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Abstract

The unicellular microalga Haematococcus pluvialis has emerged as a promising biomass feedstock for the ketocarotenoid
astaxanthin and neutral lipid triacylglycerol. Motile flagellates, resting palmella cells, and cysts are the major life cycle stages
of H. pluvialis. Fast-growing motile cells are usually used to induce astaxanthin and triacylglycerol biosynthesis under stress
conditions (high light or nutrient starvation); however, productivity of biomass and bioproducts are compromised due to
the susceptibility of motile cells to stress. This study revealed that the Photosystem II (PSII) reaction center D1 protein, the
manganese-stabilizing protein PsbO, and several major membrane glycerolipids (particularly for chloroplast membrane
lipids monogalactosyldiacylglycerol and phosphatidylglycerol), decreased dramatically in motile cells under high light (HL).
In contrast, palmella cells, which are transformed from motile cells after an extended period of time under favorable growth
conditions, have developed multiple protective mechanisms—including reduction in chloroplast membrane lipids content,
downplay of linear photosynthetic electron transport, and activating nonphotochemical quenching mechanisms—while
accumulating triacylglycerol. Consequently, the membrane lipids and PSII proteins (D1 and PsbO) remained relatively stable
in palmella cells subjected to HL. Introducing palmella instead of motile cells to stress conditions may greatly increase
astaxanthin and lipid production in H. pluvialis culture.
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Introduction

Astaxanthin is a superb antioxidant and a natural food coloring

agent that has been used in nutraceutical, aquaculture, and

poultry industries [1,2]. Among the naturally occurring organisms

capable of producing astaxanthin, the unicellular microalga

Haematococcus pluvialis can accumulate the largest amounts [up

to 4% of its dry weight (DW)] under various adverse environ-

mental or culture conditions [3]. Over the past two decades, mass

culture of H. pluvialis in photobioreactors has been exploited to

produce natural astaxanthin [4,5]. Recently, this organism has

also emerged as a promising cell factory for biofuels because of its

ability to produce large amounts of neutral lipids, mainly in the

form of triacylglycerol (TAG) [6]. TAG is a feedstock for the

production of biofuels like biodiesel and bio–jet fuel, bioplastics,

and other chemicals that are currently derived from fossil fuels.

Moreover, because of its great growth potential and high

photosynthetic efficiency, H. pluvialis is an alternative solution

for removing CO2 from fossil-fired power plants [7].

A two-stage cultivation strategy is often applied to mass culture

of H. pluvialis [8–10]. In the green stage, optimal light intensity

and nutrient-replete media are provided to promote the growth of

green vegetative cells; when the cell density reaches a maximal

level, the culture is subjected to stress conditions to induce

astaxanthin biosynthesis and accumulation. At this red stage,

many cells die off, while the surviving ones undergo profound

biochemical and cellular changes, transforming the flagellates (i.e.,

vegetative cells) into red cysts (aplanospores). Although cell death is

related to high light (HL), high salinity, and other stressors, such as

the application of acetate or Fe2+ to the cultures [9,11–14], the

exact causes of cell death under stress remained largely unknown.

The susceptibility of fast-growing H. pluvialis cells to adverse

culture conditions leads to a substantial reduction in biomass

productivity, a major obstacle that prevents expansion of the H.
pluvialis industry.

It has recently been observed that the H. pluvialis strain CCAP

34/12, which is dominated by flagellates at the exponential growth

phase, was more susceptible to HL stress than another strain (SAG

34/1b) dominated by resting vegetative cells. These resting cells

are also called palmella cells and are transformed from flagellates

under favorable growing conditions. The death of flagellates under

HL was attributed to the production of reactive oxygen species
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(ROS) [11]. Although a number of protective mechanisms

contributing to the survival of SAG 34/1b under HL were

identified, including down-regulation of linear photosynthetic

electron transport and enhancement of the alternative plastid

terminal oxidase pathway, it was unclear whether these mecha-

nisms were developed during the cell transformation or resulted

from different genetic makeups of the two Haematococcus strains.

A recent comparative proteomic analysis of flagellates and resting

(palmella) cells from a single Haematococcus strain showed that a

number of proteins involved in stress responses were induced in

the resting cells but absent in the flagellates [15].

The aim of this study was to determine the physiological and

biochemical changes that occur during the transformation of

motile flagellates into resting palmella cells and to dissect the key

mechanisms by which the different forms of Haematococcus cells

cope with HL. To gain more insight into the molecular–level

changes in lipids that occur in response to HL, we developed a

mass spectrometry–based lipidomics method for absolute quanti-

fication of glycerolipids. Our results suggest that introducing

resting palmella instead of motile flagellates into mass culture

represents a promising strategy to increase the production of

biomass and bioproducts from H. pluvialis.

Materials and Methods

Culture and strains
Haematococcus pluvialis NIES144 was obtained from the

National Institute for Environmental Studies in Tsukuba, Japan.

