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Abstract: Trip travel time reliability is an important measure of transportation  
system performance and a key factor affecting travelers’ choices. This paper  
explores a method for estimating travel time distributions for corridors that contain 
multiple bottlenecks. A set of analytical equations are used to calculate the number 
of queued vehicles ahead of a probe vehicle and further capture many important 
factors affecting travel times: the prevailing congestion level, queue discharge rates 
at the bottlenecks, and flow rates associated with merges and diverges. Based on 
multiple random scenarios and a vector of arrival times, the lane-by-lane delay at 
each bottleneck along the corridor is recursively estimated to produce a route-level 
travel time distribution. The model incorporates stochastic variations of bottleneck 
capacity and demand and explains the travel time correlations between sequential 
links. Its data needs are the entering and exiting flow rates and a sense of the  
lane-by-lane distribution of traffic at each bottleneck. A detailed vehicle trajectory 
data-set from the Next Generation SIMulation (NGSIM) project has been used to 
verify that the estimated distributions are valid, and the sources of estimation error 
are examined.
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1. Introduction
Travel time has long been regarded as one of the most important performance measures in 
transportation systems. Recently, significant attention has been devoted to evaluating and 
quantifying the reliability of travel times due to the influence of travel time variability on route, 
departure time, and mode choices. Operating agencies have also increased their efforts to monitor 
and improve the reliability of their systems through probe-based data collection, integrated corridor 
management, and advanced traveler information systems. Corridor management strategies have 
been designed to balance the performance of freeway and arterial networks in response to 
congestion and non-recurring events. Although noteworthy progress has been made in quantifying 
the variability in travel times, a number of challenges still need to be addressed. One is how to 
estimate distributions of individual vehicle travel times for both recurring and non-recurring 
congestion conditions, especially since both the demand and the capacity is stochastic. A framework 
for doing this is vital for both travelers and operating agencies (e.g. traffic management team) if they 
are to make informed decisions about actions that improve reliability.

Within the subject of analytical dynamic traffic network analysis, the “whole-link” model is widely 
adopted to describe link travel time evolution due to its simple description of traffic flow propagation 
through an analytical form. The link travel time function introduced by Friesz, Bernstein, Smith, 
Tobin, and Wie (1993) defines the travel time �(t) on a single link at a time t as a linear function of 
the number of vehicles x(t) on the link at time t:

 

where a and b are constants in the above general linear form. A non-decreasing and continuous 
function is defined to calculate the cumulative number of vehicles on the link based on the time-
dependent inflow and outflow rates, u(t) and v(t), at time t:

 

Meanwhile, some more general non-linear travel time functions have been proposed as:

 

A special case of this form, introduced by Ran, Boyce, and LeBlanc (1993), decomposes the link travel 
time as two different functions: g1 accounts for flow-independent travel time and g2 accounts for the 
queuing delay. A detailed mathematical representation is shown below.

 

They later showed that, by assuming g1 and g2 are separable, i.e. g
1
=g

1a[x(t)]+g1b[u(t)] and 
g
2
=g

2a[x(t)]+g2b[v(t)], and Equation 4 can be rewritten as

 

where � is the free flow travel time, and f (⋅), g(⋅) and h(⋅) correspond to the functions of link inflow 
rate, link outflow rate, and the number of vehicles on the link, respectively.

(1)�(t)=a+bx(t)

(2)x(t)=x(0)+∫
t

0

(u(s)−v(s))ds

(3)�(t)= f (x(t),u(t),v(t))

(4)�(t)=g
1
[x(t), u(t)]+g

2
[x(t),v(t)]

(5)�(t)=�+ f (u(t))+g(v(t))+h(x(t))
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Daganzo (1995) draws attention to problems with the general form in Equation 3, indicating that 
either a rapid decline in the inflows u(t) or a rapid increase in outflow v(t)would lead to unrealistic 
travel time. Thus, he recommended omitting u(t) and v(t) from Equation 3, reducing the link travel 
time to a function of the number of vehicles on the link, that is, �(t)= f (x(t)). Although the link travel 
time function models provide some degree of simplification on travel time analysis, there is one 
significant drawback. Traffic congestion usually occurs at some bottleneck, and queues are produced 
and often grow beyond the bottleneck, which is difficult for any travel time function to capture 
(Zhang & Nie, 2005).

In dynamic traffic assignment and other applications, the vertical queue or point-queue model 
(Daganzo, 1995) was widely adopted to describe bottleneck traffic dynamics (Zhang & Nie, 2005). In 
a queuing-based travel time model, it is important to capture the variations of queue discharge flow 
rates and incoming demand to a bottleneck.

Conventionally, freeway capacity is viewed as a constant value—the maximum discharge flow 
rate before failure (HCM, 2000). However, the capacities vary according to different external factors 
in real life situations. Over the past decades, many researchers have developed a number of headway 
models to describe its distribution. Representatives of these models include the exponential-
distribution by Cowan (1975), and normal distribution, gamma-distribution, and lognormal-
distribution models by Greenberg (1966).

Incidents are one of the major contributing factors in capacity reductions, and the magnitude and 
duration of capacity reductions are directly related to the severity and duration of incidents (Giuliano, 
1989; Kripalani & Scherer, 2007). In quantifying capacity reduction, the HCM (2000) provides 
guidance for estimating the remaining freeway capacity during incident conditions. Using over two 
years of data collected on freeways in the greater Los Angeles area, Golob, Recker, and Leonard 
(1987) found that accident duration fit a lognormal distribution. By extending the research of Golob 
et al. (1987) and Giuliano (1989) applied a lognormal distribution when analyzing incident duration 
for 512 incidents in Los Angeles.

