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In this note we construct several infinite families of diagonal quartic surfaces ax4+by4+
cz4+dw4 = 0 (where a, b, c, d are non-zero integers) with infinitely many rational points
and satisfying the condition abcd is not a square. In particular, we present an infinite

family of diagonal quartic surfaces defined over Q with Picard number equal to one and
possessing infinitely many rational points. Further, we present some sextic surfaces of
type ax6 + by6 + cz6 + dwi = 0, i = 2, 3, or 6, with infinitely many rational points.
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1. Introduction

R. van Luijk [10] recently solved an old problem attributed to D. Mumford by

constructing a quartic K3 surface with geometric Picard number equal to one.

Moreover, he was able to solve a question posed by P. Swinnerton-Dyer and B.

Poonen at an AIM workshop in December 2002, who asked whether there exists

a K3 surface over a number field with Picard number one that contains infinitely

many rational points. Van Luijk was able to show that the set of quartic sur-

faces with Picard number one and infinitely many rational points is dense in the

set of all K3 surfaces in the Zariski topology. Here, we consider a related prob-
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lem. More precisely, we are interested in finding the simplest possible form of an

equation defining a quartic surface S over Q with Picard number one, and possess-

ing infinitely many rational points. Here, we are talking about the Picard number

ρ(S) = rank of the Picard group of S, rather than the geometric Picard number,

which is defined as the Picard number of S = S ×Q Q. We believe that this is

provided by a surface with diagonal equation of the form

S : ax4 + by4 + cz4 + dw4 = 0, (1.1)

with a, b, c, d ∈ Z\{0}. It is not clear a priori whether such an example exists, and we

were unable to find a suitable reference in the existing literature. The big advantage

of considering surfaces in diagonal quartic form follows from the fact that the Picard

number of S may be easily computed. Pinch and Swinnerton-Dyer [14], as well as

Swinnerton-Dyer [17], investigate in some generality the arithmetic of the diagonal

quartic surface, and in particular, the former give tables allowing one to read off

the Picard rank of any given diagonal quartic surface over Q. We thus need to find

many (or better, infinitely many) examples of diagonal surfaces with infinitely many

rational points. Having these examples in hand, we can check whether some have

Picard number equal to one. The literature concerning the arithmetic of diagonal

quartic surfaces is large and starts with investigations of the surface x4+y4 = z4+w4

considered by Euler (see Mordell [13] and Dem’janenko [5]). Swinnerton-Dyer [16]

studied the surface in detail, describing all curves of arithmetic genus 0 lying on

the surface. A classical paper of Richmond [15] shows how one can construct a new

point on (1.1) from a given non-trivial point when abcd is a square. Bright has

written extensively on the subject, starting with his thesis [3]. Richmond’s idea was

used by Logan, van Luijk, and McKinnon [12] to prove density (in the Euclidean

topology) of the rational points on (1.1) when abcd is a square. In a recent paper

van Luijk [11] extended ideas of Swinnerton-Dyer [18] and proved that if the surface

V defined over a number field k admits two elliptic fibrations then there exists an

explicitly computable closed subset Z of V , not equal to V , such that for each field

extension K of k of degree at most d over the field of rational numbers, the set

V (K) is Zariski dense as soon as it contains any point outside Z. In particular, his

theorem implies that if the quartic surface S admits two elliptic fibrations, the set

S(Q) is infinite, and a suitably chosen point lies outside the easily computable set Z,

then necessarily S(Q) is dense in the Zariski topology. More specifically, the elliptic

fibrations do not necessarily need to possess a section: it is enough to have one

properly chosen specialization which is of positive rank. We have (maybe somewhat

arbitrarily) restricted attention to surfaces (1.1) where abcd is not a square, since

many existing results depend upon abcd being a square, and in which situation the

Picard number is at least 2.

We know relatively few examples of surfaces (1.1) with infinitely many points,

satisfying the condition abcd not a square. These include the quartic x4+ y4+ z4 =

w4 (of Picard rank 4) considered by Elkies [6], and the quartics x4 + y4 + z4 = 2t4,

x4 + y4 + 4z4 = t4, x4 + 2y4 + 2z4 = t4, x4 + 8y4 + 8z4 = t4, (of ranks 4, 8, 3, 3,
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respectively) in Carmichael [4]. In fact, the method used by Carmichael also yields

parametric solutions of the Diophantine equation (1.1) whenever a + b = 0 and

4a2cd is a perfect fourth power. As this solution is not given explicitly in [4], it is

stated below:

x = k(8as4 − ct4), y = k(8as4 + ct4), z = 8kas3t, w = 4acst3

where s, t are arbitrary parameters and k is determined by the relation 4a2cd = k4.

Further, when (a, b, c, d) = (1, 1, 1,−2k2), and the Diophantine equation X2
1 +

3X2
2 = kX2

3 is solvable, a solution of (1.1) in terms of parameters p, q is given by

x = φ1(p, q)− φ2(p, q), y = 2φ2(p, q), z = φ1(p, q) + φ2(p, q), w = φ3(p, q),

whereXi = φi(p, q), i = 1, 2, 3, is a parametric solution of the equationX2
1+3X2

2 =

kX2
3 .

We also note that some believe a small Picard number of S has a strong in-

fluence on the set of rational points on S. This belief was questioned in a recent

paper of Elsenhans [8], who considered the set of surfaces ax4 + by4 = cz4 + dw4

with 1 ≤ a, b, c, d ≤ 15 from a computational point of view. He noted that in the

considered range there is no great difference between the number of unsolved cases

for differing Picard rank. In light of this remark it is natural to look for examples

of diagonal quartic surfaces with infinitely many rational points and small Picard

number.

We briefly describe the content of the paper. In Section 2 the first construction

of diagonal quartic surfaces with abcd not a square is given. The construction is

to intersect the quartic surface with a quadric surface chosen in such a way that

the intersection splits into quadric curves. In Section 3 the second construction is

given. This method is equivalent to finding curves of low degree on the affine va-

riety aX4 + bY 4 + cZ2 + dW 2 = 0, in particular curves where Z,W are of degree

at most 2. Demanding then that Z,W be squares leads to a condition governed

by a curve of genus 1 that may be chosen to have positive rank. The third con-

struction is presented in Section 4. It is based on diagonal quartic curves (of genus

3) of the form Px4 + Qy4 + Rz4 = 0 with a given rational point. In Section 5 we

use the same idea as in Section 3 by seeking curves of low degree on affine vari-

eties of the form Px6 + Qy6 + Rz3 + Sw2 = 0 and Px6 + Qy6 + Rz3 + Sw3 = 0.

These constructions allow us to find infinitely many sextic surfaces of the form

Px6 +Qy6 +Rz6+Sw2 = 0 and Px6 +Qy6 +Rz6 +Sw3 = 0 with infinitely many

points. This is motivated by earlier research [2] concerning the existence of rational

points on a(x2 − y6) = b(z6−w6). Finally, in the last section we give some remarks

concerning possible extensions of these approaches.
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2. First construction

Consider a diagonal quartic surface c1x
4 + c2y

4 + c3z
4 +w4 = 0, and demand that

its intersection with the quadric surface of type

w2 = a1x
2 + a2xy + a3xz + a4y

2 + a5yz + a6z
2

be singular, splitting into quadrics in the x, y, z-space. Equivalently, demand that

c1x
4 + c2y

4 + c3z
4 + (a1x

2 + a2xy + a3xz + a4y
2 + a5yz + a6z

2)2 (2.1)

split into two quadratic factors. We let

z2 + (b1x+ b2y)z + b3x
2 + b4xy + b5y

2 (2.2)

be one of the quadratic factors.