Algal cells were grown in 2.8-L flasks containing 1 L basal growth

medium [16] at 22uC under continuous low light (LL) illumination

(20 mmol photons m22 s21). Cultures were maintained in a resting

culture mode with manual shaking once per day. To obtain motile

cells, cultures were maintained under the above culture conditions

for 4 days, at which point ca. 70% of cells were motile cells and the

remainder were palmella cells; the flagellates suspended in the

growth medium were then harvested and enriched with

98.061.8% motile cells. Palmella cells were predominant in the

cultures maintained under the above conditions for 7 days. To

increase the quantity of palmella cells, cells that settled at the

bottom of the flasks were collected and washed with fresh growth

medium five times to remove any remaining motile cells. Motile

and palmella cells were both exposed to continuous high light (HL)

illumination (150 mmol photons m22 s21) for 24 h. Red cyst cells

transformed from motile cells are referred to as RC-M, and those

induced from palmella cells are termed RC-P. Algal cells were

harvested by centrifugation at 1,000 g for 10 min. Aliquots of

fresh cell pellets were resuspended in the breaking buffer [5.0 mM

HEPES, 0.3 M sorbitol, and 1% protease inhibitor cocktail

(Sigma-Aldrich, USA)] for immunoblotting, or growth medium

for chlorophyll fluorometry analysis. Freeze-dried algal biomass

were used for biochemical composition (e.g. pigments, lipids,

proteins and carbohydrates) analyses. Each type of cells was

prepared in triplicate.

Carotenoids and chlorophyll analysis
Canthaxanthin, astaxanthin, b-carotene, chlorophyll a (chla),

and chlorophyll b (chlb) contents were analyzed by high-

performance liquid chromatography (HPLC) according to the

method described previously [17].

Photosynthetic measurements
Pulse amplitude modulated chla fluorimetric analysis was

conducted using the Dual-PAM-100 system (Heinz Walz,

Germany). Harvested cells were resuspended in fresh growth

medium and were dark-adapted for 15 min before measurement.

One mL samples were loaded into 1 cm cuvettes and stirred gently

with a magnetic stir bar. The minimal fluorescence (F0) was

recorded under the measuring light, and after ,5–10 s, a

saturated pulse light (,10,000 mmol photons m22s21 lasting for

0.8 s) was applied to fully close the PSII reaction centers to

measure the maximum fluorescence (Fm) [18]. A series of actinic

light (30,849 mmol m22 s21) were switched on, and at intervals of

35 s, saturating flashes were applied. From this Saturation Pulse

analysis, the maximum fluorescence in the light (Fm9) and steady-

state value of fluorescence (F) were recorded. The following

parameters indicating photosynthetic efficiency and energy quench-

ing at PSII were calculated: Fv/Fm (potential maximum quantum

efficiency) = (Fm2F0)/Fm; Y(II) (quantum yield of PSII) = (Fm92

F)/Fm9; ETR(II) = Photosynthetically active radiation60.560.846
Y(II); NPQ (nonphotochemical quenching) = (Fm2Fm9)/Fm9; and

Y(NO) (non-regulated energy dissipation) = F/Fm [19]. The

photosynthesis-irradiance parameters (Ik, ETRmax, and a) were

retrieved from the ETR(II)-irradiance curve by using the Eilers and

Peeters model [20].

Immunoblot analysis
Algal cells were disrupted using a mini bead-beater (Biospec,

USA). The homogenates were centrifuged at 1,000 g for 3 min at

4uC to remove unbroken cells and cell debris. The supernatant

was then transferred to a new tube and centrifuged at 12,000 g for

30 min at 4uC to obtain the crude membranes. The resulting

pellets were resuspended in 60 mL SBA buffer containing 0.1 M

dithiothreitol, 0.1 M Na2CO3, 40 mL 30% sucrose, and 5% SDS

and were then vortexed at 3,000 rpm for 30 min at room

temperature to extract total proteins. Insoluble proteins were

removed by centrifugation at 12,000 g for 10 min at 4uC. The

concentration of total membrane proteins in the supernatant was

measured with a CB-X protein assay kit (G-Biosciences, USA).

Proteins were separated by SDS-PAGE (4–20% precast polyacryl-

amide gel, Bio-Rad, USA) and transferred to nitrocellulose

membranes. Primary antibodies of the D1 protein of PSII, Rieske

iron-sulfur protein (RISP) of cytochrome b6f complex, PsaA

protein of PSI, and PsbO protein of the oxygen-evolving complex

(OEC) were obtained from Agrisera (Sweden). Antigen-antibody

complexes were visualized using an enhanced chemiluminescence

substrate detection kit (Thermo Fisher Scientific, USA). Intensities

of visualized protein bands were measured by using the program

ImageJ (http://imagej.nih.gov/ij/).

Total protein analysis
Ten mg algal biomass was incubated with 100 mL 1 M NaOH

at 80uC for 10 min and then diluted with 900 mL water. Insoluble

cell debris was removed by centrifugation at 12,000 g for 30 min

at 4uC and was then extracted twice. The resulting supernatants

from three extractions were combined for protein assays using a

Bio-Rad Protein Assay (Bio-Rad, USA). Bovine serum albumin

was used for calibration.

