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Abstract

Uncovering the chemical and physical links between natural environments and microbial communities is becoming
increasingly amenable owing to geochemical observations and metagenomic sequencing. At the hot spring known as Bison
Pool in Yellowstone National Park, the cooling of the water in the outflow channel is associated with an increase in
oxidation potential estimated from multiple field-based measurements. Representative groups of proteins whose
sequences were derived from metagenomic data also exhibit an increase in average oxidation state of carbon in the protein
molecules with distance from the hot-spring source. The energetic requirements of reactions to form selected proteins used
in the model were computed using amino-acid group additivity for the standard molal thermodynamic properties of the
proteins, and the relative chemical stabilities of the proteins were investigated by varying temperature, pH and oxidation
state, expressed as activity of dissolved hydrogen. The relative stabilities of the proteins were found to track the locations of
the sampling sites when the calculations included a function for hydrogen activity that increases with temperature and is
higher, or more reducing, than values consistent with measurements of dissolved oxygen, sulfide and oxidation-reduction
potential in the field. These findings imply that spatial patterns in the amino acid compositions of proteins can be linked,
through energetics of overall chemical reactions representing the formation of the proteins, to the environmental
conditions at this hot spring, even if microbial cells maintain considerably different internal conditions. Further applications
of the thermodynamic calculations are possible for other natural microbial ecosystems.

Citation: Dick JM, Shock EL (2011) Calculation of the Relative Chemical Stabilities of Proteins as a Function of Temperature and Redox Chemistry in a Hot
Spring. PLoS ONE 6(8): e22782. doi:10.1371/journal.pone.0022782

Editor: Jonathan H. Badger, J. Craig Venter Institute, United States of America

Received February 22, 2011; Accepted June 29, 2011; Published August 11, 2011

Copyright: � 2011 Dick, Shock. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This material is based upon work supported by the National Science Foundation under grant EAR-0847616. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jmdick@asu.edu

Introduction

The imprints of distinct geochemical environments can be

found in the molecular compositions of microbial genomes and

their protein products. For example, transmembrane proteins of

ancestral organisms were likely to be depleted in oxygen,

paralleling the low oxygen content of Earth’s atmosphere in the

past [1]. Environmental imprints on proteins can also be found for

spatially separated organisms living contemporaneously; the

amino acid composition of proteins differ systematically between

organisms living at different temperatures [2,3]. Together with

temperature, the chemical properties of the environment are

linked to the compositions of gene sequences in hot-spring

microbial communities [4,5].

Although the sequences of proteins must satisfy a complex array

of biological requirements, the different biosynthetic costs of

amino acids are viewed as one contributing factor to actual

patterns of amino acid usage [6,7]. In some studies, the

biosynthetic costs of amino acids have been estimated from

metabolic constraints including numbers of phosphate bonds and

hydrogen atoms transferred during synthesis from precursors

[6,8]. Those estimates depend on the growth medium and specific

metabolic pathways but otherwise do not involve environmental

variables such as temperature and oxidation-reduction conditions.

Nevertheless, it can be shown that the Gibbs energy change in

overall chemical reactions to synthesize amino acids from from

inorganic species depends on environmental conditions [9]. The

calculations of energetics of overall synthesis reactions can now be

done for proteins, where group additivity methods permit assessing

standard Gibbs energies of proteins of any amino acid composition

[10,11].

The goal of this study is to use thermodynamic tools to

characterize simultaneously the chemical environment and

metagenomically derived protein sequences in a hot spring

exhibiting large gradients of temperature and oxidation-reduction,

or redox, chemistry. The geochemical and biomolecular data are

combined using a single model framework based on chemical

reactions and their energy changes. The use of a metagenomic

dataset in a location where extensive geochemical data are

available permits calibration and testing of the model.

One setting where in-depth metagenomic and geochemical

information are available is the hot spring known as ‘‘Bison Pool’’,

a flowing, moderately alkaline hot spring in Yellowstone National

Park [12,13]. The water at the source is boiling, and rapidly cools

along the outflow channel as a result of exposure to the ambient

conditions. Extensive chemical analysis of the water also reveals
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large gradients of chemical composition such as increase in pH,

decrease in sulfide concentration, increase in dissolved oxygen and

in oxidation-reduction potential of the water. Prior metagenomic

sampling of the microbial communities at five sites from the source

to approximately 22 meters down the outflow channel offers a

window into the biomolecular composition of these communities.

Although the metagenomic sequencing is of the DNA molecules,

genes present in the metagenome provide a picture of the proteins

that are likely to be used by the organisms.

The first major theme of this study concerns the changes in

chemical composition of proteins along the outflow channel. The

stoichiometric quantity we investigate is the average oxidation

state of carbon in the proteins, which can be calculated directly

from the chemical formulas of the proteins. In general, the average

oxidation state of carbon in proteins increases down the outflow

channel. This effect is present at the level of the whole

metagenome and also within different functional classes of

proteins. There is a positive correlation between the average

oxidation state of carbon in proteins and the oxidation-reduction

potential of the surrounding water.

The results of the stoichiometric calculations support a

hypothesis that chemical compositions of the proteins reflect

processes that tend to minimize the free energy of the system. We

applied thermodynamic models to integrate molecular composi-

tion with temperature and multiple environmental chemical

variables. The second major theme of the paper addresses the

relative stabilities of the different classes of model proteins from

each sampling site in terms of temperature, pH and oxidation-

reduction potential. The major finding of this part of the study is

that a redox gradient as a function of temperature traverses the

stability fields of the proteins in a way that largely parallels the

proteins’ spatial distribution. This redox gradient, expressed as

activity of dissolved hydrogen, generally parallels estimates derived

from measurements of sulfide/sulfate concentrations, oxidation-

reduction potential electrodes, and dissolved oxygen, but is more

reducing than any of those.

These results help to outline the interrelationships between

biomolecular composition and geochemistry in the Bison Pool

ecosystem. One use of these models is to quantify gradients in

oxidation potential between the water and the interiors of cells

and/or biofilms at the temperatures found in the hot spring.

Another is to establish the extent to which organisms minimize the

energy expenditure involved in formation of biomolecules in

specific chemical environments. Generalizing the methods and

calculations described below can aid in resolving the effects of

chemical gradients, energy minimization and other features of this

hot spring and other geobiochemical systems.

Methods

Average oxidation state of carbon
The average nominal oxidation state of carbon, ZC, is a

quantity related to the different electronegativities of elements

involved in the covalent structure of an organic molecule. ZC is

equal to the sum of the nominal oxidation states of all the carbon

atoms in a molecule divided by the number of carbon atoms. The

concept of average oxidation state of carbon has found application

in various contexts, ranging from balancing organic oxidation-

reduction reactions [14] to characterization of organic matter in

aerosols [15] and in terrestrial ecosystems [16]. Moreover, a

correlation can be observed between the standard molal Gibbs

energies of oxidation half-reactions and the average oxidation state

of carbon of the organic molecules involved [17]. As with smaller

molecules, it is possible to interpret the chemical composition of

proteins using the average oxidation state of carbon.

The rules for calculating the formal oxidation states on any

carbon atom can be summarized as follows [18]. Each single bond

to a more electronegative element (e.g., oxygen, nitrogen, sulfur)

contributes z1 to the oxidation state of a particular carbon atom,

while each single bond to a less electronegative element (e.g.,

hydrogen) contributes {1 to the oxidation state of a particular

carbon atom, and a carbon-carbon bond counts (formally) as zero.

Double bonds count doubly. Familiar, though extreme, examples

are found with CO2 (two double bonds to oxygen; ZC~z4) and

CH4 (four single bonds to hydrogen; ZC~{4). The concept of

the average oxidation state can be extended to more complex

molecules, for example acetic acid, CH3COOH, which has

ZC~0. That value is consistent with an oxidation state of z3
on the first carbon (having three bonds to hydrogen) and {3 on

the second carbon (having one double bond and one single bond

to oxygen).

The definition of oxidation state cited in the IUPAC Gold Book

[19,20] states that ‘‘… in ions the algebraic sum of the oxidation

states of the constituent atoms must be equal to the charge on the

ion’’ (i.e., positive or negative values for cations or anions, or zero

for neutral species). We can adopt values for the formal charges of

atoms other than carbon, {2 for oxygen, z1 for hydrogen, {3
for nitrogen, {2 for sulfur, that are consistent with this

requirement for amino acids and proteins. The values for nitrogen

and sulfur are those that would be assigned to the atoms if they

were found in amine groups and sulfide groups, respectively [16].

Writing the formula of glycine as H2NCH2COOH, the oxidation

state of the first carbon is {1 (one bond to nitrogen, two bonds to

hydrogen) and that of the second carbon is z3 (one double bond

and one single bond to oxygen), so the average oxidation state of

carbon in the molecule is z1. The sum of the formal charges of

the atoms, in the order indicated by the formula, is

2(z1){3{1z2(z1)z3{2{2z1~0, which is equal to the

net charge of the molecule.

In many cases, the value of the average oxidation state of

carbon is amenable to calculation using only the chemical formula

of a molecule, instead of the more tedious accounting for each

carbon. Let us use Z to stand for the total charge on an ion (which

becomes zero for a neutral molecule) and let the average oxidation

state of carbon be represented by ZC. Using formal oxidation

states mentioned above for the elements other than carbon, the

requirement for algebraic sums of oxidation states of the atoms can

be expressed symbolically as

nH{2nO{2nS{3nNzZCnC~Z, ð1Þ

where nC, nH, nN, nO and nS are the numbers of the respective

subscripted elements in the chemical formula. Rearranging Eq. (1)

gives

ZC~
Z{nHz2 nOznSð Þz3nN

nC

: ð2Þ

This equation shows that the average oxidation state of carbon in

proteins is effectively a linear combination of the elemental ratios

H/C, N/C, O/C and S/C.

Note that ionization of the amino acid sidechains in proteins,

and other ionization reactions involving only protons, have equal

contributions to Z and nH and produce no net effect on the value

of ZC. Similarly, polymerization of amino acids, or other reactions

involving only the gain or loss of a water molecule, produce no net
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effect on the value of ZC [18]. On the other hand, Eq. (2), and the

electronegativity rules outlined above, show that oxidation-

reduction reactions in organic compounds are not limited to gain

or loss of either hydrogen or oxygen, but that the addition of other

heteroatoms (sulfur, nitrogen) to a compound also causes an

increase in the overall oxidation state of the molecule [18].