It is commonly observed that travel demand fluctuates significantly within a day. During the 
morning and evening peak hours, surging demand may overwhelm a roadway’s physical capacity 
and results in delays (Federal Highway Administration [FHWA], 2009). Waller and Ziliaskopoulos 
(2001), Chen, Skabardonis, and Varaiya (2003) and Lam, Shao, and Sumalee (2008) have used the 
normal distribution for modeling travel demand variation. Other researchers have modeled travel 
demand using the Poisson distribution (Clark & Watling, 2005; Hazelton, 2001) and the uniform 
distribution (Unnikrishnan, Ukkusuri, & Waller 2005).

Substantial efforts have been devoted to travel time variability estimation over the last decade. 
Statistical approaches (Oh & Chung, 2006; Richardson, 2003) have been widely adopted to quantify 
travel time variability from archived sensor data. In recent studies investigating the different sources 
of travel time variability, Kwon, Barkley, Hranac, Petty, and Compin (2011) proposed a quantile 
regression model to quantify the 95th percentile travel time based on the congestion source 
variables, such as incidents and weather. In their multi-state travel time reliability modeling 
framework, Guo, Rakha, and Park (2010) and Park, Rakha, and Guo (2011) provided connections 
between the travel time distributions and the uncertainty associated with the traffic states, e.g. with 
incidents versus without incidents.

A second approach uses numerical methods to characterize travel time distributions as a result of 
stochastic capacity and stochastic demand. Given a stochastic capacity probability distribution 
function (PDF), a Mellin transforms-based method was adopted by Lo and Tung (2003) to estimate 
the mean and variance of travel time distributions. Using a sensitivity analysis framework, Clark and 
Watling (2005) developed a computational procedure to construct a link travel time PDF under 
stochastic demand conditions. Ng and Waller (2010) introduced a fast Fourier transformation 
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approach to approximate the travel time PDF from underlying stochastic capacity distributions. 
Although it can quantify the impacts of demand and capacity variation on the travel times, the 
steady-state travel time function-based approach is still unable to address the underlying time-
dependent traffic dynamics.

In order to account for the inherent time-dependent traffic dynamics, some researchers  
(e.g. Zhou, Rouphail, & Li, 2011) have incorporated point-queue models into travel time variability 
estimation techniques. Using a dynamic traffic assignment simulator, Alibabai (2011) developed an 
algorithmic framework to investigate the properties of the path travel time function with respect to 
various path flow variables. While realistic simulation results require significant efforts in simulation/
assignment model calibration, this approach is particularly suited for studying the effects of various 
uncertainty sources and assessing the benefits of traffic management strategies and traffic 
information systems.

The objective of this paper is to describe a model that can be used to estimate individual vehicle 
travel time distributions at the route level based on relatively simple information about the 
configuration of the corridor and its flows and capacities. Potential applications are investigated, 
and illustrated examples are presented. In addition, a highly detailed Next Generation SIMulation 
(NGSIM) vehicle trajectory data-set is used to check the validity of the travel time distributions under 
different traffic conditions.

The rest of the paper is organized as follows. Section 2 describes the point-queue-based travel 
time estimation framework with deterministic inputs. Monte Carlo simulation is then applied in 
Section 3 to compute the travel time distribution with stochastic inflow, outflow, and discharge 
rates. Highly detailed vehicle trajectory data from the NGSIM project is utilized to validate our 
methods in Section 4.

2. Computing route-level travel times

2.1. Problem statement
Consider a corridor with M bottlenecks, where each node in the node-link structure represents a 
bottleneck, and the road segments between consecutive bottlenecks are links with homogeneous 
capacity. Assume that node 0 is the starting point of the corridor, node m corresponds to bottleneck 
m, and each link between bottlenecks is denoted as link (m − 1, m), for 1≤m≤M. Link (m − 1, m) is 
the same as link m. Figure 1 illustrates a node-link representation for a corridor with M bottlenecks. 
Possible merge or diverge nodes are connected to bottleneck m and are denoted as m′ or m″, 
respectively, so that the on-ramp before node 1 is denoted as (1′, 1), and the off-ramp before node 
2 is denoted as (2, 2″). In other words, the merge and diverge links are directly connected to the 
bottleneck. If there is more than one inflow or outflow between two bottlenecks, one can further 
decompose the link between those inflow entrances or outflow exits to several segments and 
merge/diverge points so as to construct the above node-link representation.

For the purposes of this analysis, the interest lies in how to estimate the travel time distribution for 
trips from point 0 to point m for a probe vehicle z, departing at time t0 = 0. The aim is to estimate the 
distribution of the route-level (route) travel time, pzm, based on the following: (1) the number of 
vehicles xm(t0) on each link m along the path at time t0, (2) the discharge flow rate for each bottleneck 
cm, and (3) the on-ramp or off-ramp flow rates f netm . The route-level travel time is defined to be the 
difference between the departure time at bottleneck 0 and the departure time at bottleneck m for 

Figure 1. A node-link 
representation of a corridor 
with M bottlenecks.
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probe vehicle z. Further, the departure time at bottleneck m is defined to be the time the probe 
vehicle leaves the queue at bottleneck m, which is the time when the number of vehicles in the 
queue before probe vehicle z at bottleneck m is 0.

The number of vehicles on each link is assumed to be observable from sensors, such as loop 
detectors, and the discharge flow rates and net flow rates on the on-ramps and off-ramps are 
assumed to be estimable from historical flow patterns or estimated based on prevailing traffic 
conditions (e.g. capacity reduction due to incidents).

The notation for the route-level travel time is described below.