Total carbohydrate analysis
Ten mg algal biomass was pretreated with 0.5 mL acetic acid

for 20 min at 60uC to break the cell walls. Samples were

immediately placed on ice, and 10 mL acetone was added to each

sample to extract the pigments. The extracts were centrifuged at

1,000 g for 2 min at 4uC. The resulting pellets were resuspended

in 4 mL trifluoroacetic acid and incubated in boiling water for 4 h

to further disrupt the cells and extract the carbohydrates. Samples

were cooled on ice before 5 mL water was added. Cell debris was

removed by centrifugation at 10,000 g for 2 min at 4uC, and the
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supernatant was recovered for total carbohydrate measurement

using the phenol-sulfuric acid method [21]. Glucose was used as

standard for calibration.

Lipid analysis and quantification with Liquid
Chromatography-Mass/Mass Spectrometry

For lipidomic analysis, 10 mg lyophilized algal cells were

homogenized in liquid nitrogen, and lipids were extracted with

chloroform:methanol (2:1, v/v) [22]. Lipidomic analyses were

performed on a 6460 triple quadrupole electrospray ionization

mass spectrometer equipped with 1260 high performance liquid

chromatography (Agilent, USA). The instrumental parameters

were set up as follows: nebulizing gas (nitrogen), 40 psi; dry gas

(nitrogen), 4 L min-1 at 200uC; spray capillary voltage, 4,000 V for

the positive ion mode and 3,500 V for the negative ion mode; gas

temperature, 250uC; gas flow, 5 mL min21; and sheath gas

temperature, 350uC. Chloroplast membrane lipids, including

monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol

(DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphati-

dylglycerol (PG), were identified by precursor ion scanning for

lipid ions, which yielded the diagnostic ions associated with their

head groups induced by collision [23]. Phospholipids, including

phosphatidylinositol (PI), phosphatidycholine (PC), phosphatidyl-

ethanolamine (PE), were identified according to the previously

described, collision-induced dissociation principles developed for

these lipids [24]. To identify betaine lipid diacylglycerol-O-(N, N,

N-trimethyl)-homoserine (DGTS), the ion [C10H22NO5]+ (m/z
236) was used for precursor ion scanning. TAGs were identified

using sequential neutral loss scanning [25]. Product ion scanning

was employed to determine fatty acyl groups.

For quantitative analysis, the protonated forms ([M+H]+) of

DGTS, PC, and PE were detected by multiple reaction

monitoring (MRM) in a positive ion mode, while the ammonium

adducts ([M+NH4]+) of MGDG, DGDG, and TAG were analyzed

by single-stage mass spectrometry (MS). The deprotonated forms

of the anionic glycerolipids PG, PI, and SQDG were analyzed by

MRM in a negative mode. Prior to MS analysis, lipid extracts

were separated on a ZOBAX SB C18 column (1.8 mm, i.d.

2.1 mm, l.150 mm, Agilent, USA) for the positive mode or on an

Extend C18 column (1.8 mm, i.d. 2.1 mm, l.150 mm, Agilent,

USA) for the negative mode. The mobile phase for the positive

mode was comprised of A: methanol:acetonitrile:H2O (19:19:2, v/

v/v) and B: isopropanol; both contained 10 mM ammonium

acetate and 0.1% (w/v) formic acid. The following gradient was

used: 0–5 min, 90% A, 10% B; 25 min, 60% A, 40% B; 60 min,

45% A, 55% B; and 62 min, 45% A, 55% B. The mobile phase for

the negative mode was comprised of A: methanol: acetonitrile:

water (25:25:8, v/v/v) and B: isopropanol. Both A and B

contained 0.025% (w/v) ammonium hydroxide. Samples were

eluted with a gradient elution solution as follows: 0 min, 100% A;

10 min, 95% A, 5% B; 12 min 45% A, 55% B; and 30 min 45%

A, 55% B. For each sample, the column was re-equilibrated with

A for 10 min before gradient elution. The temperature of the

columns was maintained at 40uC, and the flow rate was 0.2 mL

min21.

For absolute quantification, lipid extracts were mixed with the

internal standards (ITSD), including TAG 17:0/17:0/17:0 (Sig-

ma-Aldrich, USA), MGDG 18:0/18:0 (Avanti Polar Lipid, USA),

DGDG 18:0/18:0 (Avanti Polar Lipid), PE 14:1/17:0 (Avanti

Polar Lipid), PG 17:0/20:4 (Avanti Polar Lipid), PC 17:0/20:4

(Avanti Polar Lipid), and PI 17:0/20:4 (Avanti Polar Lipid).

Among these, PC 17:0/20:4 was used as an ITSD for both PC and

DGTS quantification, and PI 17:0/20:4 was used for both PI and

SQDG quantification. The external standards (ETSD) for

calibration included TAG 16:1/16:1/16:1 (for TAG species

containing 48 carbon atoms in three acyl chains, TAG C48),

TAG 16:0/18:1/16:0 (for TAG C50), TAG 18:1/16:0/18:1 (for

TAG C52), and TAG 18:1/18:1/18:1 (for TAG C54) (Sigma-

Aldrich). MGDG 16:3/18:3 (Matreya, USA), DGDG 18:3/18:3

(Matreya), PE 20:4/20:4 (Avanti Polar Lipid), PG 18:0/18:1

(Avanti Polar Lipid), PC 18:1/18:1 (Avanti Polar Lipid), DGTS

16:0/16:0 (Avanti Polar Lipid), and SQDG (Indofine Chemical,

UK) were used as ETSDs for the corresponding classes of

membrane lipids. ETSD were titrated relative to a constant

amount of ITSD to establish the correlation between the ratio of

the analyte signal to the ITSD signal and the ratio between their

concentrations.