Write out the system of nine equations resulting from equating to zero the co-

efficients of the remainder on dividing (2.1) by (2.2). We successively eliminate

variables developing a branching tree of cases, according as to vanishing or non-

vanishing of denominators arising from the elimination. A full analysis is too tire-

some: Groebner bases of some ideals arising in this process contain many hundreds

of polynomials of high degree. We are content therefore simply to find some non-

trivial examples. We solve in turn for c1, c2, a1, a3, b5, b3, b1, leading to two equations

in a2, a4, a5, a6, b2, b4, c3 to be satisfied. The denominators vanishing provided four

cases to consider. Otherwise, the numerators have respective degrees 4, 3, in a2,

and the resultant with respect to a2 contains eight factors (excluding the factor

c3). We were able successfully to investigate seven of these factors (the seventh is

quadratic in a4, allowing parameterization; the eighth has degrees 4, 8, 12, 8, 6 in

a4, a5, a6, b2, c3).

When a3 = a5 = b1 = b2 = 0, up to symmetry just two examples arise.

First example: we obtain the surface

V1 :
a2(s2 − 2rt)

s2
x4 +

a2(s2 − 2rt)t2

r2s2
y4 +

2a2t

rs2
z4 − w4 = 0,

which when intersected with the quadric

w2 = ax2 +
2at

s
xy +

at

r
y2

results in the identity

2a2rt(rx2 + sxy + ty2 + z2)(rx2 + sxy + ty2 − z2)−
(arsx2 + 2artxy + atsy2 + rsw2)(arsx2 + 2artxy + atsy2 − rsw2) =

a2(−s2 + 2rt)r2x4 + a2(−s2 + 2rt)t2y4 − 2a2rtz4 + r2s2w4. (2.3)

For generic choice of rationals a, r, s, t, the surface V1 is determined from the Tables

of Pinch & Swinnerton-Dyer [14] to have Picard rank equal to 2. (Throughout the

paper, we have used these tables to compute such “generic” ranks). We find surfaces
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V1 with infinitely many points by demanding for example that the intersection of

the two quadrics

rx2 + sxy + ty2 + z2 = 0, arsx2 + 2artxy + asty2 + rsw2 = 0,

represents an elliptic curve of positive rational rank. If we take a = r = −1, then

the intersection becomes

−x2 + sxy + ty2 + z2 = 0, sx2 + 2txy − sty2 − sw2 = 0,

equivalently, on setting 2t = us2, (X,Y, Z,W ) = (x, sy/2, z, w),

X2 − 2XY − 2uY 2 = Z2, X2 + 2uXY − 2uY 2 = W 2. (2.4)

This is an elliptic curve on taking (X,Y, Z,W ) = (1, 0, 1, 1) as origin. The point

Q(X,Y, Z,W ) = (1, 0, 1,−1) is of infinite order, and the multiples mQ, m = 2, 3, ...

give infinitely many points on the surface

S : (1 + u)X4 + 4u2(1 + u)Y 4 − uZ4 −W 4 = 0 (2.5)

of generic Picard rank 2. For example, when m = 2 we obtain

(X,Y, Z,W ) = (1 + 10u+ u2, −4(1− u), −3− 10u+ u2, 1− 10u− 3u2),

and when m = 3

(X,Y, Z,W ) =(−(1 + 10u+ u2)(1 + 52u+ 38u2 + 52u3 + u4),

4(1− u)(−3− 10u+ u2)(−1 + 10u+ 3u2),

− 5− 114u+ 233u2 + 1140u3 + 381u4 + 94u5 − u6,

1− 94u− 381u2 − 1140u3 − 233u4 + 114u5 + 5u6);

etc.

In light of the identity (2.3), the surface S at (2.5) contains the pair of fibrations

Q1 = λQ3, λQ2 = Q4, and Q1 = λQ4, λQ2 = Q3,

where

Q1 = u(−X2 + 2XY + 2uY 2 + Z2), Q2 = s(−X2 + 2XY + 2uY 2 − Z2),

Q3 = −X2 − 2uXY + 2uY 2 +W 2, Q4 = s(X2 + 2uXY − 2uY 2 +W 2).

The existence of infinitely many rational points, together with the result of van Luijk

(and computations to ensure the applicability of van Luijk’s result), now implies

the following:

Theorem 1. The set of diagonal quartic surfaces defined over Q with Picard num-

ber 2 and Zariski dense set of rational points is infinite.

Proof. Due to the large number of parameters it is a difficult task to perform all

the necessary computations to apply van Luijk’s theorem to the surface V1. We

thus present the proof in the simplest possible case. More precisely, consider the
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surface S at (2.5), which is a special case of the surface V1. The surface S contains

a genus one curve, say C, defined by the intersection of the two quadrics at (2.4).

The curve C is smooth provided that u 6∈ {−2,−1,−1/2, 0}. This model contains

the rational point (1, 0, 1, 1), which can be used as a point at infinity. Then there

exists a birational map φ : C → E , where E is the cubic curve over Q(u) with

Weierstrass equation

E : Y 2 = X3 + 27u(6 + 11u+ 6u2)X + 54u2(18 + 37u+ 18u2).

Note that the point (1, 0, 1,−1) does not lie on any of the 48 lines lying on S. We

need to check that (1, 0, 1,−1) corresponds to a non-torsion point on E . Indeed, the
curve E contains the point U = φ((1, 0, 1,−1)) = (3u(3u+4), 27u(u+1)(u+2)). By

specialization at u = 2, the point U2, lying on the curve E2, is of infinite order on

E2 (for 2U2 is not integral, and the Lutz-Nagell theorem applies). This immediately

implies that U is of infinite order on E . However, we are interested in characterizing

those u = u0 ∈ Q such that the specialized point Uu0
is of infinite order on Eu0

.

By Mazur’s theorem we know that the order of a torsion point on an elliptic curve

defined over Q is at most 12. A quick computation of the multiplicities mU for

m = 1, 2, . . . , 12, reveals that mUu0
= O only for m = 4 with u0 = 1. Thus for

u0 ∈ Q\{−2,−1,−1/2, 0, 1} the point Uu0
is of infinite order on Eu0

. Applying now

van Luijk’s theorem, we get that for each u ∈ Q \ {−2,−1,−1/2, 0, 1} the set of

rational points on S is Zariski dense.

Remark 2. The reason why the above proof is simple is clear. We have an ex-

plicit point (in our case (1, 0, 1,−1)) which lies on the surface, and thus on the

corresponding elliptic curve (in our case E). Thus, all computations can be made

explicit. In the general case, on the surface V1 we do not have a generic rational

point and thus reasoning depends on the possible form of the required point(s) with

(unknown) coefficients P = (X0, Y0, Z0,W0). In particular, it is very difficult to

characterize the torsion subgroup of those smooth fibers containing the point P .