Indices

Z index for identifying a probe vehicle
k index for the simulation instance used in Monte Carlo simulation
m index for the bottlenecks and links along the corridor

Inputs

t
0
 starting time, t0 = 0

M number of bottlenecks along the corridor of interest
FFTTm free-flow travel time over link (m − 1, m)
cm queue discharge rate of bottleneck m
f netm   net flow rate at a merge or diverge corresponding to bottleneck m, that is, from an 

on-ramp to the mainline segment or from the mainline to the off-ramp
xm(t0) number of vehicles on link (m − 1, m) at time t

0

�m(t) arrival rate of link (m − 1, m) at time t
vm(t) departure rate of link (m − 1, m) at time t

Variables to be calculated

�
z
m(t) travel time on link m for probe vehicle z entering the link at time t
�m(t)  number of vehicles waiting at the bottleneck m at time t, that is, the number of queued 

vehicles behind bottleneck m
wz
m waiting time in the vertical queue of bottleneck m for probe vehicle z

tzm arrival time for probe vehicle z at bottleneck m
pzm route-level path travel time from node 0 to bottleneck m

2.2. Travel time calculation
In a point-queue model, a link can be considered as two segments—the free-flow segment and the 
queuing segment. A vehicle travels at free-flow speed on the free-flow segment until reaching the 
beginning of the queuing segment, where it joins the queue waiting to be discharged. A queue is only 
formed if the link demand exceeds the bottleneck capacity; that is, the link arrival rate exceeds the 
link departure rate.

To construct a numerically tractable model for calculating route-level travel times along a corridor 
with multiple bottlenecks, several important assumptions are made.

(1)  A point-queue model is adopted to calculate the delay on each link. On each link, a First-In, 
First-Out (FIFO) property is assumed to assure that any vehicles that enter the link before time 
t will exit the link before those entering after time t.

(2)  The link traversal time is assumed to comprise a free-flow travel time and a queuing delay. The 
free-flow travel time is constant and flow-independent. The queuing delay is dependent on 
the number of vehicles in the queue when the probe vehicle arrives at the bottleneck �(t+FFTT) 
and the bottleneck queue discharge rate cm. Thus, the link travel time is
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where w(t+FFTT) is the queuing delay when vehicle z reaches the vertical queue at the bottleneck 
at time t+FFTT.

(3)  The merge or diverge location is coincident with the position of the vertical queue.

(4)  The bottleneck m remains congested across the estimation horizon, which extends from the 
current time t0 to the arrival time of the probe vehicle z at the bottleneck m, tzm.  
The corresponding queue discharge rates cm and net flow rates f netm  in the estimation horizon 
are also assumed to be constant.

The first two assumptions are widely used in queuing models. The third makes it easy to incorporate 
the flow rate from a merge/diverge without explicitly considering the driving distance and free-flow 
travel time from the merge/diverge point to the bottleneck m.

Equation 6 considers the arrival time at the beginning of a link. By considering the arrival time at 
bottleneck m for vehicle z, tzm, the link traversal time can be rewritten as

 

For a general queue with time-dependent arrival and departure rates, a continuous transition model 
can be used in Equation 6 to update the number of vehicles in the queue at any given time t.

 

The number of queued vehicles �m
(

tzm
)

 at time tzm on bottleneck m can be derived from Equation 8, 
as shown in Equation 9.

Since the fourth assumption requires the bottleneck to remain extant for the entire estimation  
period, the departure rate is equal to the bottleneck capacity of ∫ tzm

t
0

vm(t)dt=cm×
(

tzm− t
0

)

. The  
remaining challenge is to estimate the unknown queue length �m(t0) at time t0, and calculate the 
complex integral of ∫ tzm

t
0

�m(t−FFTTm)dt.

To illustrate these ideas, consider the example in Figure 1, where m = 1. In this case, the number 
of vehicles x

1
(t
0
) and the net flow rate f net

1
 associated with bottleneck 1 are given. For the specific 

starting time t0, a probe vehicle z enters the vertical queue of bottleneck 1 at time tz
1
= t

0
+FFTT

1
, 

and the number of vehicles in the queue at time tz
1
 is

 

Now consider a simpler case without merge and diverge points, i.e. f net
1

 = 0. Thanks to the first-in and 
first-out property, we can show that �

1
(t
0
)+ ∫ tz1

t0
�
1
(t−FFTT

1
)dt=x

1
(t
0
). The left-hand side 

�
1
(t
0
)+ ∫ tz1

t0
�
1
(t−FFTT

1
)dt is the total number of vehicles stored in both the free-flow segment and 

the queuing segment before the probe vehicle z. The right-hand side is the actual number of vehicles 
observed on the physical link. One can use Figure 2 to map or “rotate” some of the vehicles from the 
physical link (shaded) to the vertical stack queue, and the other vehicles on the physical link (not 

(6)�m(t)=FFTTm+w(t+FFTTm)=FFTTm+
�m(t+FFTTm)

cm

(7)�m

(

tzm−FFTTm

)

=FFTTm+
�m

(

tzm
)

cm

(8)
d�m(t)

dt
=�m(t−FFTTm)−vm(t)

(9)l�m
(

tzm
)

=�m(t0)+∫
tzm

t
0

d�m(t)

dt
dt=�m(t0)+∫

tzm

t
0

[

�m(t−FFTTm)−vm(t)
]

dt

=�m(t0)+∫
tzm

t
0

�m(t−FFTTm)dt−∫
tzm

t
0

vm(t)dt

(10)�
1

(

tz
1

)

=�
1
(t
0
)+∫

tz
1

t0

�
1
(t−FFTT

1
)dt−c

1
×
(

tz
1
− t

0

)
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shaded) correspond to the vehicles that will arrive at the vertical queue between time t0 and time 
FFTT1 (that is, right before the probe vehicle). Notice that the length of the queue segment in  
the point-queue model is equal to zero and has unlimited storage capacity. Interested readers are  
referred to the paper by Hurdle and Son (2001) to examine the connection between physical queues 
and vertical stack queues.