Statistical analysis
Student’s t-test was used to compare the cellular content of

pigments, lipids, proteins and carbohydrates (n = 6) between given

two cell forms, as well as for the semi-quantitative results of

immunoblotting (n = 2). If the test gives p value # 0.05, the

differences between two cell forms were interpreted as being

significant.

Results

Morphological changes of Haematococcus cells during
the transformation from motile flagellates to resting
palmella under low-light and high-light acclimation

Under the favorable LL condition, the motile cells were usually

pear-shaped with a pair of flagellae at the anterior end, and the

protoplast of the motile cell was enclosed by a swollen, gelatinous

extracellular matrix (Fig. 1A). The palmella cells were spherical

with rigid cell walls and were somewhat reddish in the center,

indicative of the presence of astaxanthin (Fig. 1B). After exposure

to HL for 24 h, the motile cells formed rigid, thick cell walls, and

accumulated astaxanthin (Fig. 1C). Greater amounts of astax-

anthin were evident in the palmella cells under HL than LL

(Fig. 1D).

Figure 1. Different H. pluvialiscell types. (A) Motile cells grown
under low light; (B) palmella cells grown under low light; (C) red cells
induced from motile cells grown under high light for 24 h; (D) red cells
induced from palmella cells grown under high light for 24 h.
doi:10.1371/journal.pone.0106679.g001
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Pigment profiling
HPLC analysis showed that under LL, the motile cells

contained more chl a and chl b than palmella cells by 17.8%

(p,0.01) and 22.8% (p,0.01), respectively. However, the ratio of

chl a to chl b in these two cell types was similar. The b-carotene

content in both cells was also similar (ca. 2.30 mg g21 DW).

Neither canthaxanthin nor astaxanthin was detected in motile

cells, whereas the palmella cells accumulated small but noticeable

amounts of these two carotenoids under LL (Table 1).

After exposure to HL for 24 h, chl b declined considerably while

chl a remained stable in both motile and palmella cells; the ratio of

chl a to chl b increased from 4.85 to 8.18 in red cysts transformed

from motile cells (RC-M), and from 5.11 to 8.36 in red cysts

transformed from palmella cells (RC-P) (Table 1). During the

same period, the b-carotene content in motile and palmella cells

decreased by 53.9% (p,0.01) and 48.2% (p,0.01), respectively.

After 24 h exposure to HL, astaxanthin in RC-M equaled 4.96 mg

g21 DW, which was 64.7% greater than in RC-P (p,0.01).

Changes in photosynthetic capacity during the
transformation from motile flagellates to resting palmella
under low-light and high-light acclimation

To investigate the changes in photosynthetic capacity during

encystment and HL acclimation, the photosynthetic efficiency of

PS II of different cell forms were measured by using chlorophyll

fluorometry under varying light intensities (Fig. 2). As shown in

the ETR-irradiance curve (Fig. 2A), motile and palmella cells

exhibited different responses to the changing light intensities.

Motile cells possess an initial rate (a) higher than that of palmella

cells, whereas its ETRmax was lower than that of palmella cells.

The saturation irradiance for palmella cells is 323 mmol m22 s21,

significantly higher than that for motile cells (231 mmol m22 s21).

These results indicated that palmella cells may possess more

pronounced capacities for high light adaptation, but motile cells

can dominate in the environment with lower irradiance. The

initial slope of RC-M and RC-P was slightly declined as compared

to motile cells and palmella cells, respectively. For both RC-M and

RC-P, ETR didn’t reach a saturation level under the highest light

intensity (849 mmol photons m22 s21) tested.

Motile cells exhibited higher Y(II) than palmella cells under light

intensities of 30–555 mmol photons m22s21 (Fig. 2B), suggesting

that motile cells possessed a greater ability than palmella cells to

convert excited energy at PSII to photochemical energy under low

and moderate light intensities. However, such a capacity was

severely impaired in RC-M, of which Y(II) is significantly lower

than that of RC-P, especially under the moderate light intensities

(200–555 mmol photons m22 s21, p,0.05). Under the strongest

irradiance (849 mmol photons m22 s21), no significant difference

with respect to Y(II) was observed for all the cell forms.

In addition to yielding photochemical energy, a portion of the

excitation energy at PSII is dissipated by a regulated, nonphoto-

chemical quenching mechanism and a nonregulated energy

dissipation [26,27], as indicated by NPQ and Y(NO), respectively

(Fig. 2C, D). NPQ involves the de-excitation of 1Chl to the

ground state by the emission of excess energy as heat. This process

is affected by acidification of the thylakoid lumen and the

xanthophyll cycle, and is thus considered a regulatory mechanism

protecting algae and higher plants from excess light [26]. Y(NO) is

the yield of non-regulated energy dissipation of PSII [19]. Our

results showed NPQ was absent in motile cells, whereas it was

rapidly induced in palmella cells with the increase of light intensity

and gradually saturated at the level of 1.0 above the irradiance of

200 mmol photons m22 s21 (Fig. 2C). Although the NPQ was
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augmented in both RC-M and RC-P as compared to motile cells

and palmella cells, respectively, RC-P exhibited the greatest NPQ

level among the four cell forms. Consequently, nonregulated

energy dissipation [Y(NO)] was maintained at a relatively low level

in palmella cells and RC-P under all the irradiances, whereas in

motile cells it increased remarkably in response to the increased

light intensities (Fig. 2D).