The average oxidation states of carbon in the twenty common

amino acids range from {1 (leucine, isoleucine) to z1 (glycine,

aspartic acid, asparagine) and are summarized in Table 1. The

values listed for the amino acids in Table 1 span a considerable

range but other types of organic molecules are even more or less

oxidized [16,17]. Proteins made up of these amino acids have an

average oxidation state of carbon that can be computed as a

weighted average of the Z
C

values of the amino acids, or

equivalently, using Eq. (2) and the chemical formulas of the

proteins. It may be noted that other physical-chemical properties

of the amino acids can be correlated with differences in average

oxidation state of carbon. For example, four highly hydrophobic

amino acids (isoleucine, valine, leucine and phenylalanine) [21]

have negative average oxidation states of carbon, which is

associated with the high H/C ratios of their sidechain groups.

Relative stabilities of proteins
Chemical thermodynamic methods, borrowed from geochem-

ical modeling applications, can also be used to study the relative

stabilities of model proteins from different sampling sites in the hot

spring outflow channel. The methods are described conceptually

below, followed by description of a specific example.

Four informal definitions help introduce the modeling strategy.

1) Basis species are a minimum set of chemical constituents that

represent all of the chemical elements and the ionization state of

proteins. 2) A formation reaction is a chemical reaction to form one

mole of a protein from the basis species. The formation reactions

of different proteins have different coefficients on basis species

because the proteins themselves have different chemical formulas.

3) Chemical affinity is energy change during a reaction; positive

values mean energy is released, and negative values mean that

energy is consumed. A reaction with a higher chemical affinity is

more favored to proceed to the product side. 4) Chemical activity is

related fundamentally to chemical potential and can be thought of

as the effective concentration of a basis species or protein.

Let us define one system of interest as a collection of proteins

with equal chemical activities interacting with a physical-chemical

environment defined by constant values of temperature, pressure,

and chemical activities of the basis species. What is the relative

stability of one protein compared to another? If the activities of the

proteins are equal, the affinities of the formation reactions of the

proteins are generally unequal to each other, and the system is not

in equilibrium. The most stable protein is identified as the one

with the highest chemical affinity of its formation reaction. That is

the protein whose formation, at a given chemical activity, releases

the most energy, or requires the least energy input.

Now consider the outcome of hypothetical chemical reactions

among the proteins, so that different proteins (chemical species)

are formed and destroyed at each others’ expense, and as a

consequence the chemical activities of the proteins change. The

temperature and pressure are maintained, and the system is open

so that the activities of the basis species are buffered and therefore

remain unchanged. One or more specific outcomes of the

hypothetical progression of reactions is an assemblage of proteins

in a (possibly metastable) equilibrium distribution. In this

equilibrium, or minimum-energy state, the chemical affinities of

the formation reactions of the proteins are all equal (but might be

non-zero), so the hypothetical transformation of one protein to

another involves no overall energy change. If the affinities of the

formation reactions of the proteins are all equal but less than zero,

then the proteins are less stable than the basis species; that system

represents a type of metastable equilibrium and a local, not global,

energy minimum. Since the system is at equilibrium, the most

stable protein is identified as the one with the highest chemical

activity – in terms of concentration it has a higher degree of

formation compared to the other proteins.

The hypothetical systems described above consist of populations

of proteins with either equal activities or equal affinities of

formation. To a first approximation (under conditions of ideal

mixing) the stabilities of the proteins relative to each other are the

same in both cases, since the definition of the chemical

environment – temperature, pressure and activities of the basis

species – is unchanged. Therefore, it is helpful to conceptualize the

systems with equal activities of proteins and equal affinities of

protein-formation reactions as being different states of a more

generic system, defined only by the chemical environment and the

identities of the proteins, but not their chemical activities. The

relationship between the equal-activity and equal-affinity reference

states is shown schematically in Fig. 1. The relative stabilities of

species A, B, and C are the same in both panels of the Figure. If an

equal-activity reference state is adopted, greater stability goes with

higher affinity (Fig. 1a). If the equal-affinity reference state is

adopted, greater stability goes with higher activity (Fig. 1b).

In quantifying the relative stabilities of proteins, a choice can be

made between the two reference states; either one is valid, but the

relative stabilities of the proteins are revealed through different

variables. To generate the figures in this paper relative stabilities

were quantified using an equal-affinity, or metastable equilibrium

reference state. The primary advantage of doing so is the

production of equilibrium activity diagrams [22] that are

interpreted as depicting the relative stabilities of the proteins in

terms of temperature and activities of the basis species. The

specific methods used to calculate relative stabilities of proteins

starting with an equal-activity reference state, then using a reaction

matrix or equilibrium distribution equation to quantify the

activities of the proteins at metastable equilibrium are described

below.

Thermodynamic definitions. An equation for the

differential of Gibbs energy (dG) that takes account of reaction

Table 1. Average oxidation states of carbon and number of
carbon atoms of the twenty amino acids commonly occurring
in proteins.

Amino Acid nC ZC Amino Acid nC ZC

Alanine 3 0:00 Methionine 5 {0:40

Cysteine 3 0:66 Asparagine 4 1:00

Aspartic Acid 4 1:00 Proline 5 {0:40

Glutamic Acid 5 0:40 Glutamine 5 0:40

Phenylalanine 9 {0:44 Arginine 6 0:33

Glycine 2 1:00 Serine 3 0:66

Histidine 6 0:66 Threonine 4 0:00

Isoleucine 6 {1:00 Valine 5 {0:80

Lysine 6 {0:66 Tryptophan 11 {0:18

Leucine 6 {1:00 Tyrosine 9 {0:22

doi:10.1371/journal.pone.0022782.t001
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progress in a system, formulated by de Donder [23,24] can be

written as

dG~{SdTzVdP{Adj, ð3Þ

where S, T , V and P are entropy, temperature, volume and

pressure, A is chemical affinity, and j is a reaction progress

variable. The chemical affinity of the ith reaction can be expressed

as

Ai~2:303RT log Ki=Qið Þ~{DGr,i, ð4Þ

where R is the gas constant, 2:303 represents the natural logarithm

of 10, and Ki and Qi are the equilibrium constant and activity

product of the ith reaction. The chemical affinity is equal to the

negative of the overall Gibbs energy change of the reaction (DGr,i).

K and Q can be calculated from

log Ki~{DG0
r,i=2:303RT , ð5Þ

where DG0
r,i is the standard Gibbs energy of the ith reaction, and

log Qi~
X

j

nj,i log aj,i, ð6Þ

where nj,i and aj,i are the reaction coefficient (negative for

reactants, positive for products) and activity of the jth species in

the ith reaction. In the equations, all operations involving

logarithms have a base of 10.

The standard state convention adopted for liquids, including

H2O, corresponds to unit activity of the pure substance at any

temperature and pressure. The standard state convention adopted

for aqueous species other than H2O corresponds to unit activity of

a hypothetical one molal solution referenced to infinite dilution at

any temperature and pressure [25]. The conventional standard

molal thermodynamic properties of both the aqueous electron and

proton are taken to be zero at all temperatures and pressures [26].

Calculating relative stabilities of proteins
The case study described below is based on an example

described previously [27] for calculating the equilibrium activities

of cell-surface glycoproteins (CSG) from Methanococcus voltae and

Methanocaldococcus jannaschii. These methanogenic organisms are

not likely to be present in detectable quantities at Bison Pool in

Yellowstone National Park, but they nevertheless are common

model organisms for studying microbial adaptations to differences

in temperature and other environmental characteristics [28,29].

Clues about the organisms’ environments may emerge from

comparing the sequence and chemical properties of the two

functionally homologous proteins.

The methods described here for calculating the amino acid and

chemical composition as well as the standard molal properties of

the proteins [11] are currently restricted to only the unfolded

peptide molecules and not the carbohydrate constituent of the

glycoproteins. In their uncharged states, the peptide chains of

these two molecules have formulas of C2575H4097N645O884S11 and

C2555H4032N640O865S14, respectively, with sequence lengths of 553

and 530 amino acid residues (UniProtKB accessions Q50833 for

CSG_METVO and Q58232 for CSG_METJA; signal peptides

were removed). At 25uC and pH~7, the charges of the ionized

proteins calculated using standard Gibbs energies of ionization of

the amino acid sidechains and protein terminal groups [11] are

{56:06 and {55:87. Although the calculation of protein charge,

which is based on group additivity, does not take into

consideration the effects of interactions between the ionizable

groups, it does have the advantage of being sensitive to changes in

temperature.

Writing formation reactions for residue equivalents. In

general, the relative stabilities of proteins of different lengths are of

interest. Because of the differences in size, the molal reaction

energies can not be directly compared in calculations of relative

stability. In many environments, the synthesis of larger molecules,

per mole, demands more energy, so for proteins of otherwise equal

chemical composition and thermodynamic properties (such as two

proteins of different size but with the same relative frequencies of

amino acids), the smaller one would generally be thought of as

more stable. In more reduced settings, the overall synthesis of

organic molecules can actually release energy [30], so the synthesis

of larger molecules would be favored. Taking the polymeric nature

of the proteins into account, the relative stabilities of proteins of

different size can be assessed by first writing formation reactions

that are normalized by numbers of amino acid residues. The

reactions involve the residue equivalents of the proteins, which

have chemical formulas and standard molal properties that are

those of the protein divided by the sequence length of the protein.

The following two formation reactions are written for the residue

equivalents of the two protein homologs:

4:656CO2 aqð Þz1:166NH3 aqð Þz0:020H2S aqð Þz9:649H2 aqð Þ

'C4:656H7:307N1:166O1:598S0:020
{0:101
CSG METVO,residueð Þ

z7:714H2Oz0:101Hz

ð7Þ

for the protein from M. voltae and

4:821CO2 aqð Þz1:208NH3 aqð Þz0:026H2S aqð Þz9:975H2 aqð Þ

'C4:821H7:502N1:208O1:632S0:026
{0:105
CSG METJA,residueð Þ

z8:009H2Oz0:105Hz

ð8Þ

for that from M. jannaschii.