Second example: we obtain the surface

V2 : a2x4 + d2y4 + 2ads2z4 − w4 = 0,

which when intersected with the quadric

w2 = ax2 + dy2

results in the identity

(ax2 + dy2 + w2)(ax2 + dy2 − w2)− 2ad(xy − sz2)(xy + sz2) =

a2x4 + d2y4 + 2ads2z4 − w4.

The surface has generic Picard rank 2. We find surfaces V2 with infinitely many

points by demanding for example that the intersection of the two quadrics

ax2 + dy2 = w2, xy = sz2
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represents an elliptic curve of positive rational rank. Set (x, y, z, w) =

(sX, Y, Z, suW ), and take (a, d) = (αu2, (1−α)s2u2), with (X,Y, Z,W ) = (1, 1, 1, 1)

as elliptic curve origin. The point Q(X,Y, Z,W ) = (1, 1,−1, 1) is of infinite order

and the multiples mQ, m = 2, 3, ... give infinitely many points on the following

surface of generic Picard rank 2

α2X4 + (1 − α)2Y 4 + 2α(1− α)Z4 −W 4 = 0. (2.6)

For example with m = 2:

(X,Y, Z,W ) =((−3 + 4α2)2, (1 − 8α+ 4α2)2, (−3 + 4α2)(1− 8α+ 4α2),

1 + 24α− 72α2 + 96α3 − 48α4);

etc.

If we remove the restriction a3 = a5 = b1 = b2 = 0, and consider an elimination pro-

cedure with non-vanishing denominators, then up to symmetry only the following

intersection arises of the form we seek. The surface

V3 : x4 + y4 − (2u2 − v2)2z4 + (2u2 − v2)k2w4 = 0

intersected with the quadric surface

(2u− v)kw2 = (x+ y)2 + 2(u− v)(x + y)z − (2u2 − v2)z2

results in the identity

2
(

(3u− 2v)(x2 + y2) + (4u− 3v)xy − (2u2 − v2)(x + y + (u− v)z)z
)

×
(

u(x2 + y2) + vxy + (2u2 − v2)(x+ y + (u− v)z)z
)

−
(2u2 − v2)

(

(x+ y)2 + 2(u− v)(x + y)z − (2u2 − v2)z2 − (2u− v)kw2
)

×
(

(x+ y)2 + 2(u− v)(x+ y)z − (2u2 − v2)z2 + (2u− v)kw2
)

= (2u− v)2
(

x4 + y4 − (2u2 − v2)2z4 + (2u2 − v2)k2w4
)

.

The surface V3 has generic Picard rank equal to 3. To find surfaces V3 with infinitely

many rational points, it suffices for example to find infinitely many rational points

on the intersection

F0 : (x + y)2 + 2(u− v)(x + y)z − (2u2 − v2)z2 = (2u− v)kw2,

F1 : u(x2 + y2) + vxy + (2u2 − v2)(x + y + (u− v)z)z = 0.

We set (x, y, z) = (p, q, r) and regard the equation of F1 as defining a cubic curve

C1 in the u, v-plane over Q(p, q, r), containing the rational point (u, v) = (0, 0). As

such, it is an elliptic curve with cubic model:

V 2 = U(U2 − (p4 + q4)).

We seek points (u, v) on C1 such that 2u2 − v2 6= ±�, in order to keep small the

Picard rank of the surface. Now the points P1 = (−p2,−pq2), P2 = (−q2,−p2q) on

the cubic model are independent, and P1 + P2 pulls back to the point on C1

P (u, v) = (−pq(p+ q)/((p2 + pq + q2)r), (p + q)(p2 + q2)/((p2 + pq + q2)r)),



February 10, 2014 15:28 WSPC/INSTRUCTION FILE BCU˙14˙02˙10

8 A. Bremner, A. Choudhry, M. Ulas

with

2u2 − v2 = −(p+ q)2(p4 + q4)/((p2 + pq + q2)2r2).

For this point P to determine a point on the quadric F0, we require

k = pqr(2p2 + 3pq + 2q2)/((p+ q)(p2 + pq + q2)).

On setting z = (p2 + pq + q2)rZ/(p + q), w = (p2 + pq + q2)W , the surface now

takes the form

V : x4 + y4 − (p4 + q4)2Z4 − p2q2(2p2 + 3pq + 2q2)2(p4 + q4)W 4 = 0; (2.7)

the generic Picard rank is 3. The intersecting quadric becomes

F0 : pq(p+q)2(2p2+3pq+2q2)W 2 = −(x+y)2+2(p2+pq+q2)(x+y)Z−(p4+q4)Z2;

and the intersection comprises the two quadrics

F1 : − pq(x2 + y2) + (p2 + q2)xy − (p4 + q4)(x + y)Z + (p2 + pq + q2)(p4 + q4)Z2 = 0,

F2 : (2p2 + 3pq + 2q2)(x2 + y2) + (3p2 + 4pq + 3q2)xy − (p4 + q4)(x+ y)Z

+ (p2 + pq + q2)(p4 + q4)Z2 = 0.

We have arranged that F1 contain the point (x, y, Z) = (p, q, (p+ q)/(p2+pq+ q2)),

which allows parameterization of all points on F1 by:

x : y : z =pq2(p2 + q2)a2 + (p+ q)(p4 + q4)ab+ p(p4 + q4)b2 :

p2q(p2 + q2)a2 + (p+ q)(p4 + q4)ab+ q(p4 + q4)b2 :

(p− q)2(p+ q)ab.

The inverse is given by

a/b = −((p− q)qx− (p− q)py + (p4 + q4)z)/(pq(p2 + q2)z).

Such a point gives rise to a rational point on the intersecting quadric F0 precisely

when

pq(2p2 + 3pq + 2q2)W 2 = −p2q2(p2 + q2)2a4 − 2pq(p+ q)2(p2 + q2)(p2 − pq + q2)a3b

− (p4 + q4)(p4 + 2p3q + 6p2q2 + 2pq3 + q4)a2b2 − 2(p+ q)2(p2 − pq + q2)(p4 + q4)ab3

− (p4 + q4)2b4

and we have arranged that there is a point on this elliptic quartic at

(a, b,W ) = (p4 + q4,−pq(p2 + q2), pq(p− q)2(p2 + q2)(p4 + q4)).

This latter point is of infinite order, and hence its multiples pull back to infinitely

many rational points on (2.7). Using the same type of reasoning as in the proof of

Theorem 1, we get the following.

Theorem 3. The set of diagonal quartic surfaces defined over Q with Picard num-

ber 3 and Zariski dense set of rational points is infinite.
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Remark 4. The essence of the method described in this section was used in [1] to

find infinitely many integral points on the surface w2 = x6 + y6 + z6.

Remark 5. The approach of this section cannot find diagonal quartic surfaces with

Picard number one, for the construction immediately implies the existence of two

elliptic fibrations on S (defined over Q) and thus the Picard number is at least two

(page 32 of Bright [3], Corollary 2.27).

Remark 6. A nice illustration of van Luijk’s theorem in practice can be also found

in the Master’s thesis of D. Festi [9].