The individual components of Equation 10 can be described visually using the cumulative vehicle 
count curves shown in Figure 3. Curve A is equivalent to the integral over the arrival rate, A(t)= ∫ �

1
(t)dt

, and the cumulative arrival curve at the vertical stack queue V is the cumulative arrival curve shifted by 
the free-flow travel time, V(t)=A(t−FFTT), and thus V(t)= ∫ �

1
(t−FFTT

1
)dt. The cumulative  

departure curve D is equivalent to the integral over the departure rate, D(t)= ∫ v
1
(t)dt=c

1
×
(

tz
1
− t

0

)

. 

Substituting t with values of t0 and tz
1
 for V(t), then Figure 3 shows that V(tz

1
)−V(t

0
)= ∫ tz1

t0
�
1
(t−FFTT

1
)dt 

and thus �
1

(

tz
1

)

=�
1
(t
0
)+ ∫ �

1
(t−FFTT

1
)dt−c

1
×
(

tz
1
− t

0

)

 and x
1
(t
0
)=�

1
(t
0
)+ ∫ tz1

t0
�
1
(t−FFTT

1
)dt.

By further considering the net flow rate from the merge or diverge point connected to the bottle-
neck, we now have

 
(11)�

1

(

tz
1

)

=�
1
(t
0
)+∫

tz
1

t0

[

�
1
(t−FFTT

1
)−c

1

]

dt=x
1
(t
0
)+ f net

1
× tz

1
−c

1
× tz

1

Figure 3. Visual representation 
for Equation 10.

Figure 2. A vertical stack queue.
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Continuing to link 2 in Figure 1, the probe vehicle z will arrive at the queue of bottleneck 2 at tz
2
. Again, 

considering the FIFO assumption, the number of vehicles transferring from the first link to the sec-
ond link before the probe vehicle z includes two terms, �

1

(

tz
1

)

+c
1
× tz

1
, which are the number of 

queued vehicles �
1

(

tz
1

)

 when the probe vehicle arrives at the first bottleneck at time tz
1
, and those 

vehicles c
1
× tz

1
 already entering the second link before time tz

1
. Following the derivation logic for 

Equation 11, the number of vehicles waiting in the queue ahead of vehicle z when it arrives at the 
second bottleneck at time tz

2
 is

 

By substituting �
1

(

tz
1

)

 from Equations 11, 12 reduces to

More generally, for bottleneck m:

(1)  The number of vehicles waiting at the vertical queue of bottleneck m at time tzm can be  
expressed as

 

(2)  The arrival time for the probe vehicle at bottleneck m is

 

where wz
m=

�m(t
z
m)

cm
.

(3)  Finally, the route-level travel time from bottleneck 0 to bottleneck m is

 

In summary, given the number of vehicles on each link, the queue discharge rate and the net flow 
on each bottleneck, the route-level travel time for a vehicle can be calculated by applying Equations 
14–16 iteratively for links 1 through m. In each iteration, one first applies Equation 14 to obtain the 
number of queued vehicles at the bottleneck and then computes the queuing delay and update the 
route-level travel time up to the bottleneck of interest.

2.3. Illustrative example
To demonstrate how to the model can be used to calculate the route-level travel time and capture 
the delay propagation along a corridor, a corridor with 3 bottlenecks (Figure 4) can be used. 
Bottleneck 1 is on the freeway, bottleneck 2 is associated with an on-ramp, and bottleneck 3 is in 
conjunction with an off-ramp. The bottleneck discharge rates for those bottlenecks are 90, 90, and 
60 vehicles/min, respectively. The initial number of vehicles on each link is 750, 600, and 650, respec-
tively. The inflow rate for the on-ramp at bottleneck 2 is 20 vehicles/min (vpm), which is equivalent 
to 1,200 vehicles per hour. The outflow rate for the off-ramp is 18 vehicles/min (vpm). The free-flow 
travel time over each link is 5, 4, and 4.5 min, respectively.

For the probe vehicle in Figure 4 (starting at time 7:00 am), we now have the following calculation 
process for its route-level travel time.

(12)�
2

(

tz
2

)

=�
1

(

tz
1

)

+c
1
× tz

1
+x

2
(t
0
)+ f net

2
× tz

2
−c

2
× tz

2

(13)
�
2

(

tz
2

)

=x
1
(t
0
)+ f net

1
× tz

1
−c

1
× tz

1
+c

1
tz
1
+x

2
(t
0
)+ f net

2
× tz

2
−c

2
× tz

2

=x
1
(t
0
)+ f net

1
× tz

1
+x

2
(t
0
)+ f net

2
× tz

2
−c

2
× tz

2

(14)�m

(

tzm
)

=

m
∑

i=1

xi(t0)+

m
∑

i=1

(

f neti × tzi
)

−cm× tzm

(15)tzm= tzm−1
+wz

m−1
+FFTTm= tzm−1

+
�m−1

(

tzm−1

)

cm−1

+FFTTm

(16)pzm= tzm+wz
m=

m
∑

i=1

[

FFTTi+w
z
i

]
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(1)  Departing at 7:00, it takes 5  min (free-flow travel time) for this probe vehicle to reach the 
point-queue of bottleneck 1 at 7:05. At this time instance, the number of vehicles waiting in 
the queue is �

1

(

tz
1

)

 = 750 – (5 min × 90 veh/min) = 300 vehicles. With the discharge rate of 
90 vehicles/min, this probe vehicle will spend wz

1
 = 3.33 min waiting in the queue. Thus, the 

total travel time for this vehicle is 8.33 min at the end of this bottleneck.