The reactions above involve the basis species CO2 aqð Þ, H2O,

NH3 aqð Þ, H2S aqð Þ, H2 aqð Þ and Hz, which are the same as used in

Ref. [27] except that H2 aqð Þ is used here instead of O2 gð Þ. The

Figure 1. Relative stabilities portrayed in different reference
states. In these qualitative diagrams, the same relative stabilities are
shown in two different reference states. Species ‘‘C’’ is more stable than
‘‘B’’ is more stable than ‘‘A’’. Chemical activity is shown on the x-axis,
and chemical affinity of formation reaction is shown on the y-axis. In the
equal-activity, or non-equilibrium, reference state (left), the species with
the most positive chemical affinity of formation is the most stable. In
the equal-affinity, or metastable equilibrium, reference state (right), the
species with the most positive chemical activity is the most stable.
doi:10.1371/journal.pone.0022782.g001
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choice of basis species determines the expression for chemical

activities, i.e. the way in which the environmental chemical

potentials are quantified. Similarly to components, the set of basis

species is valid only if they represent a number of independent

variables equal to the dimension of chemical variability in the

system. There are unlimited combinations of basis species that

would qualify, but the actual choice is usually made to facilitate

comparisons with the natural system. For the calculations

described in this paper H2 aqð Þ is used instead of O2 gð Þ because of

the actual formation and metabolic significance of molecular

hydrogen in the hot-spring ecosystem [31].

Writing the formation reactions normalized per residue offers

insight into the consequences of changing environmental variables

on the relative stabilities of the proteins. Because Reactions 7 and

8 are written per residue of the proteins, comparing the reaction

coefficients to infer the effect of changing chemical variables on the

relative stabilities of the proteins is consistent with an overall

reaction between the proteins that is balanced on the protein

backbone group. For example, more moles of H2 aqð Þ are

consumed in Reaction (8) compared to Reaction (7). From specific

statements of Eqs. (4) and (6) for both reactions it follows that

increasing the activity of H2 aqð Þ would tend to favor formation of –

that is, decrease the energy change of the reaction for – the

homolog from M. jannaschii more strongly than that from M. voltae.

The effect of changing activity of hydrogen on the relative

stabilities of proteins from M. jannaschii and M. voltae parallels

differences in oxidation state of the natural environments of these

two organisms. A likely range of activities of dissolved hydrogen in

the mixing zones of submarine hydrothermal vents and ocean

water, representative of the environments inhabited by M.

jannaschii, is *10{2 to *10{5 at *100uC [30]. In lower-

temperature estuarine sediments, typical of the growth setting of

M. voltae, lower hydrogen concentrations of v10{9 to *10{8

have been observed [32].

Inspection of Reactions 7 and 8 implies that increasing activity

of H2 aqð Þ tends to favor formation of the protein from M. jannaschii

more strongly than that from M. voltae. This finding is the opposite

of what is implied by the difference between the average oxidation

state of carbon in CSG_METJA (ZC~{0:138) and

CSG_METVO (ZC~{0:144); the protein from M. jannaschii

actually has a higher average oxidation state of carbon. While the

average oxidation state of carbon can be derived solely from the

chemical composition of the protein, the formation reactions set

the stage for understanding relative stabilities of the proteins in

terms of reaction stoichiometry, energy, and their relationships to

multiple chemical variables represented by the basis species.

Calculation of equilibrium constants. The equilibrium

constants of each of the reactions can be calculated using the

standard Gibbs energies of formation from the elements of the

species in the reactions. In this study, the standard molal

thermodynamic properties of aqueous species as a function of

temperature and pressure were evaluated using the revised

Helgeson-Kirkham-Flowers (HKF) equations of state

[25,33,34,35]. The equations of state used for liquid H2O were

taken from Refs. [36,37,38] as implemented in a Fortran

subroutine in the SUPCRT92 software package [39]. Values of

the standard molal thermodynamic properties and of the

equations of state parameters for the basis species other than

Hz and e{ were taken from Refs. [40,34,41].

The standard molal thermodynamic properties and equations of

state parameters of the proteins can be calculated from amino acid

group additivity [11]. In the present study, the CHNOSZ package

[27] for the R software environment [42], which includes the

group additivity equations for the proteins and the equations of

state for calculating standard molal thermodynamic properties as a

function of temperature, was used for the calculations. Sample

code for performing the calculations for this example is included in

Supporting Dataset S1. Combining the sources of data outlined

above, values of log K7~63:1945 and log K8~65:7929 at 25uC
and 1 bar can be obtained for these two reactions.

Calculation of chemical affinities. The next step is to

calculate the chemical affinities of the formation reactions in an

equal-activity reference state. Let us use Eq. (4) to write

A7=2:303RT~ log K7{ log aCSG METVO,residuea7:714
H2O a0:101

Hz

� �

z log a4:656
CO2 aqð Þ

a1:166
NH3 aqð Þ

a0:020
H2S aqð Þ

a9:649
H2 aqð Þ

� � ð9Þ

and

A8=2:303RT~ log K8{ log aCSG METJA,residuea8:009
H2O a0:105

Hz

� �

z log a4:821
CO2 aqð Þ

a1:208
NH3 aqð Þ

a0:026
H2S aqð Þ

a9:975
H2 aqð Þ

� �
:
ð10Þ

The activities of the basis species are set to reference values

nominally representative of environmental conditions. The

activities of the basis species used in this example are taken from

Ref. [27]: log aH2O~0, log aCO2 aqð Þ~{3, log aNH3 aqð Þ~{4,

log aH2S~{7, log aHz~{7 (pH~7) and

log aH2 aqð Þ~{4:657486. The value for log aH2 aqð Þ was chosen so

that the results would be numerically equivalent to those described

in Ref. [27], where log fO2 gð Þ~{80 was specified instead.

Substituting these values into Eqs. (9) and (10) allows us to write

A7=2:303RT~0:1893{ log aCSG METVO,residue ð11Þ

and

A8=2:303RT~0:5928{ log aCSG METJA,residue: ð12Þ

The activities of the residue equivalents are related to the

activities of the proteins as follows. Activity of the ith protein

(aprotein,i) is related to concentration (mprotein,i, for molality) by

aprotein,i~cprotein,improtein,i ð13Þ

where cprotein,i stands for the activity coefficient of the ith protein.

The total activity of residues in the ith protein (aresidue,i) is given by

aresidue,i~cresidue,imresidue,i, ð14Þ

where cresidue,i stands for an activity coefficient. The total molality

of residues associated with the ith protein is

mresidue,i~nresidue,improtein,i, ð15Þ

where nresidue,i stands for the number of amino acid residues, or

sequence length of the ith protein.

Because of the high concentration of metabolites and bioma-

cromolecules in cells, the activity coefficients of proteins in their

natural subcellular environments are probably significantly
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different from unity [43], but available methods for calculating

non-ideal behavior of protein solutions are referenced to

electrolyte solutions [44] and depend on structural parameters of

proteins that would be difficult to deduce from metagenomic

sequence fragments. Under these circumstances the activity

coefficients of both residues and proteins can be approximated

as unity, and Eqs. (13)–(15) can be combined to write

aresidue,i~nresidue,iaprotein,i: ð16Þ

To characterize the affinities in an equal-activity reference state,

activities of the proteins nominally given by

aCSG METVO~aCSG METJA~10{3 are used for this example.

Using Eq. (16), one then obtains reference activities of the residues

given by aCSG METVO,residue~0:553 and aCSG METJA,residue~0:530

at 25uC and 1 bar.

The reference activities of the residues (computed from equal

activities of proteins) can be substituted into Eqs. (11) and (12) to

write A7=2:303RT~0:446 and A8=2:303RT~0:868. Therefore,

on a per-residue basis, the homolog from M. jannaschii is more

stable under the conditions (temperature, pressure, chemical

activities of basis species) stated above. Decreasing the activity of

hydrogen below a certain value, or changing the values of one or

more variables in a specific manner determined by the reaction

stoichiometry and Gibbs energy, would change the outcome so the

homolog from M. voltae would be the more stable protein.

Calculation of the metastable equilibrium activities of

proteins: Reaction-matrix approach. Casting the relative

stabilities of the proteins into a metastable equilibrium reference

state facilitates comparisons on equilibrium activity diagrams. One

approach involves a reaction matrix, where a system of equations

is constructed based on the formation reactions of the proteins. In

metastable equilibrium, the affinities of the formation reactions are

all equal. Let us denote this value by Amet-equil. Combining

A7~A8:Amet-equil with Eqs. (11) and (12) permits writing

Amet-equil=2:303RT~0:1893{ log aCSG METVO,residue ð17Þ

and

Amet-equil=2:303RT~0:5928{ log aCSG METJA,residue: ð18Þ

So far this is a system of two equations with three unknowns. A

third equation arises from the conservation of activity of residues

in the system; recall that activities are additive only if the activity

coefficients are unity. Assigning both proteins reference activities

of 10{3, the total activity of residues follows from Eq. (16):

aCSG METVO,residuezaCSG METJA,residue~1:083: ð19Þ

The solution to the system of equations (17)–(19) is

aCSG METVO,residue~0:3066, aCSG METJA,residue~0:7764 and

Amet{equil=2:303RT~0:703. It follows that the metastable

equilibrium activities of the proteins (not the residues) are

log aCSG METVO~ log (0:3066=553)~{3:256 and log aCSG METJA

~ log (0:7764=530)~{2:834. As with the outcome of the equal-

activity calculations described previously, CSG_METJA is found to be

the more stable protein at the conditions of this example. Changes in

temperature, pressure or activities of the basis species would alter these

results; in some conditions, for example at more oxidizing conditions

specified by lowering the activity of hydrogen, CSG_METVO would

instead be the more stable protein.

Each additional protein that is added to the system represents

another unknown and another equation like Eq. (17) or (18), so

this method is applicable to systems with any number of proteins.

Note however that Eqs. (17)–(19), or others that would be written

for different systems of proteins, do not constitute a linear system

of equations; the unknown activities are summed in the last

equation, but the logarithms of activities appear in the former

equations. In software, a root finder can be used to solve these

equations, leading to slow performance when the relative stabilities

of many proteins (hundreds or thousands) are being considered.

This performance penalty would not hinder the calculations

described in this paper because at most five model proteins for

each of the sampling sites are being considered. However, it is

useful to consider a different approach, described in the next

section, that is computationally more direct and yields identical

results.

Calculation of the metastable equilibrium activities of

proteins: Boltzmann distribution. Let us define, for the per-

residue formation reaction of the ith protein,

A�i :Aiz2:303RT log ai,residue: ð20Þ

It can be seen by comparison with Eqs. (4) and (6) that �A�i
includes all contributions to the chemical affinity of the ith
reaction except for the term associated with the activity of the

residue equivalent of the protein of interest. For the per-residue

formation reaction of the ith protein, it follows that

A�i ~2:303RT log Ki=Q�i
� �

, ð21Þ

where

log Q�i ~
X

ĵj

nĵj,i log aĵj,i, ð22Þ

where ĵj enumerates all of the basis species, but not the protein, in

the ith reaction.