3. Second construction

The second method we describe to construct diagonal quartics with infinitely many

rational points is even more direct than the previous one. Consider the genus three

curve C : Px4+Qy4+Rz4 = 0 and suppose that (a, b, c), with abc 6= 0 is a rational

point lying on C. Substituting

x = aT, y = − c3R

b3Q
+ bT, z = 1 + cT,

there results

G(T ) =
−a4PR

b12Q3
(b8Q2 − b4c4QR+ c8R2 + 4b4cQ(b4Q− c4R)T + 6b8c2Q2T 2) = 0.

The polynomial G is of degree two in T and thus if a rational number S is chosen

so that the quartic curve

C : −Sw4 = G(T )

has infinitely many rational points, then there will be infinitely many rational points

on the surface Px4 +Qy4 +Rz4 + Sw4 = 0.

To construct some examples, let a, b, c be integer parameters and let R =

−(Pa4 + Qb4)/c4 be a non-zero rational number. Then the point (a, b, c) lies on

C and we seek S such that there is a point of infinite order on the curve

C : − SW 4 = H(T )

=PQ(a4P + b4Q)(a8P 2 + 3a4b4PQ+ 3b8Q2 + 4b4cQ(a4P + 2b4Q)T + 6b8c2Q2T 2),

where W = b3cQ
a w. In order to guarantee the existence of a point on C we put

S = −H(t), so that C contains the point (W,T ) = (1, t).

Example 7. To produce an explicit example, put R = −P−Q, a = b = c = 1. Thus

we consider the curve−Sw4 = PQ(P+Q)(P 2+3PQ+3Q2+4Q(P+2Q)T+6Q2T 2)

with S = −PQ(P +Q)(P 2+3PQ+3Q2+4Q(P +2Q)t+6Q2t2). That is, the curve

C : PQ(P +Q)(P 2 + 3PQ+ 3Q2 + 4Q(P + 2Q)t+ 6Q2t2)W 4 =

PQ(P +Q)(P 2 + 3PQ+ 3Q2 + 4Q(P + 2Q)T + 6Q2T 2).
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Using the point (W,T ) = (1, t) as a point at infinity, we find that C is birationally

equivalent to the elliptic curve defined over Q(P,Q)(t) with cubic model:

E : Y 2 = X(X2 + 3(P 2 + PQ+Q2)(P 2 + 3PQ+ 3Q2 + 4PQt+ 8Q2t+ 6Q2t2)).

From a geometric point of view, E for fixed rational P,Q represents a rational

elliptic surface in the plane (X,Y, t). Thus by results of Shioda, the generators of

E(C(t)) lie among polynomial solutions (X,Y ) of the equation of E which satisfy

the conditions degt X ≤ 2, degt Y ≤ 3. It is straightforward in any given instance

to compute all such polynomials defined over Q.

For generic P,Q, the point (W,T ) = (−1, t) is of finite order on C precisely when

P + 2Q + 3Qt = 0. When t 6= −(P + 2Q)/(3Q) therefore, this point is of infinite

order, and its multiples pull back to infinitely many rational points on the diagonal

quartic surface

Px4+Qy4−(P+Q)z4−PQ(P+Q)(P 2+3PQ+3Q2+4Q(P+2Q)t+6Q2t2)w4 = 0.

The generic Picard rank is in this instance equal to 1.

To refine the example further, consider the specific case P = Q = 1, and set

t = −1 + u. Computation shows that for u 6= 0, the point M(−1,−1 + u) is a

generator for E(Q(u)). Its multiples kM , k = 1, 2, 3..., pull back to infinitely many

rational points (x, y, z, w) on the diagonal quartic surface

Su : X4 + Y 4 − 2Z4 − 2(1 + 6u2)W 4 = 0. (3.1)

The point M pulls back to (X,Y, Z,W ) = (−1+u, 1+u, u,−1); and 2M pulls back

to

(X,Y, Z,W ) =(−1− 3u− 36u3 + 54u4 − 162u5 − 324u7 − 729u8 + 81u9,

1− 3u− 36u3 − 54u4 − 162u5 − 324u7 + 729u8 + 81u9,

3u(−1− 12u2 − 54u4 − 108u6 + 27u8),

− (1 + 12u2 + 9u4)(−1 + 27u4)),

etc.

To our knowledge this is the first explicit example of a family of diagonal quartics

each with Picard number equal to 1 and possessing infinitely many rational points.

We thus get:

Theorem 8. The set of diagonal quartic surfaces defined over Q with Picard num-

ber 1 and infinitely many rational points is infinite.

4. Third construction

In this section we propose a different idea, which we name the polynomial method.

More precisely, we are interested in finding polynomial curves of low degree which

lie on the affine variety F (x, y, z, w) = 0, where

F (X,Y, Z,W ) = PX4 +QY 4 +RZ2 + SW 2.



February 10, 2014 15:28 WSPC/INSTRUCTION FILE BCU˙14˙02˙10

Constructions of diagonbal quartic surfaces with infinitely many rational points 11

Throughout, we suppose that PQRS is not a perfect square (and so, in particular,

PQRS 6= 0). Essentially, we seek polynomial curves, say in the variable T , which

satisfy the conditions degX ≤ 1, deg Y ≤ 1 and degZ ≤ 2, degW ≤ 2. It is clear

that if such an identity exists, and the curve of genus one given by the intersection

αU2 = Z(T ), βV 2 = W (T )

has infinitely many rational points, then there are infinitely many rational points

on the diagonal quartic surface PX4 +QY 4 +Rα2U4 + Sβ2V 4 = 0.

If degX = 0, we have one of two identities:

(P,Q,R, S) = (ac(ad−bc),−bd(ad−bc),−cd, ab), (X,Y, Z,W ) = (1, t, a+bt2, c+dt2),

where the product of coefficients is a square; and

(P,Q,R, S) = ((2ac− b2)a2, (2ac− b2)c2, 1,−2ac), (4.1)

(X,Y, Z,W ) = (1, t, ab+ 2act+ bct2, a+ bt+ ct2).

If degX = 1, then by homogeneity, by multiplying T by a scalar, and by absorption

of fourth powers into P,Q,R, S, it suffices only to consider polynomial solutions of

F (X,Y, Z,W ) = 0 of the form

X = T, Y = 1 + T, Z = r + qT + T 2, W = w + vT + T 2.

Equating the coefficients of the resulting expression in T to zero, there arises:


































Q+ r2R+ w2S = 0,

2Q+ qrR + 2vwS = 0,

6Q+ q2R+ 2rR+ (v2 + 2w)S = 0,

2Q+ qR+ vS = 0,

P +Q+R+ S = 0.

Provided r(q − 2r) 6= 0, then the first, second, and fifth equation imply that

P =(qr − 2r2 − vw + r2vw + 2w2 − qrw2)S/(r(−q + 2r)),

Q =(rv − qw)wS/(q − 2r),

R =(v − 2w)wS/(r(−q + 2r))

Provided w(2r2 − q) + r(q − 2r) 6= 0, then the third and fourth equations give

v =2q(r − 1)w2/(w(2r2 − q) + r(q − 2r)),

(r − w)(w − 1)w(qr − 2r2 − qw + q2w − 2qrw + 2r2w) = 0.

