the probability of winning by adopting − . In this case, the expected value ⁎A  is 
smaller than 0.5N, corresponding to ε < 0. For highly heterogeneous systems, the average impact per pinned 
agent is larger for a given small value of ρ p. As ρ p is increased, the average influence per pinned agent reduces and, 
consequently, ⁎A  restores towards . N0 5 . For = .⁎A N0 5  and ε = 0, the system variance [Eq. (5)] is minimized 
due to ε( ) =X 02 , and the corresponding pinning fraction achieves the optimal value ρ⁎

p . For strongly heteroge-
neous systems, due to the large initial average impact caused by pinning the hub agents, the optimal pinning 
fraction ρ⁎

p  appears in the larger ρ p region. Further increase in ρ p with η =+ 1 will lead to ε > 0 and > .⁎A N0 5 , 
thereby introducing nonzero ε( )X2  again and, consequently, generating an increasing trend in σ2.

Collapse of variance. For certain networks, the variance σ η ρ( , )+ p
2  is determined by the values of the pin-

ning pattern indicator η+ and the pinning fraction ρ p. Our analysis so far focuses on the contribution of ε( )X2  to 
the variance σ2 as the pinning fraction ρ p is increased but for fixed η+. It is thus useful to define a quantity related 
to the variance σ2, which can be expressed in the form of separated variables. For two different values of the pin-
ning pattern indicator, η+ and η ′+, for a given value of ρ p, the relative weight of ε( )X2  can be obtained from Eq. 
(17) as
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where ε η ρ( , )+ p  is a function of both η+ and ρ p. Remarkably, the ratio λ  depends on η+ and η ′+ but it is independ-
ent of ρ p, due to the form of separated variables in Eq. (17). From the simple relationship Eq. (24), we can define 
the relative changes in these quantities due to an increase in the value of η+ from a reference value η ′+ as

η η ρ
σ η ρ σ η ρ

σ η ρ
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+ +

+ +

+ 25
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η η
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,

( )
+ +

+ +

+

X X

X 26
2 2

2

and then obtain the change rate associated with σ2 and ε( )X2  as,

κ η η ρ η η ρ η η( , ′, ) = Π( , ′, )/Ω( , ′ ), ( )+ + + + + + 27p p

where η ηΩ( , ′ )+ +
 is independent of ρ p. In the limit η η( − ′ ) →+ + 0, the rate of change κ η η ρ( , ′, )+ + p  becomes

κ η ρ
σ η ρ

η

ε η

η
( ′, ) =

∂ ( ′, )

∂ ′
/

( ( ′ ))

′
.

( )
+

+

+

+

+

d X

d

ln[ ] ln[ ]

28p
p

2
2

Figure 7 shows κ η ρ( ′, )+ p  as a function of ρ p for scale-free networks, where the value of the reference pinning 
pattern indicator is η ′ = .+ 0 6. To obtain the values of κ, we first calculate Ω  by substituting the values of η+, η ′+ 
and the elements of  into Eqs. (24) and (26). We then obtain Π by substituting the values of σ2 into Eq. (25), with 
σ2 either from simulation as in Figs 1 and 2 or from theoretical analysis as in Fig. 5. We see that the κ values from 
simulation results of σ2 [Fig. 7(a–c) marked by “Simulation Results”] and theoretical prediction of σ2 [Fig. 7(d–f) 
marked by “Theoretical Results”] show the behavior in which the curves of κ for different values of η+ collapse 
into a single one. This indicates that κ depends solely on the pinning fraction ρ p; it is independent of the value of 
the pinning pattern indicator η+. Extensive simulations and analysis of scale-free networks with different average 
degree k  or different degree exponent γ verify the generality of the collapsing behavior.

From Eq. (28), we see that the variance σ η ρ( , )+ p
2  and the quantity κ are closely related. For example, a smaller 

value of κ indicates that ε( )X2  contributes more to the variance of σ η ρ( , )+ p
2  as η+ is changed, and vice versa. In 

Figure 7. Collapse of κ for different pinning patterns. (a–c) Simulation results of κ from scale-free networks 
for γ = .2 1, 2.7, and 3.0, which correspond to the results of σ2 in Figs 1(d) and 2(a,c), respectively. (d–f) 
Theoretical results of κ from Eq. (27) for the cases shown in Fig. 5(a,c,d), respectively. The reference pinning 
pattern indicator is η′ = .0 6.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 6:20925 | DOI: 10.1038/srep20925

Fig. 7, κ = 0 corresponds to the intersecting points of the curves of σ2 with different values of η+ shown in Figs 1,2 
and 5. It can also be verified analytically that, the minimal point with κ ρ∂ /∂ = 0p  coincides with the optimal 
pinning fraction ρ⁎

p  at which σ2 is minimized, which is supported by simulation results in Figs 1,2,5 and 7.