(2)  The probe vehicle enters link 2 at 7:08.33, spends 4  min traveling through the free-flow 
segment, and arrives at the vertical stack queue at tz

2
 = 7:12.33. From 7:00 to 7:12.33, there 

have been 12.33 min × 20 veh/min = 246.6 vehicles entering this bottleneck from the on-ramp. 
The number of vehicles waiting in the queue at this time is �

2

(

tz
2

)

 = (750  +  600) + 
(12.33 × 20) − (12.33 × 90) = 486.67. With the discharge rate of 90 vehicles/min, this vehicle 
leaves the queue wz

2
  =  5.41  min later. The departure time from the second bottleneck is 

7:17.74.

(3)  Following the same calculation process, the number of vehicles waiting at the queue of 
bottleneck 3 is �

3

(

tz
3

)

 = (750 + 600 + 650) + (12.33 × 20) + (−18 × 22.24) − (60 × 22.24) = 511.89 
vehicles and the waiting time in the queue is wz

3
 = 8.53 min. This vehicle leaves bottleneck 3 at 

7:30.77. The total route-level-travel time pz
3
 is 30.77 min.

2.4. Travel time calculation algorithm with deterministic inputs
The algorithm for calculating the route-level path travel time for vehicle z entering the corridor with 
M bottlenecks at time t0 is summarized below.

   Input: The specific starting time t0, the number of vehicles on each link xm(t0), the net flow rate 
on each bottleneck f netm , and the bottleneck discharge rate cm, at time t0.

 Route-level travel time calculation

  For m = 1 to M

(1) Calculate the arrival time at bottleneck m

(2)  Use Equation 14 to calculate the number of vehicles ahead of the probe vehicle z in the vertical 
stack queue of bottleneck m, �zm

(

tzm
)

, when the probe vehicle z reaches the beginning of the 
queue at time tzm.

tzm= tzm−1
+wz

m−1
+FFTTm,where t

z
0
=0,wz

0
=0

Figure 4. Three-bottleneck 
example corridor.
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(3)  Use Equation 15 to calculate the delay experienced by the probe vehicle on bottleneck m, wz
m.

(4) Use Equation 16 to update the route-level travel time over m, pzm

End For

Output: The route-level travel time pzM from bottleneck 1 to bottleneck M.

2.5. Discussions
To consider complex real-life conditions, the model must further use the following approximation 
methods for calculating the route-level path travel time along a corridor with multiple bottlenecks.

2.5.1. Approximating the time-dependent flow rates with average flow rates
In Equations 9 and 10, we use the maximum bottleneck discharge rates to approximate the actual 
discharge rates. In reality, the rates (including the queue discharge flow rates and net flow rates 
from and to ramps) are highly dynamic and could fluctuate significantly even in a short time interval, 
as shown in Figure 5. In this situation, one needs to use the average flow rate (i.e. the dashed line in 
Figure 5) during the interval from t0 to the arrival time tzm to approximate the time-dependent 
volume. Although this approximation ignores traffic dynamics, in Equation 14 it still gives a 
reasonable estimate about the total number of vehicles leaving or entering the bottleneck before 
the probe vehicle. Section 4 will examine the possible impact from using this approximation method 
for representing travel time distributions.

2.5.2. Considering further reduced bottleneck discharge flow rate due to queue spillback
The proposed point-queue-based model captures the effects of queue spillback from a downstream 
bottleneck. Essentially, when a queue spillback occurs, the discharge capacity from the upstream 
bottleneck is then constrained by the discharge rates at the downstream bottleneck. The method 
detects spillback and then uses the reduced queue discharge rate to calculate the waiting time at 
the bottleneck with queue spillback.

As illustrated in Figure 6, the physical queue for bottleneck m spills back to bottleneck (m − 1) 
between time t1 and t5 through backward waves [Interested readers are referred to the paper by 
Newell (1993) to learn more]. Due to the queue spillback from bottleneck m, the actual discharge 
rate c�m−1

 of bottleneck (m  −  1) between time t1 and t5 is constrained by the discharge rate of 
bottleneck m, cm, rather than the original discharge rate cm−1

. For example, at time t2 (where t2 > t1), 
a probe vehicle arrives at bottleneck (m − 1), if the effect of queue spillback is not taken into account, 
this probe vehicle in the model will leave bottleneck (m − 1) at time t3 after waiting in the queue 

Figure 5. Time-dependent flow 
rate to average flow rate.
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behind bottleneck (m − 1), using the original, unaffected queue discharge rate cm−1
. With the reduced 

discharge rate cm<cm−1
at bottleneck (m − 1), the actual waiting time for the probe vehicle will be 

longer with a departing time of t4 > t3.

2.5.3. Calculating the net flow rate for on-ramps
When estimating the net flow at a merge or diverge location, the flow rates in previous instances are 
assumed to be known and time-invariant. However, special attention must be paid to conditions 
where the mainline and the on-ramp are both congested. In such instances, (1) the number of 
vehicles that can enter the bottleneck from the on-ramp and (2) the number of vehicles that can 
enter from the upstream segment to the bottleneck are constrained by the mainline bottleneck 
discharge rate. In this case, the available bottleneck discharge rate should be allocated to the 
upstream segment and the on-ramp proportionally, according to certain rules (Zhang & Nie, 2005). 
One simple rule is to split the mainline discharge rates according to the number of lanes associated 
with each incoming approach.

2.5.4. Considering vehicle overtaking/passing
Lastly, the FIFO property assumed on each link rules out the possibility that a vehicle can overtake 
and pass another vehicle. Future research will consider the impact of this condition on route-level 
travel time estimation using this approach.