The instances (r − w)(w − 1)w = 0 lead to PQ = 0; so necessarily

w(−q + q2 − 2qr + 2r2) + r(q − 2r) = 0.

Now −q + q2 − 2qr + 2r2 6= 0, otherwise r(q − 2r) = 0; so that

w = r(2r − q)/(−q + q2 − 2qr + 2r2).
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Together, we obtain the identity PX4 +QY 4 +RZ2 + SW 2 = 0, where

(P,Q,R, S) =(−(q − r − 1)2(q2 − 2qr + 2r2 − 2r), −r2(q2 − 2qr + 2r2 − 2r),

(4.2)

2(q − r − 1)r, 1)

and (X,Y, Z,W ) =
(

T, 1 + T, r + qT + T 2, −(q − 2r)r + 2(r − 1)rT + (q2 − 2qr − q + 2r2)T 2
)

.

The exceptions above can easily be dealt with: if r(q−2r) 6= 0 and w(q−2r2)−r(q−
2r) = 0, then w = r(q−2r)/(q−2r2), leading to q(r−1) = 0. Now r 6= 1, otherwise

P = 0; so necessarily q = 0 and (v − 2)(rv − r + 1) = 0. The case v = 2 leads to

R = 0; and thus v = (r−1)/r. This gives the identity PX4+QY 4+RZ2+SW 2 = 0,

where

(P,Q,R, S) =
(

(1− r)(1 + r)2, (1 − r)r2, −1− r, 2r
)

(4.3)

and

(X,Y, Z,W ) =
(

T, 1 + T, r + T 2, r + (−1 + r)T + rT 2
)

.

Finally, if r(q − 2r) = 0, then the only non-degenerate identity that results is

PX4 +QY 4 +RZ2 + SW 2 = 0, where

(P,Q,R, S) =
(

(1 − w)2, w2, 2w(1− w), −1
)

, (4.4)

and

(X,Y, Z,W ) =
(

T, 1 + T, T + T 2, w + 2wT + T 2
)

.

In the identities at (4.1), (4.2), (4.3), (4.4), it is straightforward by choice of param-

eter to force rational points on to the intersection of the two quadrics Z,W in the

variable T , thereby providing examples of diagonal quartic surfaces with infinitely

many points. The generic Picard rank in each case is equal to two. But the examples

are interesting in their own right, and we give a few more details.

Example 9. At (4.1), we demand

ab+ 2act+ bct2 = αu2, a+ bt+ ct2 = βv2.

If we set, for example, (α, β) = (ab, a), then the intersection represents an elliptic

curve with origin at (t, u, v) = (0, 1, 1). The point Q(t, u, v) = (0, 1,−1) is of infinite

order, and pullbacks of its multiples mQ provide infinitely many points on the

surface of generic rank 2

(2ac− b2)a2X4 + (2ac− b2)c2Y 4 + a2b2Z4 = 2a3cW 4.

When m = 2 for instance,

(X,Y, Z,W ) =(b4 − 20ab2c+ 4a2c2, 8ab(b2 + 2ac),

− b4 − 20ab2c+ 12a2c2,−3b4 + 20ab2c+ 4a2c2).
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Example 10. On homogenizing (4.2), we have the example

(p−q+r)2(2pr−q2+2qr−2r2)X4+r2(2pr−q2+2qr−2r2)Y 4−2r(p−q+r)s2Z4+t2W 4 = 0,

with X = T , Y = 1 + T , and where we demand

r+ qT + pT 2 = sZ2, r(2r− q)− 2r(p− r)T +(−pq+ q2 − 2qr+2r2)T 2 = tW 2.

It is only necessary to specialize p, q, r, s, t so that this latter intersection represents

an elliptic curve of positive rank. This occurs for example when s = r, t = r(2r−q),

where we take (T, Z,W ) = (0, 1, 1) as zero of the corresponding elliptic curve. The

point Q(T, Z,W ) = (0, 1,−1) is of infinite order, and pullbacks of its multiples mQ

provide infinitely many points on the surface

(p− q + r)2(q2 − 2pr − 2qr + 2r2)X4 + r2(q2 − 2pr − 2qr + 2r2)Y 4+ (4.5)

2r3(p− q + r)Z4 − (q − 2r)2r2W 4 = 0.

For example when m = 2:

(X,Y,Z,W ) = (8(q − 2r)r(q2 + 2pr − 6qr + 6r2),

q4 − 20pq2r + 12q3r + 4p2r2 + 72pqr2 − 72q2r2 − 72pr3 + 120qr3 − 60r4,

− 3q4 + 20pq2r + 4q3r + 4p2r2 − 88pqr2 + 32q2r2 + 88pr3 − 72qr3 + 36r4,

q4 + 20pq2r − 28q3r − 12p2r2 − 56pqr2 + 112q2r2 + 56pr3 − 168qr3 + 84r4).

Example 11. On homogenizing (4.3), we have the example

−(r − s)(r + s)2X4 − r2(r − s)Y 4 − (r + s)p2Z4 + 2rq2W 4 = 0,

with X = T , Y = 1 + T , and where we demand

r + sT 2 = pZ2, r + (r − s)T + rT 2 = qW 2.

It suffices to specialize p, q, r, s so that this latter intersection represents an elliptic

curve of positive rank. This occurs for example when p = q = r, with (T, Z,W ) =

(0, 1, 1) as origin of the elliptic curve. The point Q(T, Z,W ) = (0, 1,−1) is of infinite

order, and pullbacks of its multiples mQ provide infinitely many points on the

surface

−(r − s)(r + s)2X4 − r2(r − s)Y 4 − r2(r + s)Z4 + 2r3W 4 = 0. (4.6)

For example when m = 2:

(X,Y, Z,W ) = (−8r(3r+s), −15r2−18rs+s2, 9r2+22rs+s2, 21r2+14rs−3s2);

etc.

Example 12. On homogenizing (4.4), we have the example

−(v − w)2X4 − w2Y 4 − 2(v − w)wt2Z4 + u2W 4 = 0,
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with X = T , Y = 1 + T , and where we demand

T + T 2 = tZ2, w + 2wT + vT 2 = uW 2.

It is only necessary to specialize t, u, v, w so that this latter intersection represents

an elliptic curve of positive rank. As illustration, take v/w = 2a, t = 4(1−a), u = w,

with (T, Z,W ) = (0, 0, 1) as origin for the elliptic curve. The point Q(T, Z,W ) =

(−1/a, 1/(2a), 1) is of infinite order, and pullbacks of its multiples mQ provide

infinitely many points on the surface

(1− 2a)2X4 + Y 4 − 2(1− a)2(1− 2a)Z4 −W 4 = 0. (4.7)

For example when m = 2:

(X,Y, Z,W ) = (4(1−a)a2, (2−4a+a2)2, 2a(2−4a+a2), −4+16a−20a2+8a3+a4),

etc.

Finally, we observe that it is possible, given m ∈ Z, to obtain surfaces of this

type with PQRS ≡ m modulo squares. For set r = 1, q = 2 + 2m in (4.2). There

results

4m2(1+m)T 4+(1+m)(1+T )4−m
(

1− (1 + 2m)T 2
)2−

(

1 + 2(1 +m)T + T 2
)2

= 0,

and the product of the coefficients is m modulo squares. We now demand that

1− (1 + 2m)T 2 = �, 1 + 2(1 +m)T + T 2 = �.