In physical applications, the Boltzmann distribution gives the

probabilities of occupation of specific energy levels for systems in

thermal equilibrium [45]; analogously for chemical systems it can

be used to derive the equilibrium distributions of species [46]. An

expression for the Boltzmann distribution, written using the

current notation, is

ai,residueP
ai,residue

~
e

A�
i
=RT

P
e

A�
i
=RT

: ð23Þ

Since the chemical affinity is the negative of the Gibbs energy of

reaction, the exponents in Eq. (23) do not carry negative signs,

unlike the energy terms in most common representations of the

equation [45].

Following the case study above, it can be deduced from Eqs. (11),

(12) and (20) that A�=RT~0:4359, and A�=RT~1:3650. From

Eq. (19) it follows that
P

ai~1:083. Substituting these values into

Eq. (23), one can directly calculate aCSG METVO,residue~0:3066 and

aCSG METJA,residue~0:7764. These are the same as the values

calculated above using the reaction-matrix approach, and can be

combined with Eq. (16) to calculate the metastable equilibrium

activities of the proteins. Application of Eq. (23) works as well for

systems of three or more proteins and, compared to the reaction-

matrix approach, leads to a more efficient implementation in

software and faster calculations.
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Equilibrium activity diagrams. In the example described

above, the calculations were carried out at only a single point in

temperature-pressure-chemical activity space. The stability

calculations can also be performed when one considers the

effects of changing temperature, pressure, and/or chemical

activities of the basis species, singly or in combination.

Interpreting the results of this type of calculation is facilitated by

visualizing the relative stabilities of the proteins on equilibrium

activity diagrams. In the Results described below, the lines on

chemical speciation diagrams show the metastable equilibrium

activities of the proteins as a function of a single or composite

variable on the x-axis. Where two variables are being considered,

the fields on predominance diagrams show the protein with the

highest metastable equilibrium activity, as a function of the two

variables on the x- and y-axes.

The thermodynamic calculations and stability diagrams report-

ed below were made using the CHNOSZ software package [27].

The package encodes the equations of state, thermodynamic data,

and the group additivity algorithms for proteins cited above. In

recent versions of the software, the Boltzmann distribution was

implemented for calculating the relative stabilities of proteins, and

the calculations reported below use this method. The source code

for the calculations reported in this paper, written in the R

language [42] and utilizing the functions available in CHNOSZ, is

available in the Supporting Information of this paper; Dataset S1

contains code for the example described above, and Dataset S2

contains the code used to produce the figures in the Results.

Contribution by energy of protein folding to uncertainty
in chemical stability calculations

The group additivity algorithm adopted here for calculating the

standard molal Gibbs energies of proteins is referenced to unfolded

aqueous proteins [11]. Most proteins in their active forms adopt a

folded conformation. The energy change for the folding reaction, or

change of conformation, is commonly referred to as ‘‘protein

stability’’ [47]. The latter nevertheless is distinct from the chemical

stabilities being considered in this study, which are based on

energies of protein formation. However, the energy change in the

folding process contributes some uncertainty, assessed below, to the

values adopted here for the standard Gibbs energies of the proteins.

It was estimated that the uncertainty in standard Gibbs energies

of proteins inherent in the group additivity algorithm is of the

order of five percent [11]. The values of DG0
f of the non-ionized

forms CSG_METVO and CSG_METJA calculated using group

additivity are {104102 and {101403 kJ mol{1 ({24881 and

{24236 kcal mol{1), respectively [27]; a nominal 5% uncertainty

corresponds to +5205 and +5070 kJ mol{1 (+1244 and

+1211:8 kcal mol{1). For proteins of comparable size, Gibbs

energies of folding of *40–80 kJ mol{1 (*10–20 kcal mol{1)

are not uncommon, depending on the temperature [48,47]. These

values are approximately one-one hundredth the magnitude of the

estimated uncertainties in the additive standard Gibbs energies of

the unfolded proteins. Moreover, the effect of any systematic

uncertainty that affects the standard Gibbs energies of the proteins

in the same direction (as would the folding process) would tend to

cancel in the relative stability calculations. Therefore, not

accounting for the energy of protein folding contributes little to

the overall uncertainty of the relative stability calculations.

Results

Description of field site and metagenomic sampling
Chemical and biological sampling was performed in July 2005

at the hot spring known as ‘‘Bison Pool’’ in the Sentinel Meadows

in the Lower Geyser Basin of Yellowstone National Park [12].

‘‘Bison Pool’’ is the unofficial name of a hot spring whose source

pool is located at approximately 44.56961uN, 110.86513uW (WGS

84 datum), the closest officially named feature being called Rosette

Geyser [49]. A map identifying the sampling sites referred to in

this study, based on one found in Ref. [12], is shown in Fig. 2. The

spring emits a continuous flow of boiling (93uC), moderately

alkaline (pH*7.5) water, and emerges from within a base of sinter

made of silica that has precipitated from the water. The winding

outflow channel is occupied by a plethora of biofilms in a striking

array of colors. At this and similar springs, the white and pink

filaments found at higher temperatures harbor chemotrophic

organisms such as Aquificae and some Archaea [50,49]. Yellow,

orange and green biofilms (thick mats) found at lower tempera-

tures are predominantly made up of photosynthetic communities

of Cyanobacteria and relatives of Chloroflexi [51,13], although

archaeal organisms can also be found at the lower temperatures

[13].

The available metagenomic and geochemical data were

obtained from five sampling sites from the source pool of the

hot spring to 22 meters down the outflow channel. Site 3 is notable

because it is within the ‘‘photosynthetic fringe’’, or the transition

zone (ecotone) where bright colors indicate the onset of

photosynthetic potential [52,12]. A summary of some of the field-

and laboratory-based chemical analyses of the water relevant to

this study is given in Table 2. Together with a decrease in

temperature down the outflow channel, there is an increase in pH.

An increase in the oxidation potential of the water is also apparent

from the higher dissolved oxygen and lower sulfide concentrations

observed in water sampled away from the source.

The biofilm samples used for metagenomic sequencing were

collected at the same time as the water samples used for chemical

analysis [12], except for field measurements of oxidation-reduction

potential (ORP), which were obtained in 2009. Environmental

DNA in the biofilm samples was shotgun-sequenced by the Joint

Genome Institute using the Sanger method. The assembly and

annotation of protein coding sequences was carried out through an

automated pipeline in the Integrated Microbial Genomes with

Microbiome Samples (IMG/M) system [53], and sequences used

in this study were downloaded from the IMG/M website (http://

img.jgi.doe.gov/m).

Amino acid compositions of model proteins
For this study, FASTA data files containing predicted protein

sequences were downloaded from IMG/M using the taxonomic

IDs BISONN, BISONS, etc. The letter codes for all the sampling

sites are listed in Table 2, together with the total numbers of

metagenomic reads and protein-coding sequences for each site.

Because they are derived from shotgun sequencing, most of the

inferred protein-coding sequences are actually fragments of whole

genes. It would be possible to select specific types of homologs,

align the sequence fragments, and use the aligned positions in the

stoichiometric and thermodynamic calculations described below.

However, the calculation of the average oxidation states of carbon

requires only the chemical formula of the proteins, and the

calculation of the standard Gibbs energies of the proteins as

described in the Methods only requires the amino acid

compositions of the proteins. Therefore, in this study, model

amino acid compositions were used to represent averages of

groups of protein sequences in the metagenome.

The five ‘‘overall model proteins’’ have average amino acid

compositions that were calculated as the average of all inferred

protein sequences, including fragments, identified in the meta-

genome at each site. The amino acid compositions of the overall
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model proteins were calculated by summing the amino acid counts

of all sequences at each site and dividing by the total number of

sequences at each site. Accordingly, the model proteins are not

whole proteins, but instead have fractional amino acid frequencies.

The amino acid compositions are listed in Supporting Dataset S3.

The average amino acid compositions were also calculated for

‘‘classified model proteins’’ in twenty functional classes each

corresponding to a keyword in the sequence annotations reported

in IMG/M. The keywords were selected based on their

frequencies in the annotations and represent a variety of functions

Figure 2. Map of the Bison Pool hot spring system. The map includes locations of the sites where biofilm and geochemical sampling was
performed in the summer of 2005.
doi:10.1371/journal.pone.0022782.g002

Table 2. Sampling site identification, distance from source pool, and summary of chemical and molecular sequence data at five
sampling sites at Bison Poola.

Site Code Distance (m) T (6C) pH Readsb
Protein
sequencesb DO (mg/L) DIC (ppm) SS{2 (M) SO4

{2 (M)

1 N 0 93.3 7.350 68350 40360 0.173 81.97 4.77E-06 2.10E-04

2 S 6 79.4 7.678 76642 50497 0.776 80.67 2.03E-06 2.03E-04

3 R 11 67.5 7.933 66798 43250 0.9 80.06 3.12E-07 1.98E-04

4 Q 14 65.3 7.995 123327 83790 1.6 78.79 4.68E-07 2.01E-04

5 P 22 57.1 8.257 90921 74082 2.8 78.75 2.18E-07 1.89E-04

aTemperature and pH were measured in the field with hand held temperature/conductivity (YSI, Yellow Springs, Ohio) and pH (WTW, Weilheim, Germany 300i pH meter
with SenTix 41 pH electrode) meters. Dissolved inorganic carbon (DIC) was calculated from field titration of alkalinity. Dissolved oxygen (DO) and total sulfide (SS{2)
were measured in the field using a portable spectrophotometer (Hach, Loveland, Colorado). Sulfate was measured by ion chromatography in the lab (Dionex,
Sunnyvale, California). For additional details see Ref. [55].

bNumber of metagenomic reads and number of protein-coding genes available in files downloaded from IMG/M.
doi:10.1371/journal.pone.0022782.t002
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and cellular structures, but are neither comprehensive nor

mutually exclusive. The keywords and number of identified

sequences are listed in Table 3. The classification with the highest

number of inferred protein sequences is ‘‘transferase’’, with a total

of 15768 sequences across all five sampling sites, or ca. 5.4% of all

of the protein sequences in the metagenome. The classification

with the fewest number of sequences is ‘‘phosphatase’’, with a total

of 2260 sequences, or about 0.8% of the metagenome. All the

keyword searches were case-insensitive and any match was

accepted (e.g., an annotation including the word ‘‘transporter’’

was matched by the ‘‘transport’’ keyword), except for ‘‘reductase’’,

which was only matched to the beginning of a word in the

annotation (e.g., annotations including the word ‘‘oxidoreductase’’

were not matched by the ‘‘reductase’’ keyword).