Several components of the photosynthetic apparatuses in motile

and palmella cells were quantified by western blotting (Fig. 3A).

The content of D1 protein, the core reaction center protein of

PSII, decreased 36% (p,0.05) during encystment under LL

(Fig. 3B). Simultaneously, PsbO and PetC were reduced 45%

(p,0.05) and 35% (p,0.05), respectively. In contrast to the

attenuation of PSII and cytochrome b6f, PsaA, a core reaction

center protein of PSI, was 34% higher in palmella cells than in

motile cells (p,0.05).

After exposure to HL for 24 h, D1 protein, PsbO, and PetC

decreased in both motile and palmella cells to different extents

(Fig. 3A). D1 and PsbO proteins in motile cells decreased 33%

(p,0.05) and 62% (p,0.01), respectively, greater decreases than

those seen in palmella cells during HL acclimation (23% and 47%,

p,0.05, respectively) (Fig. 3B). As these PSII components are

considered the primary targets of photosynthetically-produced

ROS [28], these results indicate that motile cells are less capable of

coping with photo-oxidative stress than palmella cells. Further-

more, after exposure to HL for 24 h, PsaA in palmella cells

increased 52.2% (p,0.05), whereas remained unchanged in motile

cells.

Changes in biochemical composition during encystment
and under high light

The electrons produced by photosynthesis may be partitioned

differentially into various biosynthetic pathways for synthesis of

proteins, lipids, carbohydrates, and other molecules. The macro-

molecular composition of a given cell can then reflect the energy

balance between absorbed photons and newly synthesized

macromolecules or cell biomass [29,30]. The biochemical

compositions of the different cell forms were determined to

compare their energy utilization efficiencies. As shown in Fig. 4,

motile cells were composed of approximately 0.398 g g21 DW

protein, 0.221 g g21 DW carbohydrate, and 0.162 g g21 DW

Figure 2. Light intensity response curves in different types of
cells. (A) Photosynthetic electron transport rate in photosystem II
[ETR(II)]; (B) quantum yield in photosystem II [Y(II)]; (C) nonphotochem-
ical quenching (NPQ); (D) energy dissipated by a nonregulated
mechanism in photosystem II [Y(NO)]. Values represent the mean 6
S.D. (n = 3). Motile cells: square; palmella cells: circle; red cells induced
from motile cells: triangle; red cells induced from palmella cells:
pentacle.
doi:10.1371/journal.pone.0106679.g002

Figure 3. Analyses of photosystem protein content in different
H. pluvialis cells types. (A) Western blot analyses on protein contents
in different cells types; (B) relative protein content in different cells
types from these analysis. Values represent the mean 6 S.D. (n = 2).
MC: motile cells; PC: palmella cells; RC-M: red cells induced from motile
cells; RC-P: red cells induced from palmella cells. MC: white rectangle;
PC: light grey rectangle; RC-M: grey rectangle; RC-P: black rectangle.
doi:10.1371/journal.pone.0106679.g003
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glycerolipid. The high protein content of the motile cells is in line

with their high photosynthetic growth potential. The protein

content in palmella cells was lower than in motile cells, and it

decreased 36.7% (p,0.01) during the encystment process under

LL. During encystment, carbohydrate content increased 27.5%

(p,0.01), whereas glycerolipid content decreased 17.9% (p,0.05,

Fig. 4). The increase in carbohydrates in palmella cells may be

attributable to the accumulation of storage compounds, such as

the cellulose associated with secondary cell walls [31].

After exposure to HL for 24 h, total protein content decreased

52.8% (p,0.01) and 31.2% (p,0.01) in motile and palmella cells,

respectively (Fig. 4). Although the increase of lipids under HL was

expected, as massive, TAG-rich lipid bodies were formed (Fig. 1),

the total glycerolipid content in both palmella and motile cells

remained essentially unchanged. At the same time, total carbo-

hydrates in RC-M increased 57.0% (p,0.01) relative to the motile

cells, whereas little change in carbohydrate content was observed

in RC-P as compared to palmella cells. These results indicated that

photosynthates were preferentially partitioned into storage carbo-

hydrates (probably in the form of starch) in motile cells under HL.

Quantitative analysis of membrane glycerolipids
A lipidomics method was employed to quantitatively measure

molecular species of glycerolipids in the different forms of

Haematococcus cells. A total of eight classes of membrane

glycerolipid (PC, PE, PI, PG, DGTS, MGDG, DGDG, and

SQDG) were identified in all four types of H. pluvialis cells, i.e.,

motile cells, palmella cells, RC-M, and RC-P. The galactolipid

MGDG was the most abundant membrane glycerolipid in motile

and palmella cells grown under the favorable LL conditions, and

the glycerolipid content in motile cells comprised up to 72.9 mmol

g21 DW, which was 42.5% greater than in palmella cells

(41.9 mmol g21 DW, p,0.01) (Fig. 5). The second most abundant

galactolipids DGDG was ca. 50% of MGDG in motile and

palmella cells. Such a ratio is similar to that found in many other

microalgae and higher plants [32].