This intersection contains a point at T = 0, and the curve is of positive rank. Some

points are given by T =

4(−1 +m)

(1 +m)(5 +m)
,

4(−1 +m)(−3− 10m+m2)(−1 + 10m+ 3m2)

(1 +m)(13 + 22m+m2)(1 − 5m+ 27m2 +m3)
, . . .

These give the surfaces

4m2(1 +m)X4 + (1 +m)Y 4 −mZ4 −W 4 = 0,

with infinitely many points given by

(X,Y, Z,W ) =
(

4(−1 +m), 1 + 10m+m2, −3− 10m+m2, −1 + 10m+ 3m2
)

;

(X,Y, Z,W ) =(4(−1 +m)(3 + 10m−m2)(1 − 10m− 3m2),

(1 + 10m+m2)(1 + 52m+ 38m2 + 52m3 +m4),

5 + 114m− 233m2 − 1140m3 − 381m4 − 94m5 +m6,

1− 94m− 381m2 − 1140m3 − 233m4 + 114m5 + 5m6);

etc.

Theorem 13. For any m ∈ Z there is a diagonal quartic surface ax4+bY 4+cZ4+

dT 4 = 0 containing infinitely many (non-trivial) rational points and satisfying the

property abcd ≡ m (mod Q2).



February 10, 2014 15:28 WSPC/INSTRUCTION FILE BCU˙14˙02˙10

Constructions of diagonbal quartic surfaces with infinitely many rational points 15

5. Identities for sixth powers

In this section we apply the polynomial method to find low degree curves on the

two types of surface that are of interest to us:

PX6 +QY 6 +RZ3 + SW 2 = 0 (5.1)

and

PX6 +QY 6 +RZ3 + SW 3 = 0. (5.2)

First, consider the equation (5.1). We seek polynomial solutions of (5.1) of the

form

X = T, Y = 1 + T, Z = T 2 + aT + b, W = T 3 + cT 2 + dT + e.

Let F (X,Y, Z,W ) denote the left hand side of (5.2). Then after the above substi-

tution we obtain a degree six polynomial in T , say F (X,Y, Z,W ) =
∑6

i=0 ciT
i. We

are interested in solving in rationals the system of equations ci = 0 for i = 0, . . . , 6,

with the assumption PQRS 6= 0. First, solve the system

c4 = c5 = c6 = c7 = 0

with respect to P,Q, d, e. There results:

P =
1

6
(3(a− 2)R+ 2(c− 3)S),

Q = −3aR+ 2cS

6
,

d =
3(2a2 − 5a+ 2b)R+ 2(c− 5)cS

4S
,

e =
−3(2a3 − 20a+ 12ab+ 15ac− 6a2c− 6bc)R+ 2c(3c2 − 15c+ 20)

12S
.

Substituting into the first three equations and clearing the common denominator

144S, we are left with the system

c1(a, b, c, R, S) = c2(a, b, c, R, S) = c3(a, b, c, R, S) = 0.

These equations are of degree 3, 2, 2 respectively in the variable b. The polynomial

M1 = Resb(c1, c2) = 20736R2S × W1(a, c, R, S), with degR W1 = 7; and M2 =

Resb(c2, c3) = 5184R2S × W2(a, c, R, S), with degR W2 = 5. Finally, W (a, c, S) =

ResR(W1,W2) has the following factorization:

W (a, c, S) = −24133652S35(a− 2)11(a− 1)3a13(3a− 2c)4(c− 3)7c8×
(4− 4c+ a(c+ 1))(2c+ a(c− 4))f10(a, c)f11(a, c)f12(a, c)f13(a, c),
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where

f10(a, c) = (a3 − 7a2 + 23a+ 1)c2 + (a+ 1)(a2 − 16a− 27)c+ 2a(2a2 + 14a+ 27),

f11(a, c) = (a3 + a2 + 7a− 27)c2 − (7a3 + 15a2 − 49a+ 3)c+ 4a(2a− 1)2,

f12(a, c) =
6

∑

i=0

pi(a)c
i,

with

p0 = 8a3(1 + 18a+ 2058a2 + 1584a3 + 444a4 + 72a5 + 8a6),

p1 = −12a2(1 + 49a+ 1601a2 + 1609a3 + 1592a4 + 616a5 + 100a6 + 12a7),

p2 = 6a(3 + 134a+ 5587a2 − 20016a3 + 28417a4 − 9500a5 + 2771a6 − 54a7 + 98a8),

p3 = −9− 927a− 10296a2 + 49352a3 − 18054a4 − 38322a5 + 8348a6 + 1596a7 − 1221a8 − 387a9,

p4 = 3(−1 + a)(−135− 1350a− 1570a2 + 9688a3 − 2738a4 + 1838a5 − 1170a6 + 368a7 + 29a8),

p5 = −3(−1 + a)2(2025− 1251a+ 1825a2 + 169a3 − 329a4 − 21a5 + 59a6 + 3a7),

p6 = (−1 + a)3(729− 486a+ 783a2 − 548a3 + 147a4 − 6a5 + a6).

The last factor f13 is of degree 57 in a and 59 in c. It is clear that the only

potentially awkward factors for a case-by-case analysis are fi for i = 10, 11, 12, 13.

The curve defined by f10(a, c) = 0 in the ac plane is rational, with parametrization:

a = −6(t− 5)

t2 + 15
, c = − 12

(

t2 − 2t+ 21
)

t3 − 3t2 + 3t− 81
.

Similarly, the curve defined by f11(a, c) = 0 is rational with parameterization:

a = −6(t− 5)

t2 + 15
, c = − 8(t− 3)2

t3 + t2 + 27t+ 3
.

Surprisingly, the curve defined by f12(a, c) = 0 is also of genus 0, with nontrivial

rational points when ac(3a− 2c) = 0. However, these are the only rational points.

For

f12(a, c) = NormQ(θ)/Q(g0(a, c) + g1(a, c)θ + g2(a, c)θ
2),

where θ3 = 2, and

g0(a, c) =562a+ 60a2 + 20a3 − 373c+ 19ac− 71a2c− 3a3c− 45c2 + 47ac2 − 3a2c2 + a3c2,

g1(a, c) =2(223a+ 24a2 + 8a3 − 148c+ 10ac− 32a2c− 18c2 + 18ac2),

g2(a, c) =354a+ 36a2 + 12a3 − 235c+ 15ac− 48a2c− 27c2 + 27ac2.

Thus f12(a, c) = 0 implies g0 = g1 = g2 = 0, and it follows easily that either (a, c)

is the point at infinity (0/0, 1/0), or (a, c) = (0, 0), (1, 3/2), (2, 3). No new identities

result.

We are unable to say much about the zeros of f13(a, c) = 0, a curve of degree 70. By

reducing modulo a large number of primes, we believe the curve to be absolutely
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irreducible. A small search produces zeros at (a, c) = (0, 0), (1, 0), (2, 0), (1/2, 0),

(2/9, 0), (0, 2), (0, 3), (0,−1/23), (1, 2), (2, 3), (2, 4), (1, 3/2), (1, 3/2), (−2, 1/3),

(3/2, 3), (8, 3), (1, 7/3), but no new identities result.