Average oxidation state of carbon of model proteins
To characterize the changes in the compositions of proteins

across the sampling sites, we first calculated the elemental ratios

and average oxidation number of carbon (ZC) of all the protein

sequences available in the metagenome for each sampling site.

The 95% confidence intervals around the mean values were

calculated from a bootstrap analysis (nonparametric, ordinary

bootstrap, 1000 replicates) performed using the ‘‘boot’’ package

for the R software environment [42]. The results are plotted in

Fig. 3 and the numerical values given in Supporting Dataset S4.

The S/C, O/C and N/C ratios shown in Fig. 3 exhibit an

overall increase with distance from the hot-spring source, but there

is a decrease in S/C and O/C of the proteins from site 3. The H/

C ratio rises sharply between sites 1 and 2 and then decreases, with

the proteins at site 3 again having a relatively lower value. The

combined effect of the elemental ratios accounts for the trend in

ZC appearing in Fig. 3, which can be described as increasing with

distance from the hot-spring source. The chemical compositions of

the proteins at sites 4 and 5 are more similar to each other than to

the other sites, and the overall trends for elemental ratios and ZC

show a slight reversal at these two sites.

The average oxidation state of carbon of overall and classified

model proteins is shown in Fig. 4a. Because of the number of lines

plotted in this figure only selected ones are labeled. The others can

be identified by referring to the values of ZC for the model

proteins for site 1 listed in Table 3. Whatever the classification of

the model protein, there in an increase in ZC going from site 1 to

site 5, and in most cases an increase between each of sites 1

through 4. Generally, there is a slight decrease in the value of ZC

between sites 4 and 5. The differences between the different classes

of model proteins are profound: the oxidoreductases, transport

and membrane proteins, and especially permeases, all have lower

oxidation states of carbon than the others. This result is not

surprising, given the greater abundance of hydrophobic sidechains

in these predominantly membrane-associated [54] proteins. The

model proteins that have the highest oxidation states of carbon are

hydrolase at sites 1–3 and transposase at sites 4 and 5. That the

transposase model proteins at sites 4 and 5 are more oxidized than

other model proteins is noteworthy because at site 1 the

transposase model protein has a value of ZC that is only a little

greater than that of the overall model protein.

Some relationships can be observed between the chemical

composition of proteins and the chemical characteristics of the

water. On the whole, there is a positive correlation between the

values of ZC of the model proteins and the field measurements of

dissolved oxygen, and a negative correlation with total sulfide

concentrations listed in Table 2. The correlations suggest that

analysis of the energetics of the protein formation reactions could

be used to combine protein composition and hot-spring chemistry

in a thermodynamic model. In the following sections results are

presented from a thermodynamic analysis that describes the

relative stabilities of proteins in terms of temperature, pH,

oxidation potential and other environmental variables.

Relative stabilities of model proteins: Metastable
equilibrium

Residue-normalized formation reactions for the overall model

proteins are listed in Table 4. These reactions are written in terms

of the basis species HCO3
{, NH3 aqð Þ, H2O, H2 aqð Þ, HS{ and

Hz, which correspond to inorganic sources of the major elements

in the proteins. Because the number of amino acid residues in each

of the model proteins is the average of the lengths of

metagenomically derived protein sequences, including many

fragments, the number of amino acids in each of the model

proteins in Table 4 does not necessarily reflect the actual lengths of

protein sequences in the microbial organisms in the hot spring.

Because the reactions in Table 4 are written for the formation of

the residue equivalents of the model proteins, the reactions are

effectively balanced with respect to the protein backbone group.

Consequently, the stoichiometric reaction coefficients are inde-

pendent of the sizes of the model proteins and can be compared

Table 3. Annotation terms, total number of sequences used to construct the classified model proteins, and ZC of the classified
model proteins (for site 1 only; entries are ordered by decreasing ZC).

Classification Sequences ZC,1 Classification Sequences ZC,1

hydrolase 4326 {0:188 kinase 6123 {0:206

transcription 3747 {0:189 signal 2377 {0:208

reductase 2905 {0:189 ATPase 7983 {0:214

dehydrogenase 9567 {0:190 transferase 15768 {0:218

synthetase 5979 {0:191 ribosomal 3598 {0:218

phosphatase 2260 {0:193 protease 2929 {0:219

peptidase 3635 {0:198 oxidoreductase 3803 {0:237

synthase 8561 {0:198 transport 11029 {0:258

periplasmic 2784 {0:203 membrane 5194 {0:262

transposase 2845 {0:206 permease 4886 {0:326

doi:10.1371/journal.pone.0022782.t003
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with each other in a first approximation to assess the effects of

changing chemical conditions on the relative stabilities of the

model proteins. For example, the coefficients on H2, appearing on

the reactant side of the reactions, decrease in order of increasing

distance from the hot spring source, except for the last two sites,

where the pattern is reversed. Therefore, increasing the chemical

Figure 3. Elemental ratios and average oxidation state of carbon in protein sequences. Elemental ratios were calculated from the
chemical formulas of all protein sequences available in the Bison Pool environmental genome, and average oxidation state of carbon (ZC) was
calculated using Eq. (2). The bars are centered on the means, and the heights of the bars represent the 95% confidence intervals derived from a
bootstrap analysis.
doi:10.1371/journal.pone.0022782.g003
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activity of H2 tends to decrease the energy demand of forming

overall model proteins at the high-temperature sites more strongly

than the others.

The intensive variables used in the equilibrium calculations are

temperature (T ), pressure (P), and the chemical activities of the

basis species and proteins. Activity coefficients of all species can be

set to unity, so, for aqueous species, chemical activities were taken

to be equivalent to concentrations in molal units. As noted above,

the activity coefficients of proteins in subcellular conditions are

currently not amenable to general calculation. In addition, the

concentrations of major ions in the water [55] are low enough that

setting the activity coefficients of the basis species to unity is a

tolerable first approximation. In the calculations reported below,

the variables held constant were P~1 bar, log aH2O~0,

log aHCO3
{~{3, log aNH3 aqð Þ~{4, log aHS{~{7. The activi-

ties chosen for HCO{
3 and HS{ are based on the measurements

Figure 4. Average oxidation state of carbon in model proteins along the outflow channel. The values of ZC calculated using Eq. (2) for
the overall model proteins for each sampling site are shown by the bold green line, and those for each of the 20 classes of model proteins listed in
Table 3 are shown by the thin lines. For clarity, only selected classes are labeled; hydrolase and protease are the ones with highest and lowest values
of ZC among the main group of lines at the top.
doi:10.1371/journal.pone.0022782.g004

Table 4. Numbers of amino acid residues, average oxidation state of carbon, and per-residue formation reactions normalized per
residue for overall model proteins for different sampling sites.a

Site nAA ZC Reaction

1 199.13 20.208 5.125 HCO3
{+1.357 NH3+0.029 HS{+10.784 H2+5.154 Hz'13.924

H2O+C5:125H8:099N1:357O1:451S0:029

2 184.35 20.196 5.076 HCO3
{+1.366 NH3+0.029 HS{+10.649 H2+5.105 Hz'13.788

H2O+C5:076H8:033N1:366O1:441S0:029

3 195.48 20.171 5.023 HCO3
{+1.388 NH3+0.027 HS{+10.473 H2+5.050 Hz'13.639

H2O+C5:023H7:933N1:388O1:429S0:027

4 191.80 20.154 4.966 HCO3
{+1.389 NH3+0.030 HS{+10.315 H2+4.996 Hz'13.467

H2O+C4:966H7:854N1:389O1:430S0:030

5 189.40 20.156 4.972 HCO3
{+1.389 NH3+0.030 HS{+10.333 H2+5.002 Hz'13.487

H2O+C4:972H7:863N1:389O1:429S0:030

aThe amino acid compositions of the model proteins are the bulk averages of all metagenomically derived protein sequences at each sampling site. The values of ZC

(average oxidation number of carbon) were calculated using Eq. (2).
doi:10.1371/journal.pone.0022782.t004
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of dissolved inorganic carbon and sulfide listed in Table 2, while

that of NH3 is a nominal value. The calculations of metastable

equilibrium were referenced to unit total activity of the amino acid

residues in the system. The other variables (T , pH and log aH2 aqð Þ )

were used as exploratory variables as described below.

The results of computations of relative stabilities of the overall

model proteins are depicted in Fig. 5. Values of temperature

measured at each site in the hot spring (Table 2) are shown in

Fig. 5a. Stability calculations were performed for a system

composed of the five overall model proteins, using the pH

measured at site 3. The most stable overall model proteins as a

function of temperature and log aH2 aqð Þ are shown in the

equilibrium predominance diagram in Fig. 5b. The temperature

range in this diagram is somewhat larger than the measured range

of temperature in the hot spring, and the range of log aH2 aqð Þ was

set to encompass the stability fields of the proteins.

Values of pH measured at each site are shown in Fig. 5c.

Stability calculations using the temperature measured at site 3 lead

to the equilibrium predominance diagram shown in Fig. 5d. The

pH range in this diagram is slightly larger than the measured range

of pH in the hot spring.

Note that in Figs. 5b and d, only the overall model proteins

from sites 1, 2 and 4 appear, going from high to low values of

log aH2 aqð Þ in that order. Increasing pH at constant log aH2 aqð Þ and

temperature (Fig. 5d) moves toward the relative stability fields for

the overall model proteins that are more distal from the hot-spring

source; this pattern is congruent with the pH differences between

sampling sites in the hot spring. On the other hand, decreasing

temperature at constant log aH2 aqð Þ and pH (Fig. 5b) moves toward

the relative stability fields for the overall model proteins that are

more proximal to the hot-spring source; this pattern is incongruent

with the temperature gradient in the outflow channel of the hot

spring.