3. Methods for calculating route-level travel time distributions

3.1. Assumptions
In the previous discussion, input parameters such as the net rates f netm  at the merge and diverge 
points, and the bottleneck discharge rates cm are assumed to be deterministic. In this section, we will 
further consider the variations or uncertainty in the input parameters, especially in the following two 
applications: (1) day-to-day travel time variability estimation by considering flow variations at the 
same time period; and (2) real-time travel time reliability estimation, where the near-future traffic 
flows are estimated from different sources of data with various degrees of estimation uncertainty. 
Emphases are placed on how to calculate the route-level travel time distribution based on the 
stochasticity of the random input parameters.

Figure 6. Queue spillback 
illustration in a time-space 
diagram.
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3.2. Important observations on path travel time

3.2.1. Simple corridor without merge and diverge
Consider a simple two-bottleneck corridor with no on-ramp and off-ramp, that is, f net

1
 and f net

2
 are 

equal to 0. According to Equations 14–16, the route-level travel time to bottleneck 1 for probe vehi-
cle z entering link 1 at time t0 is:

And the route-level travel time to bottleneck 2 is:

By comparing pz
1
=

x
1
(t
0
)

c
1

 and pz
2
=

x
1
(t
0
)+x

2
(t
0
)

c
2

, we can make the following important observation: the 
proposed formula can correctly capture the correlations between the route-level travel times pz

1
 and 

pz
2
, as both values are dependent on the number of vehicles on link 1, x

1
(t
0
). If x

1
(t
0
) and x

2
(t
0
) are 

assumed to be deterministic, the distributions of pz
1
 and pz

2
 are further dependent on the distribution 

of the bottleneck discharge rates, c1 and c2, respectively.

3.2.2. Simple corridor with merge and diverge
If we further consider situations where a merge and diverge occur at both bottlenecks, the path 
travel time formulas can be expressed as follows.
 

 

The above equations introduce more complex dependencies for both pz
1
 and pz

2
, and no additive 

formula or decomposed elements can be easily constructed to simplify these equations. This 
observation reinforces many previous research studies which indicate that development of the 
route-level travel time distribution is extremely challenging.

3.3. Monte Carlo simulation
Monte Carlo simulation is widely used to simulate the behavior of various physical and mathematical 
systems, especially for those problems with significant uncertainty in inputs. The model presented 
here uses Monte Carlo simulation to investigate the route-level travel time distribution based on the 
proposed travel time calculation framework. In each simulation run, a realization of the random 
input parameters leads to a realization of the random path travel time outputs, which can be 
regarded as estimates of the true route-level travel time variable. A sufficient number of simulations 
then provide a good representation of the travel time distributions under various traffic conditions 
and uncertainties.

The following procedure assumes all random variables are log-normally distributed, and calculates 
travel time distribution through K simulation runs.

(17)pz
1
= tz

1
+wz

1
= t

0
+FFTT

1
+
x
1
(t
0
)−c

1
× tz

1

c
1

= t
0
+FFTT

1
+
x
1
(t
0
)−c

1
×
(

t
0
+FFTT

1

)

c
1
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0
+FFTT

1
+
x
1
(t
0
)

c
1

−
(

t
0
+FFTT

1

)

=
x
1
(t
0
)

c
1
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1
+FFTT

2
+wz

2
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1
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1
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0
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2
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0
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c
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−
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1
(t
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2
(t
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c
2

(19)pz
1
= tz

1
+wz

1
=
x
1
(t
0
)+ f 1
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×
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t
0
+FFTT

1

)

c
1

(20)pz
2
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x
1
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0
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1
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 Input:

 The specific starting time t0,

 The distribution of the number of vehicles on each link xm(t0), where xm(t0)∼LN(�xm ,�
2

xm
).

 The distribution of the net flow rate on each bottleneck f netm , where f netm ∼LN(�f netm
,�
2

f netm

).

  The distribution of the bottleneck discharge rate cm on each bottleneck, at time t0 where 
cm∼LN(�cm

,�
2

cm
).

 Link free-flow travel time FFTTm, assumed to be constant.

 Number of simulations = K.

 For k = 1 to K,

  For m = 1 to M

1:  Based on the underlying distribution parameters (� and �) of the individual inputs, generate a 
set of random samples for the following key variables: the number of vehicles on the link, the 
bottleneck discharge rate, and net flow rates.

2:  Call the algorithm introduced in Section 2.4 to calculate the estimated route-level travel time 
for simulation k: pzm[k] from this set of random samples.

  End For

 End For

  Output: Calculate the histogram, mean, and variance for the route-level travel time from the 
results over K simulation runs.

3.4. Numerical experiments

3.4.1. Monte Carlo simulation
For the same example corridor in Section 2.3 (with three bottlenecks), Monte Carlo experiments 
were conducted to calculate the route-level travel time by assuming that the bottleneck discharge 
rates, inflow/outflow rates on ramps, and existing number of vehicles on the link are all lognormal 
variables. K  =  100 simulation runs were performed with different scenarios of stochastic input 
parameters.

Figure 7(a–b) shows the distributions of the simulated route-level travel times pz
2
 and pz

3
 for probe 

vehicle z through bottleneck 2 and through bottleneck 3, respectively. Obviously, the mean travel 
time based on pz

3
 is larger than that of pz

2
. In addition, a clear propagation of randomness can be 

observed, as pz
3
 has higher variance than pz

2
. It should be noted that, by using different input 

distributions for flow discharge rates and the prevailing number of vehicles on the road, the resulting 
travel time distributions will vary. This demonstrates the advantage of the proposed model in 
recognizing the impact of capacity and congestion levels on travel time reliability.

3.4.2. Evaluating the improvement in reliability for traffic management strategies
In the previous section, Monte Carlo simulation was used to demonstrate the application of the 
proposed travel time estimation framework on route-level travel time distribution quantification. In 
this section, the calculation framework is further applied to evaluate the effectiveness of advanced 
traffic management strategies (ATMS).