Case-by-case analysis now results in the following table. Solutions occur in pairs

corresponding to the transformation T → −T − 1, and without loss of generality

we list only one of each pair.

P Q R S

x y z w

t2 1 −2t −1

T 1 + T T + T 2 (1 + T )3 − tT 3

16t3 8 −1 3t

T 1 + T 2((1 + T )2 + 2tT 2) 4T ((1 + T )2 + tT 2)

1 −108 −4 3

1 T 1− 3T + 6T 2 −1 + 6T − 12T 2 + 18T 3

1 −432 8 −9

1 T 1− 3T + 6T 2 −1 + 4T − 12T 2 + 12T 3

We obtain points on Px6 + Qy6 + Rz6 + Sw2 = 0 by demanding Z = z2. As an

example, consider the first entry in the above table, with demand T +T 2 = z2. The

latter is parameterized by

(T, z) =
(

a2/(−a2 + b2), ab/(−a2 + b2)
)

resulting in the (rather dull) identity t2x6 + y6 − 2tz6 = w2 with

(x, y, z, w) = (a2, b2, ab, a6t− b6).

As second example, take the second entry in the table, where we demand

(1 + T )2 + 2tT 2 = z2.

This is parameterized by

(T, z) =

(

2ab

2ta2 − 2ab− b2
,

2ta2 + b2

2ta2 − 2ab− b2

)

resulting in the identity 2t3x6 + y6 − z6 + 6tw2 = 0 with

(x, y, z, w) = (2ab, 2ta2 − b2, 2ta2 + b2, 2ab(4t2a4 + b4)).

The third entry (with PQRS = �) demands

1− 3T + 6T 2 = z2,

which is parameterized by

(T, z) =

(

a(3a+ 2b)

6a2 − b2
,
6a2 + 3ab+ b2

6a2 − b2

)

,
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resulting in the identity x6 − 108y6 − 4z6 + 3w2 = 0 where

(x, y, z, w) =(6a2 − b2, a(3a+ 2b), 6a2 + 3ab+ b2, (5.3)

270a6 + 540a5b+ 360a4b2 + 144a3b3 + 48a2b4 + 12ab5 + b6).

Similarly, the fourth entry leads to the identity x6 − 432y6 + 8z6 = 9w2 with

(x, y, z, w) =(6a2 − b2, a(3a+ 2b), 6a2 + 3ab+ b2,

108a6 − 72a5b− 216a4b2 − 144a3b3 − 42a2b4 − 8ab5 − b6).

In the same way, we can obtain points on Px6+Qy6+Sm2z6+Rw3 = 0 by setting

(Z,W ) = (w,mz3), with m chosen so that the appropriate cubic curve is elliptic

with positive rational rank. As example, we consider just the first entry from the

table, which leads to the cubic curve

(1 + T )3 − t T 3 = mz3.

This latter is elliptic with positive rational rank for (t,m) = (1, 6). A generator is

Q(z, T ) = (7/18,−37/54), and the resulting identity is x6 + y6 − 36z6 + 2w3 = 0.

Multiples kQ correspond to solutions:

k x y z w

1 37 17 21 629

2 1805723 2237723 960540 4040707888729

3 209143555850753 84691068680987 112490043311709 17712591252741962842340733211

.. .. .. .. ..

Second, we consider the equation (5.2) and look for polynomial solutions of the

form

X = T, Y = 1 + T, Z = b+ aT + T 2, W = d+ cT + T 2.

If F (X,Y, Z,W ) denotes the left hand side in (5.2) then the above substitution

results in a degree six polynomial in T , say F (X,Y, Z,W ) =
∑6

i=0 ciT
i. Consider

the system of equations ci = 0 for i = 0, . . . , 6. Eliminating a, b, c, d, S, there results

PQ(P +R)(Q+R)H(P,Q,R) = 0, where

H(P,Q,R) = 64R6 + 192(P +Q)R5 + 48(5P 2 + 53PQ+ 5Q2)R4+

32(P +Q)(5P 2 + 139PQ+ 5Q2)R3+

12(5P 4 + 8P 3Q+ 1414P 2Q2 + 8PQ3 + 5Q4)R2+

12(P +Q)(P 2 − 174PQ+Q2)(P 2 − 6PQ+Q2)R+

(P 2 + 18PQ+Q2)3.

Solutions with PQ = 0 are not of interest, and rational solutions resulting from

(P + R)(Q + R) = 0 are trivial. Consider finally H(P,Q,R) = 0. Surprisingly, the

equation defines a curve C of genus zero, with parametrization:

P = 2v6, Q = −2, R = (1− v − v2)3.
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After the substitution T → 1/(vT − 1), there results the identity

(1 − T − T 2)3 + (1 + T − T 2)3 = 2− 2T 6,

discovered by Elkies and mentioned in [7].

Remark 14. Note that for the equation x6 − 108y6 − 4z6 + 3w2 = 0 we can

prove much more. Indeed, rewrite the equation in the form (x3 − 2z3)(x3 + 2z3) =

3(6y3 − w)(6y3 + w) and make the substitution w = t(x3 + 2z3) − 6y3, leading to

the equation of a genus 1 curve over Q(t):

C :
(

3t2 + 1
)

x3 +
(

6t2 − 2
)

z3 − 36ty3 = 0. (5.4)

Using the solution given by (5.3) we can define a base change Cφ via t = φ(a) =

(1 + 12a2 + 12a3)/(1 + 6a + 18a3), which gives us a Q(a)- rational point on Cφ.
This point can be used to produce infinitely many rational parametric solutions

of the equation defining Cφ, and thus leads to infinitely many rational curves on

the surface, say S, defined by the equation x6 − 108y6 − 4z6 + 3w2 = 0 with

w = t(x3 + 2z3) − 6y3. As an immediate consequence of the existence of infinitely

many rational curves on S, we get that the set S(Q) is Zariski dense in S.
Finally, we adapt the third method above to construct some surfaces of the form

Px6 +Qy6 +Rz6 + Sw2 = 0

with infinitely many rational points. Consider the genus ten curve C : Px6+Qy6+

Rz6 = 0 and suppose that (a, b, c), with abc 6= 0 is a rational point lying on C. Put

x = aT, y = bT − c3R

b3Q
, z = cT + 1,

Then, with x, y, z defined above we get

G(T ) =
R(b6Q+ c6R)

b30Q5

3
∑

i=0

CiT
i,

where

C0 = b24Q4 − b18c6Q3R + b12c12Q2R2 − b6c18QR3 + c24R4,

C1 = −6b6cQ(−b6Q+ c6R)(b12Q2 + c12R2),

C2 = 15b12c2Q2(b12Q2 − b6c6QR+ c12R2),

C3 = −20b18c3Q3(−b6Q+ c6R),

C4 = 15b24c4Q4.

Now G is of degree four in T and thus if a rational number S is chosen so that the

quartic curve

C : −Sw2 = G(T )

has infinitely many rational points, then there will automatically be infinitely many

rational points on the surface Px6 + Qy6 + Rz6 + Sw2 = 0. As before, we can
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guarantee positive rank by taking S = −G(t), for a parameter t.