Four classes of phospholipids (PG, PC, PE, and PI) were

detected in Haematococcus cells. PG, the only bulk phosphogly-

cerolipid found in thylakoid membranes [33], totaled about 6% of

total glycerolipids in motile and palmella cells. Motile and palmella

cells contained similar amounts of PE (ca. 11 mmol g21 DW,

accounting for 6% of total glycerolipids). During the encystment

process under LL, PC increased 19.4% in palmella cells

(6.27 mmol g21 DW, p,0.01) compared to motile cells (5.25 mmol

g21 DW), whereas PI decreased from 7.05 mmol g21 DW to

5.51 mmol g21 DW during encystment.

Under HL, MGDG, DGDG, SQDG, and PG content in motile

cells decreased 63.6% (p,0.01), 14.7% (p,0.05), 22.7% (p,0.01),

and 56.4% (p,0.01), respectively, suggesting a dramatic degra-

dation of the thylakoid membranes and photosynthetic complexes

(Fig. 5). Palmella cells showed a similar reduction in DGDG,

SQDG, and PG, but MGDG decreased only 19.4% under HL

(p,0.01). In motile cells, PE and DGTS were reduced 47.9% (p,

0.01) and 22.1% (p,0.05), respectively; however, both remained

unchanged in palmella cells after 24 h under HL. In contrast to

the remarkable reduction in chloroplast membrane lipids and

nitrogen-containing glycerolipids (e.g., PE, DGTS), PI content

increased 17.7% (p,0.01) in palmella cells during HL acclimation,

and remained unchanged in motile cells. Among the eight

membrane glycerolipid classes, PC was the only lipid that

increased under HL, which occurred in motile cells (22.9%, p,

0.01).

The changes in cellular content of membrane glycerolipid

molecules are shown in Fig. 6 and Fig. 7. During the

encystment process under LL, most chloroplast membrane

glycerolipid molecules decreased. However, a few chloroplast

membrane glycerolipids were up-regulated in palmella cells,

including MGDG 34:4, DGDG 34:4, and SQDG 32:0, among

which DGDG 34:4 showed the greatest change (a 53.3% increase

in palmella cells, p,0.01). Under HL, a number of chloroplast

membrane lipids, including MGDG (34:5, 34:6, and 34:7), SQDG

(34:3), and PG (34:3 and 34:2), were reduced dramatically in

motile cells but remained relatively stable in palmella cells (Fig. 6).

A similar trend was observed with PI (34:1), PE (38:5, 38:6), and

DGTS (34:4, 36:5, and 36:6) (Fig. 7).

TAG profiling and quantitation
Although TAG synthesis is considered a protective strategy by

which microalgae cope with environmental stress (e.g., nutrient

deprivation, high light) [34,35], our results reveal that H.
pluvialiscan accumulate TAG under favorable growing condi-

tions. As shown in Fig. 5, motile cells contained a small but

detectable amount of TAG (1.5 mmol g21 DW), corresponding to

0.7% of total glycerolipids. During encystment under LL, TAG

content increased ca. 7-fold in palmella cells (10.55 mmol g21 DW,

or 6.4% of total glycerolipids). Accumulation of TAG under

favorable culture conditions has recently been reported in

Chlamydomonas and Nannochloropsis as well [36].

When H. pluvialis cells were subjected to HL, the most

noticeable change with respect to lipid composition was the

accumulation of large amounts of TAG. TAG content in motile

and palmella cells reached 70.04 and 43.41 mmol g21 DW,

respectively, after 24 h under HL, which accounted for 36.9% and

25.4% of total glycerolipids, respectively (Fig. 5).

The cellular contents of individual TAG molecular species are

shown in Fig. 8. The major TAG species under favorable growth

conditions were TAG 50:1, 52:2, 52:4, and 52:5, which together

accounted for more than 75% of total TAG in both motile and

palmella cells. TAG (16:0/18:1/18:1) and (18:1/16:0/18:1) were

the predominant species, accounting for ca. 25% of total TAG in

both motile and palmella cells (Fig. 8A). Twenty-one TAG

molecular species were present in minor quantities, accounting for

6.7–9.3% of total TAG (Fig. 8B), whereas eighteen TAG species

Figure 4. Analyses of total carbohydrate, protein, and glycer-
olipids in different H. pluvialis cell types. Values represent the
mean 6 S.D. (n = 6). MC: motile cells; PC: palmella cells; RC-M: red cells
induced from motile cells; RC-P: red cells induced from palmella cells.
Total glycerolipids: white rectangle; total protein: light grey rectangle;
total carbohydrate: black rectangle.
doi:10.1371/journal.pone.0106679.g004
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Figure 5. Content of different glycerolipid classes in different H. pluvialis cells types. Values represent the mean 6 S.D. (n = 6). MC: motile
cells; PC: palmella cells; RC-M: red cells induced from motile cells; RC-P: red cells induced from palmella cells. MC: white rectangle; PC: light grey
rectangle; RC-M: grey rectangle; RC-P: black rectangle.
doi:10.1371/journal.pone.0106679.g005

Figure 6. Lipid compositions of four major glycerolipids in H. pluvialis chloroplasts in different cells types. (A) MGDG; (B) DGDG; (C)
SQDG; (D) PG. Values represent the mean 6 S.D. (n = 6). MC: motile cells; PC: palmella cells; RC-M: red cells induced from motile cells; RC-P: red cells
induced from palmella cells. MC: white rectangle; PC: light grey rectangle; RC-M: grey rectangle; RC-P: black rectangle.
doi:10.1371/journal.pone.0106679.g006
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combined to account for less than 3.5% of total TAG, and these

eighteen TAGs were defined as trace TAG molecular species

(Fig. 8C).