To demonstrate the use of the proposed calculation framework, a 1-mile long 4-lane freeway 
corridor with the average bottleneck discharge rate of 2,000 vehicles per hour per lane is investigated. 
Before implementing ATMS, the probability of incidents on this corridor is 20% and 3 lanes are closed 
due to an incident if an incident occurs. After implementing ATMS (e.g. rapid incident response 
teams), the number of lanes closed due to incident is reduced to 2.
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Figure 8(a–b) and (c–d), respectively, show the simulated distribution of the bottleneck discharge 
flow rate and the calculated route-level travel time, before and after the implementation of the 
ATMS. The first peak of Figures 8(a) and (c) represents the average capacity under incidents and  
the second peak represents the capacity under normal conditions. By comparing Figure 8(b) with (d), 
we can observe that the travel time distribution with ATMS has a shorter tail and less fluctuation. 
Figure 8(e) further reveals the potential benefit of ATMS in improving the travel time reliability: the 
95th percentile travel time is improved from 25 min (without ATMS) to 13 min (with the implementa-
tion of ATMS), while interestingly the median travel time has not changed significantly.

4. Model validation using NGSIM data
This section uses vehicle trajectory data available from the NGSIM project (FHWA, 2006) as ground-
truth data to verify the proposed methodology and examine the sources of estimation error.

4.1. Data descriptions
The NGSIM vehicle trajectory data used in this study come from the I-80 data-set, which were 
collected by a video camera located at Emeryville, California. This data collection point is located 
adjacent to I-80, as shown in Figure 9. The site was approximately 1,650 feet in length, with an  
on-ramp at Powell Street (indicated in Figure 9 by the circle). The freeway segment covered in the 
data-set includes six lanes, numbered incrementally from the left-most lane (HOV lane). Video data 
are available for three time intervals: 4:00–4:15 pm, 5:00–5:15 pm, and 5:15–5:30 pm, on 13 April 
2005. Complete, transcribed vehicle trajectories are available with a time resolution of 0.1 s.

Figure 7. Route-level travel 
time distribution.
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4.2. Data extraction from NGSIM data-set

(1)  To extract vehicle flow counts data from the NGSIM data-set, we first construct a node-link 
structure to represent the freeway segment in Figure 9. This stretch of freeway is divided into 
two links, as shown in Figure 10, with the on-ramp connected with node 1.

(2)  In order to obtain the flow rate at the node/bottleneck, this study introduces a set of virtual 
detectors at node 1 and at node 2, respectively. Meanwhile, another virtual detector is placed on 
the on-ramp link so that inflow vehicles from the ramp are also counted. In addition, video cameras 
are assumed to be installed on both links to provide link snapshots (for probe vehicle data).

(3)  The vehicle trajectory data is divided into 5-min intervals for counting vehicles. An example of 
one 5-min span of vehicle trajectories on one lane is shown in Figure 11 to illustrate how the 
vehicle counts are collected. As mentioned before, two sets of virtual detectors A and B are 
placed at nodes 1 and 2 (shown as triangles in Figure 10), and video cameras C and D are also 
installed on both link 1 and link 2. Vehicles are counted along the vertical line drawn at the 
given time t. At time t0 = 0, probe vehicle z = 0 enters link 1. At this time step, two vehicles are 
observed on link 1 and five vehicles are observed on link 2 by video cameras C and D, that is, 
x
1
(t
0
)=2 and x

2
(t
0
)=5. Similarly, probe vehicle z = 5 enters link 1 at time t. At this moment, 

x
1
(t)=2 and x

2
(t)=4.

Probe vehicle z = 8 is worth mentioning, which enters link 1 at time t′. However, at time t″, this vehicle 
changes lanes. This can be seen in Figure 11 because there is an incomplete vehicle trajectory. 
During this 5-min interval, 12 vehicles are counted by detector A, including two vehicles entering 

Figure 8. Before and after 
comparison of travel time CDF.
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before probe vehicle z = 1, but excluding probe vehicle z = 8. Meanwhile, 13 vehicles are counted by 
detector B. This count includes seven vehicles before probe vehicle z = 1, but excludes probe vehicles 
7–11, which have not yet departed from link 2.

Figure 12 illustrates the relationship between the actual trajectories extracted from the NGSIM data-
set and the number of vehicles waiting in the “modeled” vertical queue. For vehicles 1 and 2, we plot 
the free-flow travel times (dashed lines), the waiting times (arrowed lines) and the experienced 

Figure 9. Schematic illustration 
of NGSIM study area.

Figure 10. Node-link 
representation of NGSIM 
network.
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travel times (solid lines). Essentially, the experienced travel time = free-flow travel time + waiting 
time at the vertical queue, where the waiting time is determined by the number of vehicles in the 
queue and the capacity, as stated by Equation 7.

4.3. Model validation
Two variants on the basic travel time distribution estimation approach presented here are investi-
gated in this section. The first is lane-based; the second is link-based.

The examples require some additional notation to represent lane-specific parameters.

Z: number of probe vehicles

n: index identifying a lane

tz
0
: starting time for probe vehicle z

nz: starting lane number for probe vehicle z

xm(t,n): number of vehicles on lane n at time t

�
z
m

(

tzm,n
)

: lane n specific number of vehicles behind bottleneck m

cm(n): lane n specific discharge rate of bottleneck m

f netm (n): net flow rate from or to ramps by lane n

Figure 11. Vehicle trajectories 
on a lane.

Figure 12. Waiting times under 
different traffic conditions.
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�(n): vehicle distribution rate from on-ramp to lane n

wz
m(n): waiting time for probe vehicle z on bottleneck m on lane n

pzm(n): lane-based route-level travel time for probe vehicle z through lane n

The following procedure is used to calculate the lane-based travel time distribution.

 For z = 1 to Z on the link

   Obtain arrival time tz
0
 and starting lane number nz for each probe vehicle z.