Variance in the form of separated variables. From Eq. (27), for a given value of the reference pinning 
pattern indicator η ′+, we can obtain an expression of Π in the form of separated variables as

η ρ κ ρ ηΠ( , ) = ( ) ⋅ Ω( ), ( )+ + 29p p

where κ ρ( )p  is independent of the change in η+, and ηΩ( )+  is independent of ρ p. The consequence of Eq. (29) is 
remarkable, since it defines in the parameter space η ρ( , )+ p  a function Π in the form of separated variables which, 
as compared with the original quantity σ2, not only simplifies the description but also gives a more intuitive pic-
ture of the system behavior. Specifically, for the MG dynamics, the influences of various factors on the variance σ2 
or η ρΠ( , )+ p  can be classified into two parts: (I) the function κ that reflects the effects of the pinning fraction ρ p 
and the network structure among agents (in terms of the degree distribution ( )P k , the average degree k , and the 
scaling exponent γ), and (II) the function Ω  that characterizes the impact of the pinning pattern indicator η+ and 
the response of agents to resource capacities +C  and −C  through . Figure 8(a,b) show the values of κ as a function 
of ρ p for η ′ = .+ 0 7 and 0.8, respectively, whereas Fig. 8(c) shows ηΩ( )+  for several values of η ′+. From Eqs (24) and 
(26), we see that Ω  is a quadratic function of η+ with the symmetry axis at η = /( + )+ + − + − − +F F F , which 
depends on the setting of response function . The second derivative of the function depends on η ′+.

From the definition in Eq. (25), the variance of the system for arbitrary values of ρ p and η+ can be obtained as

σ η ρ κ ρ η σ η ρ( , ) = ( ) ⋅ Ω( ) + ⋅ ( ′, ), ( )+ + +[ 1] 30p p p
2 2

where η ′+ specifies the reference pinning pattern. Once we have the two respective σ η ρ( , )+ p
2  curves for the two 

specific pinning patterns as specified by η ′+ and η ″+ , σ2 in the whole parameter space η ρ( , )+ p  can be calculated 
accordingly. In particular, the quantities σ η ρ( ′, )+ p

2  and σ η ρ( ″, )+ p
2  serve as a holographic representation of the 

dynamical behavior of the system in the whole parameter space. In particular, one can first obtain ηΩ( )+  from Eqs 
(17) and (26), and then calculate κ ρ η ρ η( ) = Π( ′′, )/Ω( ′′)+ +p p , and finally obtain the value of σ η ρ( , )+ p

2  by sub-
stituting ηΩ( )+  and κ ρ( )p  into Eq. (30).

Analysis of Gini index. The equality of wealth is also an important criterion to assess the performance of a 
resource allocation system, which can be characterized by the Gini index. For MG systems without control, it was 
found that inequality in wealth can be pronounced when the resource utility is optimized63. We calculate the Gini 
index to uncover the interplay between pinning control and wealth equality in Boolean systems. In particular, the 
Gini index is defined as

∑= − + ( − ) ,
( )=

G
N

N j g1 1 [1 2 ]
31j

N

j0
1

where N is the total number of agents in the system and g j is the ratio of the wealth earned by agent j over the total 
amount of wealth in the whole system. Note that g j is ranked in the ascending order as ≤ ≤ ≤g g g N1 2 . 
During each round of the game (each time step), the wealth of each minority agent is set to increase by one unit, 
while the wealth of the majority agents is unchanged. The accumulated wealth of each agent over a long time 
interval (e.g., =T 500 time steps) can be used to calculate the Gini index of the system according to its definition. 
Figure 9 shows the value of the Gini index G0 as a function of ρ p, where panels (a–c) are the results for scale-free 