Discussion

Encystment process involves development of multiple
defense mechanisms

When H. pluvialis cells were cultivated under favorable growth

conditions for an extended period of time (e.g., 3–5 days), the

motile cells lost their flagellae and became palmella cells with

thickened cell walls. Our previous study [11] showed that motile

and palmella cells are both capable of coping with environmental

stress to different extents; however, the development of the

protective mechanisms during encystment was not well under-

stood. This study combined several physiological and biochemical

tools to investigate several key photosynthetic and subcellular

biochemical changes during the encystment.

The chlorophyll fluorometric analysis demonstrated that the

capacity to dissipate excessive excited energy via the NPQ

mechanism developed during encystment and was further

augmented when palmella cells were subjected to HL. NPQ is a

rapid and effective process that is induced seconds after

photosynthetic cells are exposed to excess light [37]. When the

excited energy exceeds the capacity of algal cells to use the

reducing energy produced by photosynthesis for carbon fixation,

algal cells can lower the quantum yield at PSII by dissipating the

excess absorbed energy by NPQ. Thus, the development of NPQ

in palmella cells may reduce the production of excessive ROS

under HL conditions.

The adjustment of relative numbers of PSII and PSI complexes

represents an important mechanism by which plants and algae

prevent photodamage during high-light acclimation [38–40]. PSI

cyclic electron transport may have multiple functions in photo-

protection, such as dissipating energy absorbed at PSI and

maintaining a DpH for NPQ to down-regulate energy production

at PSII [26]. H. pluvialis cells changed the energy balance

between PSII and PSI under HL by enhancing the quantum yield

of PSI [Y(I)] while reducing Y(II) [15].We speculate that

increasing the PSI/PSII ratio, decoupling PSI and PSII by

Figure 7. Lipid compositions of the extraplastidic glycerolipids in different H. pluvialis cells types. (A) PC; (B) PI; (C) PE; (D) DGTS. Values
represent the mean 6 S.D. (n = 6). MC: motile cells; PC: palmella cells; RC-M: red cells induced from motile cells; RC-P: red cells induced from palmella
cells. MC: white rectangle; PC: light grey rectangle; RC-M: grey rectangle; RC-P: black rectangle.
doi:10.1371/journal.pone.0106679.g007
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decreasing cytochrome b6f during encystment, and increasing

cyclic electron transport around PSI are a suite of photoprotective

mechanisms developed in palmella cells for acclimation under HL.

This study revealed for the first time the global remodeling of H.
pluvialis glycerolipids in response to HL and under encystment.

The ability of living cells to survive under extreme environmental

conditions may rely on their ability to modify their membrane

composition and adjust their lipid desaturation level [34,41].

Prominent TAG accumulation, coupled with a reduction in the

number of chloroplast lipid molecules species, was observed in

palmella cells. TAG biosynthesis requires considerable amounts of

reducing equivalents (NADPH), which may help relax over-

reduced photosynthetic electron transport chains and thus protect

the cells under stress [42]. In addition, TAG constitutes the storage

subcellular structure (e.g., lipid bodies) for synthesized astaxanthin

molecules in H. pluvialis, which can in turn provide protection

from excess light [5,14,17,43]. TAG may also be a depot of

polyunsaturated fatty acids in some microalgae, allowing the

organisms to swiftly adapt to the changing environment; the

polyunsaturated fatty acids can be reincorporated into membrane

lipids when environmental conditions become favorable for

growth [34,44].

Although production of ROS and cell mortality were not

directly measured in this study, multiple lines of evidence suggest

that the motile cells suffered more severe photo-oxidative stress

than palmella cells when exposed to HL. First, more profound

Figure 8. Triacylglycerol (TAG) composition in different H. pluvialis cells types. (A) Major species; (B) minor species; (C) trace species. Values
represent the mean 6 S.D. (n = 6). MC: motile cells; PC: palmella cells; RC-M: red cells induced from motile cells; RC-P: red cells induced from palmella
cells. MC: white rectangle; PC: light grey rectangle; RC-M: grey rectangle; RC-P: black rectangle.
doi:10.1371/journal.pone.0106679.g008