If it were representative of the chemical gradients in the hot

spring, the thermodynamic model used here would generate a

pattern of relative stabilities of the model proteins that reflects their

geographical distribution. It is apparent from the above findings

that this is not possible if log aH2 aqð Þ is constant along the outflow

channel. Instead, the dashed lines in Figs. 5b and d and the

equilibrium chemical activities of the proteins shown in Figs. 5e

and f are consistent with changing log aH2 aqð Þ in the model together

with the measured changes in temperature and pH and log aH2 aqð Þ ,

and were derived by considering the relative stabilities of many

classes of model proteins as described below.

Operational equation for activity of hydrogen
Figure 6 contains log aH2 aqð Þ -temperature equilibrium predom-

inance diagrams for the 20 classes of model proteins listed in

Figure 5. Analysis of relative stabilities of overall model proteins for sampling sites. Panel (a) is a plot of the measured temperatures as a
function of distance with a smooth curve connecting the points. Panel (b) is a plot of the relative stabilities of the overall model proteins as a function
of log aH2 aqð Þ and temperature at the pH of site 3 (7.933). Panel (c) is a plot of the measured pHs as a function of distance with a smooth curve
connecting the points. Panel (d) is a plot of the relative stabilities of the overall model proteins as a function of log aH2 aqð Þ and pH at the temperature
of site 3 (67.5uC). The dashed lines in (b) and (d) depict Eq. (24). Panel (e) is a plot of the relative stabilities of the overall model proteins as a function
of log aH2 aqð Þ at the temperature and pH of site 3. Panel (f) is a plot of the relative stabilities of the overall proteins as a function of the combination of
changes with distance of measured temperature and pH and modeled log aH2 aqð Þ (using Eq. 24).
doi:10.1371/journal.pone.0022782.g005
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Table 3. These figures were constructed in a manner analogous to

Fig. 5b. For each class of model proteins shown in Fig. 6 the

protein from site 1 is relatively stable at higher values of log aH2 aqð Þ ,

and the protein from site 4 or 5 occupies the low-log aH2 aqð Þ portion

of the diagram. Other details differ between the various classes of

model proteins; for example, the model protein for phosphatase at

site 1 is stable relative to the model proteins for phosphatase at

other sites only at highly reduced conditions. Compared to other

classes of proteins, the predominance field for the model protein

for oxidoreductase at site 2 is much smaller, and that for the

ribosomal proteins at site 2 does not even appear. In spite of these

differences, the overall resemblance of the plots in Fig. 6 to each

other and to Fig. 5b indicates that different subsets of the

metagenome have similar relative stability relationships.

The dashed lines in Fig. 5b and d and Fig. 6 denote values of

log aH2 aqð Þ that are given by the function

Figure 6. Equilibrium predominance diagrams for classified model proteins. For each class of model proteins, the fields in these
predominance diagram represent the model protein with the most positive equilibrium activity as a function of log aH2 aqð Þ and temperature. pH was
set to the value listed in Table 2 for site 3 and the chemical activities of the other basis species were set to reference values specified in the Results
section. The dashed line in each diagram indicates values of log aH2 aqð Þ calculated using Eq. (24).
doi:10.1371/journal.pone.0022782.g006
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log aH2 aqð Þ~{11z3= 40|T 0Cð Þð Þ: ð24Þ

This equation is the result of a graphical regression of the plots in

Fig. 5b and Fig. 6 such that the values of log aH2 aqð Þ as a function

of temperature give a progression in the stability fields of a

majority of the model proteins that is similar to the geographical

distribution of the proteins. For example, in Fig. 5b, the line given

by Eq. (24) encounters the stability fields for the overall model

proteins for sites 1, 2 and 4, in that order, with decreasing

temperature.

Note that the plot in Fig. 5d is drawn for a single temperature

(that for site 3 listed in Table 2), so the line for log aH2 aqð Þ is

horizontal in this figure. The line crosses the predominance field

boundary between sites 2 and 4 at pH *7:7, which is close to the

measured pH of site 3 (Table 2). The absence of a predominance

field for the model protein for site 3 in this figure and in most plots

shown in Fig. 6 suggests that generally the proteins at site 3 are less

stable than the model proteins for other sites, even under the

specific conditions of site 3.

Effects of other variables
The model developed here incorporates spatial gradients of

pH and activity of hydrogen, but in principle other chemical

variables could also contribute significantly to the relative

stabilities of the proteins. For example, the concentration of

dissolved sulfide decreases by more than an order of magnitude

between the source of the hot spring and the most distal

sampling site (Table 2). However, the consequences of that

gradient on the relative stabilities of any two proteins is

proportional to the difference in the reaction coefficient of

sulfide between the two reactions. In Table 4, the largest

difference between reaction coefficients on HS{ is only 0:003,

which is much smaller than the differences in the relative

stabilities of the proteins (A=2:303RT for any of the sites listed

the Table). Accordingly, the sulfide concentration in the model

was set to a constant since the changes seen in the hot spring

have a smaller effect on the relative stabilities of the proteins

compared to temperature, pH and H2. For comparison, the

difference between reaction coefficients on H2 in the formation

reactions of overall model proteins 1 and 2 is 0:134, while the

difference in relative stabilities of the proteins is 0:126, so a one-

order-of-magnitude decrease in the activity of H2, by itself, is

enough to increase the relative stability of the model protein for

site 2 over site 1.

Conversely, although the coefficients on HCO3
{ in the

reactions shown in Table 4 differ from each other more than

those on HS{, the measured concentrations of dissolved inorganic

carbon differ by not more than 4 ppm between the sites (Table 2).

Therefore, the small changes in the corresponding activities of

HCO3
{ would not be expected to significantly alter the chemical

affinities of the reactions relative to each other, so, as with sulfide,

the activity of HCO3
{ was set to a constant value.

The calculations described above used a nominal value of 10{4

for the activity of NH3. Total ammonia was not detected above

0.01 mg/L (0.6 mmol) in spectrophotometric analysis of water at

the hot spring [55], so it is reasonable to ask whether lowering the

activity NH3 to *10{7 has a major effect on the calculations of

relative stabilities. The interdependence of equilibrium activities of

the basis species can be assessed by writing a reaction representing

the transformation between two proteins, for example the overall

model proteins for sites 2 and 4. Adding reaction 4 in Table 4 to

the opposite of reaction 2 yields the following reaction:

C5:076H8:033N1:366O1:441S0:029 residue,site 2ð Þ

z0:022NH3z0:001HS{z0:321H2O

'C4:966H7:854N1:388O1:430S0:030 residue,site 4ð Þ

z0:110HCO{
3 z0:335H2z0:109Hz:

ð25Þ

It follows from Eqs. (4)–(6) that, if the chemical affinity of Reaction

25 and the activities of all other reactants and products remain

unchanged, decreasing log aNH3 aqð Þ by 3 results in a decrease in the

calculated log aH2 aqð Þ of 0:197 (i.e.,
0:022

0:335
|3). Likewise, recon-

naissance calculations indicate that decreasing the activity of NH3

to 10{7 generally results in a lowering of the equal-activity lines

shown in Fig. 6, with a more pronounced effect for the lower equal-

activity lines, which in some cases shift downwards by at about half a

log aH2 aqð Þ unit. Therefore, refinement of the calculations described

here may yield results that support modifying Eq. (24) to have a

somewhat steeper slope and lower intercept. Nevertheless, without

any direct measurements of the total ammonia concentration, such

refinements remain speculative.

Relative stabilities of model proteins: Chemical affinities
Chemical affinities for the per-residue formation reactions of the

overall model proteins in an equal-activity reference state

calculated for sites 1 to 5 are listed in Table 5. The calculations

used values of temperature and pH listed in Table 2, log aH2 gð Þ for

each of these sites taken from Eq. 24, and activities of the other

basis species given above. The activities of the residue equivalents

of each of the model proteins were set to unity. All of the reactions

listed in Table 4 are endergonic reactions, which is apparent from

the negative values of chemical affinity that are shown in Table 5.

However, the chemical affinities are less negative at the higher-

temperature, more reduced conditions, which is consistent with a

previous comparison of the energetics of biomass synthesis under

oxic and anoxic conditions [56].

Examination of Table 5 shows that the reaction with the greatest

chemical affinity at site 1 is that for the overall model protein for that

site. In contrast, at the conditions of sites 3–5 the formation, per

residue, of the model protein for site 4 is the least energetically

demanding. The affinities listed in Table 5 are calculated for the

formation reactions of the proteins normalized per residue, but

Table 5. Chemical affinities for the reactions in Table 4 at the
model conditions for each site.a

Reaction Site 1 Site 2 Site 3 Site 4 Site 5

1 218.720 227.894 235.386 236.822 242.265

2 218.846 227.914 235.319 236.740 242.120

3 219.120 228.053 235.349 236.749 242.051

4 219.270 228.080 235.276 236.657 241.888

5 219.254 228.078 235.285 236.668 241.907

aThe chemical affinities of the reactions are in dimensionless values (i.e.,
A=2:303RT ) calculated using the temperature and pH of the sampling sites
listed in Table 2, log aH2 aqð Þ from Eq. (24), chemical activities of the other basis
species described in the Results, and chemical activities of the proteins equal
to unity. The charges and Gibbs energies of ionized proteins (not shown in
Table 4) calculated using group additivity were considered in the calculations
of chemical affinity. Bold entries in each columns indicate the reaction with the
highest calculated chemical affinity.

doi:10.1371/journal.pone.0022782.t005
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comparison of the relative stabilities of the proteins (as is done on the

predominance diagrams) requires further accounting for the relative

lengths of the model proteins. Equation (16) was used to account for

different lengths when constructing equilibrium activity diagrams

for proteins. Analogously, by subtracting the logarithm (base 10) of

the number of amino acids present in each of the model proteins

from the values listed in Table 4, one obtains length-corrected

affinities per residue that can be compared with the equilibrium

activity diagrams. For example, performing this operation on the

second column of Table 5 shows that the model protein from site 2

is the most stable, even though the per-residue reaction for site 1 has

a greater chemical affinity, before applying the length correction.

The outcome is in accord with the progression, from sites 1 to 2 to 4,

in the relative stabilities of the overall model proteins apparent in

Figs. 5b and d.

Combined analysis of temperature, pH and oxidation
potential

Returning to the metastable equilibrium (equal-affinity) refer-

ence state, the equilibrium activities of the proteins are plotted in

Fig. 5e as functions of log aH2 aqð Þ at constant temperature and pH

(corresponding to site 3) for a total activity of residues equal to one.

Nowhere does the equilibrium chemical activity of the overall

model protein for site 3 rise above all the others, which is

consistent with Fig. 5b, but it is also apparent that the activity for

this model protein maximizes at intermediate values of log aH2 aqð Þ .