Figure 8. Two separated functions κ and Ω in Eq. (29). (a,b) Collapse of κ ρ( )p  for various η+ values, where 
the reference value is η ′ = .+ 0 7 in (a) and 0.8 in (b). The values of κ are predicted from Eq. (27) for a scale-free 
network with γ = 3 and =k 40. (c) The function ηΩ( )+  for η ′ = .+ 0 6, 0.7, 0.8, 0.9, 1.0, and F+|− =  F−|+ =  1.
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networks54 of scaling exponent γ = .3 0 and system size =N 1001, and for three different values of the average 
degree: =k 6, 14 and 40, respectively. Results for scale-free networks55 of size =N 2001 and three different 
values of the scaling exponent: γ = .2 1, 2.7, and 3.0, are shown in panels (d–f), respectively. In each panel, the 
value of the pinning pattern indicator η+ ranges from 0.6 to 1.0. In reference to the variance σ2 in Figs 1 and 2 for 
the same networks under identical dynamical parameter setting, we see that the value of G0 reaches a local mini-
mum at the optimal pinning fraction ρ⁎

p . This implies that optimal use of resources and equality in wealth in a 
population can be realized simultaneously through pinning control.

As shown in each panel of Fig. 9, for larger values of η+ (i.e., larger biases in pinning), the value of G0 is gener-
ally larger and more sensitive to changes in the pinning fraction ρ p, i.e., G0 varies more rapidly with ρ p. When the 

system’s utilization of resource is optimized at ρ⁎
p , we have σ δ=2 2 (because ε = 02  - see Eq. (5) and discussions). 

We see that the Gini index can be determined through the fluctuation δ2 of ( )A t . As a result, if the pinning scheme 
is more biased (a larger value of η )+ , the fluctuations of ( )A t  are smaller, leading to a smaller value of G0. In addi-
tion, for the scale-free networks with larger average degree k , G0 increases more rapidly as ρ p is increased from 
zero.

Discussions
The phenomenon of herding is ubiquitous in social and economical systems. Herding behavior may play a pos-
itive role in certain types of dynamical processes, with examples such as promoting cooperation in evolutionary 
game dynamics64–66 and encouraging vaccination to prevent or suppress epidemic spreading67. However, in sys-
tems that involve and/or rely on fair resource allocation, the emergence of herding behavior is undesirable, as in 
such a state a vast majority of the individuals in the system share only a few resources, a precursor of system col-
lapse at a global scale. A generic manifestation of herding behavior is relatively large fluctuations in the dynamical 
variables of the system such as the numbers of individuals sharing certain resources. It is thus desirable to develop 
effective control methods to suppress herding. An existing and powerful mathematical framework to model and 
understand the herding behavior is minority games. Investigating control of herding in the MG framework may 
provide useful insights into developing more realistic control method for real-world systems.

Built upon our previous works in MG systems4,11, in this paper we articulate, test, and analyze a general 
pinning scheme to control herding behavior in MG systems. A striking finding is the universal existence of an 
optimal pinning fraction that minimizes the variance and realizes the equality among the agents in the system, 
regardless of system details such as the degree of homogeneity of the resource capacities, topology and structures 
of the underlying network, and different patterns of pinning. This means that, generally, the efficiency of the sys-
tem can be optimized for some relatively small pinning fraction. Employing the mean-field approach, we develop 
a detailed theory to understand and predict the dynamics of the MG system subject to pinning control, for vari-
ous network topologies and pinning schemes. The key observation underlying our theory is the two factors con-
tributing to the system fluctuations: intrinsic dynamical fluctuations and systematic deviation of agents’ expected 
attendance from resource capacity. The theoretically predicted fluctuations (quantified by the system variance) 
agree with those from direct simulation. In particular, in the large degree limit, for a variety of combinations of 
the network and pinning parameters, the numerical results approach those predicted from our mean field theory. 
Our theory also correctly predicts the optimal pinning fraction for various system and control settings.

Figure 9. Gini index G0 as a function of the pinning fraction ρp. (a–c) Results obtained from scale-free 
networks with degree scaling exponent γ = .3 054, system size =N 1001, and average degree =k 6, 14 and 40, 
respectively. (d–f) Results from scale-free networks55 of size =N 2001 and degree scaling exponent γ = .2 1, 2.7, 
and 3.0, respectively. The value of the pinning pattern indicator η+ ranges from 0.6 to 1.0.
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In real world systems in which resource allocation is an important component, resource capacities and agent 
interactions can be diverse and time dependent. To develop MG model to understand the effects of diversity 
and time dependence on herding dynamics, and to exploit the understanding to develop pinning control meth-
ods to suppress or eliminate herding are open issues at the present. Furthermore, implementation of pinning 
control in real systems may be associated with incentive policies that provide compensations or rewards to the 
pinned agents. How to reduce the optimal pinning fraction then becomes an interesting issue. Our results provide 
insights and represent a step toward the goal of designing highly stable and efficient resource allocation systems.
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