   Obtain the lane-based number of vehicles xm
(

t
0
,n
)

;

   Obtain the lane-specific discharge rate cm(n);

   Calculate net flow rate f netm (n) from the on-ramp by applying �(n)× f netm ;

   Calculate the number vehicles behind bottleneck m �zm
(

tzm,n
)

;

   Calculate wz
m(n) based on cm(n) and xm

(

t
0
,n
)

;

   Update the route-level lane travel time pzm(n).

 End For

 Output: Create the lane-based path travel time distribution based on pzm(n)

4.3.1. Lane-based route-level travel time estimation
The distribution of the estimated route-level travel times for each 5-min interval, calculated over the 
three time periods with available data (4:00–4:15 pm, 5:00–5:15 pm, and 5:15–5:30 pm) are plotted 
in Figure 13 with the ground truth route-level travel time obtained directly from the NGSIM data. As 
can be observed, the distribution of the estimated route-level travel time is very close to that of the 
ground truth route-level travel time. This demonstrates that our model is able to accurately esti-
mate the route-level travel time distribution.

4.3.2. Link-based route-level travel time estimation
One common practice is to use link-based flow rates or density to estimate travel time reliability. We 
replace the lane-based variables in the previous approach with link-based variables xm(t0) and cm. 
That is, xm(t0) is the existing number of vehicles on all the lanes on the link and cm is the link dis-
charge rate. The distribution of the estimated route-level travel time and true route-level travel time 
for different time intervals is shown in Figure 14.

As it can be observed, the distribution of the estimated link-based route-level travel times fails to 
capture the wide-spread distribution in the ground truth travel times. This is explained by the fact 
that link-based input variables would yield the same estimated route-level travel times for those 
vehicles entering the link at the same time, regardless of their driving lanes.

In order to understand the extent and sources of the lane-by-lane travel time variation, we use 
the time period between 4:00 pm and 4:15 pm as an example. Figure 14 shows the lane discharge 
rate, the existing numbers of vehicles on the lane, and the average true and estimated route-level 
travel times for each lane for each 5-min interval in the time period. The lane sequence is sorted by 
the true route-level travel time.

Several observations can be made based on Figure 15. Lane 1 (HOV lane) has the lowest existing 
number of vehicles on the lane and has the lowest average route-level travel time. The left-most 
lanes (lanes 1 and 2) usually have the highest discharge rates while lanes 3 and 4 usually have the 
lowest discharge rates. In most cases, lanes 3 and 4 have the highest average existing numbers of 
vehicles on the lane, as well as the highest average route-level travel times.
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These observations imply that, due to the variation of the discharge rates and the number of  
vehicles on the lane, the route-level travel times also present strong lane-by-lane variations. As a 
result, we suggest using lane-based statistics to better quantify the travel time variability.

4.3.3. Estimation error sources
By comparing the estimated results with the NGSIM ground truth data, we can further uncover other 
possible sources of errors in the proposed travel time estimation model.

(1)  Aggregation errors: The link/lane discharge rates cm and on-ramp flow rates used in the 
calculations are average flow rates over a certain time interval, e.g. 5-min rates, while the 
existing number of vehicles on the link/lane xm(t0) is an instantaneous value based on  
the entering time of a probe vehicle.

Figure 13. Lane-based route-
level travel time distributions.
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(2)  Measurement errors: The number of vehicles on the lane observed by the video camera at time 
t0 is assumed to be error-free. In fact, there are always vehicle detection errors in NGSIM vehi-
cle trajectory data associated with the underlying video recognition algorithm.

(3)  Modeling errors associated with lane changing: Since the queue model incorporates the first-
in-first-out principle, lane change behavior is not considered in the calculation. This will 
introduce two types of errors in the model:

(a)  The model may underestimate or overestimate the number of vehicles behind the bottleneck, 
�m

(

tzm
)

. For example, some vehicles will enter the lane (from the other lanes) before a probe 
vehicle reaches the bottleneck, or some vehicles originally counted in xm(t0) on the current 
lane will leave to one of the adjacent lanes, corresponding to a lower value of xm(t0).

(b)  When a probe vehicle changes lane from, for example, nz =1 to lane n′, the discharge rate 
used in the calculation should be changed to the one associated with lane n′.

Figure 14. Link-based route-
level travel time distributions.
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5. Conclusions
This paper has presented a model which is capable of estimating route-level travel time distributions. 
It does this on the basis of relatively simple information about the corridor’s geometric configuration, 
its entering and exiting flows, its capacities, and the lane-by-lane distributions of traffic at each 
bottleneck. Monte Carlo simulation and mathematical approximation methods are used to calculate 
travel times lane-by-lane by tracking probe vehicles through the network. Ground-truth vehicle 
trajectory data from the NGSIM project have been used to validate the model’s estimates. Several 
interesting observations are obtained from the research:

Figure 15. Lane-by-lane travel 
time variability.
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(1)  The model offers a theoretically sound method to estimate corridor-level travel time and its 
distribution under different capacity and demand variations, and with possible off-ramp and 
off-ramp volume changes.

(2)  The variation of lane-specific traffic flow parameters (such as the number of vehicles on the 
lanes and lane discharge rates) are significant to lane-by-lane travel time diversity.

(3)  A lane-level rather than link-level representation of the system is critical in developing 
accurate route-level travel time distribution estimates.

Our future research will consider the impacts of downstream queue spillback on the upstream 
travel time. Under queue spillback, the discharge rate of the upstream bottleneck is constrained by 
the downstream bottleneck discharge rate, and this significantly increases dynamics and complexity 
in estimating the capacity for a queuing model. Moreover, it is also desirable to examine the influence 
of lane change frequencies on the estimated number of vehicles waiting in the queue.
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