The relative instability of the model proteins for site 3 throughout

the different classes of model proteins is apparent from the low

frequency of predominance fields representing this site appearing

in Fig. 6. It can also be seen in Fig. 5e that the overall model

proteins representing sites 4 and 5 are similar to each other in

terms of their relative stabilities.

To portray the effects of changing temperature, pH and

log aH2 aqð Þ simultaneously, all of these variables are projected along

the x-axis (‘‘distance’’) in Fig. 5f. The values of temperature and

pH at any point along the distance axis are taken from the curves

shown in Figs. 5a and c, and the values of log aH2 aqð Þ are calculated

using Eq. (24). Fig. 5f has the advantage that the relative stabilities

of the model proteins are shown as a function of a spatial variable

and can therefore be compared with the physical location of the

sampling sites in the hot spring.

In order to visualize the relative stabilities of all of the groups of

model proteins on a single figure, the equilibrium activities (ai) of

the proteins were transformed into equilibrium degrees of

formation. The degree of formation of the ith model protein (ai)

is given by

ai~ai=
X

i

ai, ð26Þ

where the summation occurs over all of the model proteins in the

calculation, which in this case is five (one for each sampling site).

Since
X

i

ai~1, the degree of formation of any protein can be

visualized as a fraction of a bar of unit length. The equilibrium

degrees of formation of the overall and classified model proteins

are shown as a function of distance in Fig. 7. In this figure, the

color code refers to the five sampling sites, and the height of the

bars represents the equilibrium degree of formation of the

indicated model protein. At any point along the distance axis,

the bars are stacked with the most relatively stable model protein

on the top. The locations and color codes of the sampling sites are

indicated by the tick marks.

Fig. 7 permits a visual test of the overall goodness of fit of Eq.

(24) to the geographical relationships of the sampling sites and also

helps in identifying outliers. At the high-temperature end, the most

stable model protein is usually that from site 1, and rarely from site

2 (phosphatase, periplasmic). At the low-temperature end, the

most stable protein is usually that from site 4 or 5 (with

approximately equal frequency) and only occasionally from sites

2 (transcription) or 3 (transposase). The only model proteins for

site 3 that are the most relatively stable over any part of the

combined chemical gradient are those for transposase (over the

mid- to low-temperature range), oxidoreductase and phosphatase

(only at moderate temperatures). The transition zone occurring

toward the middle of the plots is sometimes associated with an

increase in the relative stability of the model proteins for site 3

(e.g., transferase, synthase), but in many other cases the

equilibrium degree of formation of the model proteins for site 3

minimizes relative to the other sites. The overall relative instability

of the proteins from site 3 is can be attributed to constraints on

their amino acid compositions that also account for the shifts in

O/C, H/C, and S/C for these proteins from the overall trends

between sites apparent in Fig. 3. A major exception is transposase,

for which the model proteins from site 3 are relatively stable over

much of the chemical gradient. As in the general case, the relative

stabilities are conditioned by trends in amino acid composition

that also affect elemental ratios, apparent in Fig. 4 as a high

oxidation state of carbon of the transposase model proteins at sites

4 and 5.

Measurements of oxidation-reduction potential
Eq. (24) represents a proposal for the temperature dependence

of the activity of hydrogen derived from the relative stabilities of

the model proteins. It can be compared with a variety of other

measurements that are indicators of redox conditions of the

hydrothermal solution including results of field measurements of

redox conditions made using an oxidation-reduction potential

(ORP) probe.

ORP, temperature and pH readings obtained in Summer 2009

for Bison Pool (four years after the biofilm sampling for

metagenomic analysis and acquisition of chemical data reported

in Table 2) and other flowing hot springs in Yellowstone are listed

in Table 6 and in Dataset S5. The ORP measurements were

obtained at three sites at Bison Pool that approximated the original

locations of sites 3, 4 and 5. ORP, pH and temperature

measurements at higher temperatures were also obtained at

Mound Spring, which is the official name a nearby hot spring in

Sentinel Meadows with chemical features similar to Bison Pool

[55].

Temperature and pH were measured in the field with hand-

held temperature/conductivity (YSI, Yellow Springs, Ohio) and

pH meters (WTW, Weilheim, Germany 300i pH meter with

SenTix 41 pH electrode). Oxidation-reduction potential was

measured using a high-temperature ORP probe (PI-M11-ORP-

HT) rated to greater than 80uC and a Thermo Scientific pH/mV

meter with a readout sensitivity of 1 mV, both acquired from Pulse

Instruments (Van Nuys, CA). The ORP probe contains a silver-

silver chloride (Ag/AgCl) reference electrode with saturated KCl

solution. Before the field work, the ORP meter was calibrated in

the laboratory at 25uC using a stock of Light’s Solution (ferrous/

ferric sulfate in sulfuric acid) supplied by Pulse Instruments. The

stated potential of the solution is 468+25 mV at 25uC vs.

saturated KCl/AgCl electrode.

To convert the ORP readings (referenced to the Ag/AgCl

electrode) to Eh (referenced to the standard hydrogen electrode, or

SHE) we used

Relative Chemical Stabilities of Proteins
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Eh~ORPzE(Ag=AgCl), ð27Þ

where E(Ag/AgCl) is the potential vs. SHE of the Ag/AgCl

reference electrode. The potential of the reference electrode was

calculated using an equation for Ag/AgCl with 1M KCl

electrolyte [57]

E(Ag=AgCl,1MKCl)~0:23737{5:3783|10{4 � T

{2:3728|10{6 � T2{2:2671|10{9 � (Tz273),
ð28Þ

where E is in volts and T is in degrees Celsius. The effect of

differences between the saturated and 1M KCl Ag/AgCl

electrodes is discussed further below.

Values of Eh calculated by combining field measurements of

ORP with Eqs. (27) and (28) are shown in Fig. 8a. The hot springs

are identified by the number codes given in Table 6, and the

source pools are indicated by bold symbols. The values for Mound

Spring and Bison Pool (points labeled ‘‘3’’ and ‘‘4’’ in the figure)

increase with decreasing temperature and are similar to an

unnamed hot spring in Sentinel Meadows for which data are

available (points labeled ‘‘5’’ in the figure; the GPS locations of this

and other springs are given in Table 6).

Equilibrium values of log aH2 aqð Þ were calculated by combining Eh,

pH and temperature. The values of Eh were first converted to pe (the

negative of the logarithm of the activity of the electron) using [26]

pe~
F

2:303RT
Eh, ð29Þ

where F denotes the Faraday constant. Then, log aH2 aqð Þ was

calculated from the law of mass action for

2Hzz2e{'H2 aqð Þ, ð30Þ

that is,

log K~ log aH2 aqð Þz2pHz2pe: ð31Þ

Values of log K calculated using the standard molal properties of the

species in Reaction 30 (see Methods) were combined with pe and pH

to generate the values of log aH2 aqð Þ shown in Fig. 8b. These values

correspond to equilibrium with both protons (activities constrained by

pH measurements) and electrons (activities inferred from the ORP

measurements, which does not capture the full spectrum of reactivity

of electrons in the solution).

At 25uC the potential of the Ag/AgCl electrode (1M KCl)

calculated using Eq. (28) is 0:222 V. In contrast, the potential of

the Ag/AgCl electrode with saturated KCl, which might be a

more appropriate choice for calculations given the specifications of

the ORP probe used for the measurements, is about 0.197V [58],

or about 0.025V lower. Eqs. 29 and 31 can be used to calculate

Figure 7. Equilibrium degrees of formation of model proteins in 21 classes. The locations of the sampling sites are indicated by the colored
tick marks. The degrees of formation of the five model proteins in each class are shown by the heights of the color-coded bars. At any point on the
distance axis, the bars are stacked in order of relative stability, so that the most stable (highest equilibrium degree of formation) is at the top.
doi:10.1371/journal.pone.0022782.g007
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Table 6. Meter readings for selected hot springs and their outflows in Yellowstone National Park, Summer 2009.

Sample Area Spring Latitude Longitude pH T , 6C ORP, mV

090723G Greater Obsidian Pool Area 1 0544526 4939786 5.12 79.0 27

090723K Greater Obsidian Pool Area 1 0544541 4939799 5.38 57.6 98

090723F Greater Obsidian Pool Area 2 0544482 4939773 4.21 68.3 185

090723E Greater Obsidian Pool Area 2 0544497 4939806 4.21 53.0 183

090724PA Sentinel Meadows 3 0511112 4934624 8.28 93.9 2258

090724OA Sentinel Meadows 3 0511112 4934623 8.31 87.7 2227

090724NA Sentinel Meadows 3 0511093 4934632 8.76 66.4 298

090724O1 Sentinel Meadows 4 0510717 4935156 7.82 75.7 255

090724P1 Sentinel Meadows 4 0510722 4935156 7.96 70.1 258

090724Q1 Sentinel Meadows 4 0510723 4935156 8.06 66.2 241

090724UA Sentinel Meadows 5 0510846 4934731 7.84 87.3 2217

090724VA Sentinel Meadows 5 0510842 4934733 8.07 71.3 2155

090728NA Crater Hills 6 0541100 4944727 3.69 90.0 250

090728-13 Crater Hills 6 0541100 4944727 3.50 51.6 274

090729DA South of Sylvan Springs 7 0518409 4949162 5.84 79.5 2234

090729GA South of Sylvan Springs 7 0518405 4949180 7.55 57.5 2130

090729RA South of Sylvan Springs 7 0518395 4949185 7.92 44.9 247

090729MA South of Sylvan Springs 8 0518426 4949136 5.57 86.2 2248

090729HA South of Sylvan Springs 8 0518426 4949144 6.17 73.3 2175

090729PA South of Sylvan Springs 8 0518419 4949157 7.42 50.4 242

090801HA Heart Lake, Fissure Area 9 0538074 4905829 8.67 92.4 2373

090801I1 Heart Lake, Fissure Area 9 0538068 4905836 8.70 88.4 2351

The column labeled ‘‘spring’’ contains a unique number code for each hot spring and is used to label the points in Fig. 8. Named hot springs are Obsidian Pool (1),
Mound Spring (3), Crater Hills Geyser (6). ‘‘Bison Pool’’ is number 4. Data for Bison Pool shown in this table were obtained in 2009 at three locations along the outflow
channel. Latitude and longitude are the northing and easting, in meters, for the 12T grid zone for the Universal Transverse Mercator (UTM) projection using the WGS 84
datum. Supporting Dataset S5 includes the data in this table and estimated uncertainty in pH and ORP measurements.
doi:10.1371/journal.pone.0022782.t006

Figure 8. Calculated Eh and activity of hydrogen in hot springs. Eh and equilibrium log aH2 aqð Þ as functions of temperature for various hot
springs were calculated from measured values of pH and ORP listed in Table 6. The different hot springs are identified by numbers (see Table 6 for
key), and bold symbols indicate the sources of the hot springs.
doi:10.1371/journal.pone.0022782.g008
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that a decrease of 0.025V at constant pH would increase the

equilibrium log aH2 aqð Þ by approximately 0:84 at 25uC and 0:68 at

100uC. Changes of this magnitude would not drastically affect the

relative positions of the points and lines shown in Fig. 8a or the

comparisons drawn further below. The difference between the

potentials of the 1M and saturated KCl electrode is probably also

comparable in size to the total uncertainty in the measurement of

oxidation-reduction potential in reactive hydrothermal fluids (see

for example Ref. [59]). Therefore, the values of E(Ag/AgCl) used

to calculate Eh from ORP (Eq. 27) were taken from Eq. (28)

without modification.