As an example, take (a, b, c) = (1, 1, 1), (P,Q,R) = (p, q,−p− q). It is straightfor-

ward to determine that in consequence there are infinitely many points on either of

the two surfaces

px6 + qy6 − (p+ q)z6 − 15pq(p+ q)w2 = 0,

px6 + qy6 − (p+ q)z6 − pq(p5 + q5)w2 = 0.

If we specialize further to (P,Q,R) = (1, 1,−2), then we get the quartic curve

−Sw2 = 2(31+90T+105T 2+60T 3+15T 4). Taking now S = −2(31+90t+105t2+

60t3 + 15t4) we consider the curve

C : (31 + 90t+ 105t2 + 60t3 + 15t4)w2 = 31 + 90T + 105T 2 + 60T 3 + 15T 4.

Taking the point (T,w) = (t, 1) as a point at infinity, then the point Q(T,w) =

(t,−1) is of infinite order, and its multiples pull back to infinitely many points on

the surface. For example, 2Q delivers the point, on simplifying by replacing t by

−1− t:

(x, y, z, w) = (− 1 + 3t+ 60t3 + 90t4 + 90t5 + 900t6 + 675t8 − 225t9,

− 1− 3t− 60t3 + 90t4 − 90t5 + 900t6 + 675t8 + 225t9,

3t(1 + 20t2 + 30t4 − 75t8),

(−1 + 90t4 + 900t6 + 675t8)(1 + 60t2 + 420t4 + 6300t6 + 55350t8+

94500t10 + 94500t12 + 202500t14 + 50625t16))

on the surface

x6 + y6 − 2z6 = 2(1 + 15t2 + 15t4)w2,

etc.

6. Final remarks

We can try to extend the polynomial method of the last two sections in the following

manner. Seek P,Q,R, S ∈ Q and polynomials Gi, F ∈ Q[t], with degGi ≤ 2 for

i = 1, 2, 3 and degF ≤ 4, such that either

PG1(t)
4 +QG2(t)

4 +RG3(t)
4 + SF (t)2 = 0, (6.1)

or

PG1(t)
6 +QG2(t)

6 +RG3(t)
6 + SF (t)3 = 0. (6.2)

If we can find such polynomials and numbers P,Q,R, S, the existence of a rational

point, say (t, w), on the quartic curve

C : w2 = F (t),

then implies respectively the existence either of a rational point on the surface

Px4 +Qy4 +Rz4+Sw4 = 0, or a rational point on the surface Px6 +Qy6+Rz6+
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Sw6 = 0, in each case with (x, y, z, w) = (G1(t), G2(t), G3(t), w).

The system of equations underlying (6.1) is too large for complete analysis. How-

ever, there seem to be numerous such identities, and we list just one of the simpler

ones:

(P,Q,R, S) = (a2+2ab+2b2−2c, 4(a2+2ab+2b2−2c), (a2−2ab+2b2)c2,−a2+2ab−2b2),

(G1, G2, G3) =(2a(2ab− c)− 4b(2ab− c)t+ (4b3 + (a− 2b)c)t2,

2(a3 − (a− b)c)− 2a(2ab− c)t+ b(2ab− c)t2,

2(2ab− c)− 2(a2 + 2b2 − c)t+ (2ab− c)t2),

with

F (t) = 4
(

2a4(a2 + 2ab+ 2b2)− 2a3(3a+ 2b)c+ (5a2 − 2ab+ 2b2)c2 − c3
)

−
8(2ab− c)

(

2a2(a2 + 2ab+ 2b2)− 2a(2a+ b)c+ c2
)

t+

8(2ab− c)
(

3ab(a2 + 2ab+ 2b2)− (a2 + 6ab+ 2b2)c+ c2
)

t2−
4(2ab− c)

(

4b2(a2 + 2ab+ 2b2)− 2b(a+ 4b)c+ c2
)

t3+
(

8b4(a2 + 2ab+ 2b2)− 8b3(a+ 3b)c+ (a2 − 2ab+ 10b2)c2 − c3
)

t4.

The generic Picard rank is 2.

In the case of (6.2), we offer the identity

2
(

(p+ q)t2 + 4qt+ p− q
)6 − 2

(

2qt2 + (2p− 2q)t− p+ 3q
)6

−(p2 − 5q2)3(t2 − t− 1)6 −
(

(p2 + 4pq − q2)t4 + (2p2 + 22q2)t3

−(3p2 − 24pq + 9q2)t2 + (6p2 − 16pq + 18q2)t+ 8pq − 11q2 − p2
)3

= 0,

which, on taking p = 1, q = 1, yields the identity

2(t2 + 2t)6 − 2(t2 + 1)6 + (t2 − t− 1)6 = (t4 + 6t3 + 3t2 + 2t− 1)3.

For generic t0, the elliptic quartic

t4 + 6t3 + 3t2 + 2t− 1 = (t40 + 6t30 + 3t20 + 2t0 − 1)W 2

with (t,W ) = (t0, 1) as origin, has point Q(t,W ) = (t0,−1) of infinite order. Pull-

backs of mQ, m = 2, 3, ..., now give infinitely many solutions of

2X6 − 2Y 6 + Z6 = (t40 + 6t30 + 3t20 + 2t0 − 1)3W 6.
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For example, 2Q delivers (X,Y, Z,W ) =

(t(2 + t)(−1 + 2t+ 2t2 + 14t3 + 20t4 + 32t5 + 26t6 − 4t7 + 2t8)×
(3 + 6t− 6t2 − 6t3 + 24t5 + 18t6 + 12t7 + 2t8),

(1 + t2)(1 + 8t2 − 68t4 − 192t5 + 296t6 + 1488t7 + 2560t8 + 2112t9 + 656t10

−144t11 + 292t12 + 480t13 + 248t14 + 48t15 + 4t16),

(1 + t− t2)(1− 4t− 10t2 − 60t3 + 50t4 + 112t5 + 412t6 + 600t7 + 1540t8 + 2640t9

+3640t10 + 3440t11 + 2240t12 + 960t13 + 320t14 + 64t15 + 4t16),

1 + 4t− 6t2 + 28t3 + 126t4 + 336t5 + 420t6 + 104t7 − 732t8 − 1104t9 − 1176t10

−1008t11 − 784t12 − 448t13 − 96t14 + 4t16).

Accordingly, observe that we deduce infinitely many integer solutions of the Dio-

phantine equation

U6
1 + 2V 6

1 + 2W 6
1 = U6

2 + 2V 6
2 + 2W 6

2 ;

and more generally, integer solutions of the arbitrarily long chain

2X6
1 − 2Y 6

1 + Z6
1 = 2X6

2 − 2Y 6
2 + Z6

2 = 2X6
3 − 2Y 6

3 + Z6
3 = . . .

No further solution to (6.2) over Q was discovered. However, the following curious

identity came to light:

125u6 − 2(u2 + 1)6 + 2(ǫu2 − ǫ−1)6 = (2ǫu4 − 3u2 − 2ǫ−1)3,

where ǫ = (1 +
√
5)/2.
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