High-Light Acclimation and Lipidomes of Different Haematococcus Cells

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e106679



decreases in the quantum yields of PSII, D1 protein, and PsbO, as

well as in several chloroplast membrane lipids (e.g., MGDG 18:3/

16:2, 18:2/16:4, 18:3/16:4) occurred in motile cells than in

palmella cells under HL. In oxygenic photosynthetic organisms,

PSII and PSI are two major sites of ROS production [26]. ROS

produced at PSII and PSI can damage proteins, lipids, and

pigments, especially D1 protein at PSII and lipids containing

polyunsaturated fatty acids. Second, pronounced astaxanthin

accumulation in motile cells is an indication of severe photo-

oxidative stress induced under HL. Although astaxanthin can

react with ROS and astaxanthin synthesis consumes molecular

oxygen—the precursor of ROS—a higher astaxanthin content in

motile cells than in palmella cells reflects a greater stress on motile

cells exposed to HL. Consequently, motile cells may die off more

quickly than cells with lesser amounts of astaxanthin; this was

confirmed by our previous study in which H. pluvialis cells

exposed to higher irradiance accumulated more astaxanthin but

exhibited higher cell mortality [17].

Remodeling of membrane glycerolipids under high light
Diacylglycerol-based polar lipids are the building blocks of the

cellular membranes of living organisms. It is generally believed

that glycolipids (e.g., MGDG, DGDG, SQDG) and the phospho-

lipid PG are the major components of chloroplast thylakoid

membranes, whereas phospholipids like PE, PC, PI, and the

nonphosphorus betaine lipid DGTS reside in the extraplastidic

membranes of photosynthetic cells [45–47].

Our results indicate that the major classes of chloroplast

membrane lipids exhibit different fates under HL stress in H.
pluvialis. PG showed the most profound decrease among all the

chloroplast membrane lipids in both motile and palmella cells;

MGDG was dramatically reduced in motile cells and red cysts

under HL; by contrast, DGDG and SQDG showed moderate

decreases in both motile and palmella cells under the same

conditions. The different responses of these lipids may result from

their uneven distributions among the photosynthetic complexes

and their distinct functional roles in maintaining the proper

structure and function of chloroplast membranes.

MGDG and DGDG are two major galactolipids that constitute

the bilayer of thylakoid membranes. Moreover, MGDG has been

identified in cyanobacterial PSII, PSI, and cytochrome b6f, and

DGDG is found in PSII, PSI and LHCII [48–50]. A sharp

decrease of MGDG content in H. pluvialis cells is likely linked to

the breakdown of PSII and cytochrome b6f in response to HL,

especially in motile cells. In the bilayer chloroplast membranes of

Arabidopsis, MGDG can be converted to DGDG to prevent the

formation of hexagonal structures and consequent membrane

infusion under freezing stress [51]. Thus, the relatively stable

amounts of DGDG in H. pluvialisunder HL may be attributable

in part to the conversion of MGDG to DGDG.

PGs are anionic lipids that are present primarily in PSII, PSI,

and LHCII in Thermosynechococcus elongates and spinach

(Spinacia oleracea) [33,52–54]. In particular, PG may participate

in the dimerization of PSII complexes and trimerization of PSI

and LHCII complexes [33,55–57]; it may also play a direct

structural role in binding antenna pigments[58]. In this study, the

observed drastic reduction of PG is likely involved in the

breakdown of PSII, chlorophyll, and LHCII. SQDGs are another

type of anionic lipid and are primarily associated with PSII and

cytochrome b6f complexes [58,59]. SQDG may also partially

replace PG to maintain the anionic surface charge of Arabidopsis
thylakoid membranes under Pi starvation [60–62]. The moderate

reduction of SQDG in both motile and palmella cells under

nitrogen-depleted condition suggests that SQDG may be more

stable than PG, thereby partially replacing PG while maintaining

the anionic surface charge of the thylakoid membrane in H.
pluvialis under HL.

Biotechnical implications
Cell death during the first 1–2 days under photo-oxidative stress

represents a major loss of biomass in H. pluvialis mass culture.

This phenomenon often occurs in Haematococcus cells at the

exponential growth phase, when the cell population is mainly in

the flagellate form. Palmella cells can develop a suite of protective

mechanisms during encystment to bestow greater resistance to HL

than motile cells, and thus, applying palmella cells instead of

motile cells to the stressful red stage of cultivation may represent a

promising strategy for increasing growth and astaxanthin produc-

tion. During the first day under HL, astaxanthin productivity (g

L21 day21) in palmella cells was less than in motile cells. From a

biotechnical perspective, high astaxanthin contents are desirable,

although higher yields can be achieved be extending culturing

time. Astaxanthin accumulation in palmella cells below the

maximum potential may be attributable to the fact that palmella

cells favor PSI cyclic electron transport over linear electron

transport. Unlike linear electron transport, which produces both

ATP and NADPH, cyclic electron transport is involved only in

ATP production [63]. In H. pluvialis cells, 90% of astaxanthin is

attached with one or two fatty acids [64,65], forming astaxanthin

mono- and diesters. Since NADPH is required for synthesis of

astaxanthin and fatty acids [66], the reducing power of palmella

cells may not be sufficient to produce amounts of astaxanthin

esters equivalent to those produced by motile cells under the same

circumstances.

Therefore, our future efforts will explore how to enhance

NADPH production in palmella cells as well as how to increase the

levels of astaxanthin biosynthetic enzymes through physical or

genetic manipulations. Additionally, we will investigate biotic and

abiotic factors that stimulate the development of protective

mechanisms in palmella cells.
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