Although the water at Mound Spring had a higher pH than

reported for Bison Pool (see Table 6) the equilibrium values of

log aH2 aqð Þ calculated using Reaction 30 for the two hot springs are

close to each other at similar temperatures. The values of

log aH2 aqð Þ calculated in this manner for the outflow channels of

Bison Pool and Mound Spring are lower than other hot springs at

the same temperatures shown in Fig. 8b, but a more reduced fluid

at higher temperatures seems to be the case for any of the

measured hot springs.

Comparison of equilibrium activities of hydrogen
Concentrations of chemical species such as dissolved oxygen,

and species with an element in different oxidation states (e.g.

sulfide and sulfate) can be expressed on the log aH2 aqð Þ redox scale

using relationships derived from chemical equilibrium. Values of

log aH2 aqð Þ for equilibrium between dissolved sulfide (as HS{) and

sulfate (SO{2
4 ) were obtained using the law of mass action for

HS{z4H2O'SO{2
4 zHzz4H2 aqð Þ ð32Þ

at the temperature of each sampling site. The law of mass action is

the relationship (Eq. 4) between the equilibrium constant (K ) and

activity product (Q) of this reaction when the chemical affinity (A)

of the reaction is zero (see Eq. 31 for an example). Activities of

HS{ and SO4
{2 were taken to be equal to molalities of the

species listed in Table 2, and values of log K were again obtained

using standard molal thermodynamic properties of the species as a

function of temperature calculated as described in the Methods.

Values of log aH2 aqð Þ in equilibrium with dissolved oxygen were

obtained using the law of mass action for

H2O'
1

2
O2 aqð ÞzH2 aqð Þ: ð33Þ

using activities of O2 aqð Þ derived from the concentrations listed in

Table 2.

Fig. 9 shows a comparison of the activities of hydrogen

calculated using Eq. (24) and activities of hydrogen in equilibrium

with measured oxidation-reduction potentials (ORP) and the

oxygen and sulfur redox indicators described above. The

temperature dependence of the equilibrium log aH2 aqð Þ is strongest

for the ORP measurements and weakest for the sulfur system.

Among the three different redox indicators considered here (ORP,

sulfide/sulfate, and dissolved oxygen) the lowest values of

log aH2 aqð Þ come from equilibrium with dissolved oxygen and the

highest for equilibrium in the sulfide/sulfate reaction. All of the

redox indicators have lower equilibrium values of log aH2 aqð Þ than

those calculated using Eq. (24).

These three proxies are limiting cases, indicating what the

values of log aH2 aqð Þ would be if each of the reactions dictated the

actual hydrogen activity in the system. Therefore, the separation of

the lines in Fig. 9 provides evidence that overall redox equilibrium

does not characterize the hot spring (see Ref. [55] for further

evidence of redox disequilibria in hot springs). Nevertheless, the

simplest explanation for the trends shown in Fig. 9 is that the states

of various redox reactions in the water are all becoming more

oxidized with decreasing temperature, and that the redox gradient

derived from the relative stabilities of the proteins (Eq. 24) occurs

at more reducing conditions than any of the inorganic oxidation-

reduction reactions.

Discussion

By computing the standard Gibbs energies of overall reactions

representing the formation of proteins, and using geochemical

data on the gradients of temperature and chemistry, the relative

stabilities of model proteins derived from metagenomic sequences

in a hot spring could be calculated. It was possible to compute

relative stabilities of the model proteins that reflect their overall

spatial distribution in the system. An equation for hydrogen

activity as a function of temperature was proposed, as a way of

calibrating the model to maximize the correspondence between

the geographical distributions of the sampling sites and the

progression of relative stabilities of proteins.

There is a general increase in average oxidation state of carbon

in the model proteins that parallels the rising redox potential of

species in the water as it flows away, also cooling, from the hot

spring. However, the average oxidation states of carbon in the

different classes of model proteins are offset from each other, with

membrane-associated proteins (including permeases, transport

proteins and oxidoreductases) being more reduced. As noted

above, hydrophobic amino acids tend to have lower oxidation

states of carbon, so an increase in the number of hydrophobic

amino acids can account for a decrease in average oxidation state

of carbon in the proteins. An increased frequency of hydrophobic

amino acids in proteins is a likely feature of adaptation to higher

temperatures, as seen in the genomes of model organisms [60,61].

Our metagenomically based finding of a negative correlation

Figure 9. Comparison of different estimates of hydrogen
activity as a function of temperature. Values shown for sulfide/
sulfate and dissolved oxygen were computed using measured
concentrations of those species listed in Table 2. Values shown for
‘‘Eh’’ were computed using pHs and ORP readings listed in Table 6. The
solid line indicates values calculated using Eq. (24).
doi:10.1371/journal.pone.0022782.g009
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between temperature and oxidation state of carbon is consistent

with those results.

The oxidation states of carbon in the different classes of model

proteins increase along the outflow channel of the hot spring,

except for a slight decrease between sites 4 and 5. The apparent

inversion in relative stabilities between sites 4 and 5 might be

connected to additional hydrogen input, possibly from oxygenic

photosynthesizers [62], as a byproduct of nitrogen fixation [63] or

fermentation, and/or from secondary sources of reduced gases in

the hot-spring system.

A distinctive feature of the chemical compositions of the

proteins in the study area is the departure of site 3 from the general

trends for H/C, O/C and S/C shown in Fig. 3, the infrequent

appearance of the model proteins for site 3 in the diagrams in

Fig. 6, and the generally low equilibrium degrees of formation of

these proteins in Fig. 7. Therefore, the model proteins for site 3 are

on average less stable, or have a greater energy of formation, than

those from other sites. This result could imply that there are

specific metabolic requirements of the organisms at site 3, near the

photosynthetic fringe, that cause them to produce proteins that are

relatively energetically demanding.

The calculations described here may help elucidate the redox

gradients between and cellular interiors and their surroundings.

The interiors of bacterial cells such as Escherichia coli are more

reduced than the growth medium in laboratory experiments [64],

but much remains unknown about the redox conditions of

microbial interiors in high-temperature environments. Fig. 9

shows that effective values of log aH2 aqð Þ in equilibrium with sulfur/

sulfide, dissolved oxygen, and inferred Eh values, all measured on

bulk water samples in the field, decrease as as a function of

temperature (oxygen and Eh more so), but that the protein-

equilibrium-based model equation for log aH2 aqð Þ is more reduced

than any of these proxies. This finding implies that the interiors of

the microbial cells, where the proteins are mainly present, are

more reduced than the environmental conditions at the temper-

atures in the hot spring. There is, however, not a general

agreement about the redox conditions inside microbial cells;

relatively oxidized conditions would help to account for the

probable frequent occurrence of disulfide bonds in proteins in

archaeal organisms (including some hyperthermophilic represen-

tatives) [65]. It would be useful to have data on subcellular redox

indicators (e.g. oxidized and reduced forms of glutathione) at high

temperatures to help resolve these questions.

Outlining the convergence of physical, chemical and biological

forces that shape the information present in metagenomic sequences

would benefit from the development of more sophisticated

thermodynamic models and a tighter connection with phylogenetic

approaches. For example, the construction of the model proteins

could be based on identification of housekeeping genes that are

conserved across phyla [66]. The use of only aligned sequences

therein would help to eliminate some of the noise inherent in

averaging shotgun sequence fragments, leading to a closer resolution

of the differences between proteins from different environments.

Comparing values such as the average oxidation state of carbon

with the phylogenetic relationships of gene families that have

appeared in different redox conditions [67] might reveal correlations

between chemical composition of proteins and evolutionary

constraints. Incorporating the energetics of protein-forming chem-

ical reactions in such an analysis would permit even greater

integration of available data on the organisms’ environments.

Comparative calculations of the energetics of overall protein

formation reactions is conducive to integrative studies of microbial

communities and environments because the energies depend on

both molecular sequences and properties of the chemical environ-

ment. Extension of such an integrated thermodynamic framework

could be a new way forward to quantifying the relationships between

chemically distinct environments and their microbial communities.

Supporting Information

Dataset S1 Script for the CHNOSZ package (version 0.9–5) for

the R software environment [42] demonstrating the relative

stability calculation for the example described in the Methods.

(TXT)

Dataset S2 Script for the CHNOSZ package including code to

produce all of the figures (except the map) and Table 4. The code

also depends on the files in Dataset S4 (for Fig. 3), Dataset S3 (for

Figs. 4, 5, 6, 7) and Dataset S5 (for Fig. 8). Instructions for running

the code are provided in the comments at the top of the file.

(TXT)

Dataset S3 Amino acid compositions of model proteins. This

file was produced using the ‘‘mkprot’’ function contained in the

source code listing of Dataset S2.

(TXT)

Dataset S4 Results of bootstrap analysis of the elemental ratios

and average oxidation number of carbon for all protein sequences

at each site. This file was produced using the ‘‘boot.prep’’ function

contained in the souce code listing of Dataset S2.

(TXT)

Dataset S5 Temperature, pH and oxidation-reduction potential

measurements in hot springs and outflow channels, Summer 2009.

Northing and easting (in meters) are listed for the Universal

Transverse Mercator projection using the 12T grid zone; elevation

is in meters.

(TXT)
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