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Abstract

Significance: Modification of cysteine thiols dramatically affects protein function and stability. Hence, the
abilities to quantify specific protein sulfhydryl groups within complex biological samples and map disulfide bond
structures are crucial to gaining greater insights into how proteins operate in human health and disease. Recent
Advances: Many different molecular probes are now commercially available to label and track cysteine residues
at great sensitivity. Coupled with mass spectrometry, stable isotope-labeled sulfhydryl-specific reagents can
provide previously unprecedented molecular insights into the dynamics of cysteine modification. Likewise, the
combined application of modern mass spectrometers with improved sample preparation techniques and novel data
mining algorithms is beginning to routinize the analysis of complex protein disulfide structures. Critical Issues:
Proper application of these modern tools and techniques, however, still requires fundamental understanding of
sulfhydryl chemistry as well as the assumptions that accompany sample preparation and underlie effective data
interpretation. Future Directions: The continued development of tools, technical approaches, and corresponding
data processing algorithms will, undoubtedly, facilitate site-specific protein sulfhydryl quantification and disulfide
structure analysis from within complex biological mixtures with ever-improving accuracy and sensitivity. Fully
routinizing disulfide structure analysis will require an equal but balanced focus on sample preparation and
corresponding mass spectral dataset reproducibility. Antioxid. Redox Signal. 21, 511–531.

Introduction

Oxidative protein folding refers to the creation of a
specific set of protein backbone cross-links via the

formation of disulfide bonds between the side chains of
cysteine amino-acid residues. This process provides, in ef-
fect, a set of molecular staples that stabilize a higher-order
protein structure. It is considered an oxidative process, be-
cause two electrons are removed from the protein molecule
when an intramolecular disulfide bond forms (Fig. 1). Out-
side of a small proportion of cases (45) where ongoing dis-
ulfide interchange plays a direct regulatory role in protein
activity, there exists for each protein a unique linkage pattern
of disulfide bonds that is consistent between all biologically
active or ‘‘properly folded’’ protein molecules. In this regard,
disulfide bond structure—defined as the precise set of un-
iquely linked disulfide bonds in a given protein—represents
an extremely consistent (protein molecule-to-protein mole-

cule) post-translational modification. Cysteine residues in-
volved in disulfide bonds (i.e., cystines) are notably the most
evolutionarily conserved amino acids and, in 99% of cases,
are only replaced in pairs (95, 104). Free cysteine is not
particularly conserved (95). When present, however, free
cysteine residues tend to play a major role in protein bio-
chemistry—thus, techniques for the analysis sulfhydryl
groups are widely applicable.

Oxidative protein folding within the eukaryotic cell is a
rapid, enzyme-mediated process that occurs in the relatively
oxidizing environments of the endoplasmic reticulum (ER)
and the mitochondria. As summarized by Hu et al. (46), the
cytosol maintains a redox potential of - 290 mV, but the ER
is significantly more oxidizing at a redox potential of - 170
to - 185 mV; mitochondria redox potentials range from
- 250 to - 280 mV with the matrix generally more reducing
than the intermembrane space (56). By way of comparison,
the redox potential of bacterial periplasm is - 165 mV (49).
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[The review by Herrmann and Riemer (41a) in this Forum of
Antioxidants and Redox Signaling compares and contrasts
protein folding in these different environments.] During or
after protein biosynthesis, proteins destined for secretion are
shuttled to the ER, where protein folding is generally medi-

ated by protein disulfide isomerase (PDI) and ER oxidor-
eductin 1 (Ero1) enzymes (Fig. 1a). Owing to its unique
evolutionary history, a different set of enzymes facilitate
mitochondrial protein folding (Fig. 1b) (86). Correct disulfide
bonding is critical to ensuring proper protein function and

FIG. 1. Oxidative protein fold-
ing as it generally occurs in the
ER (a), the mitochondria (b), and
in vitro (84) (c). Oxygen receives
electrons in all three cases but not
always toward the same molecular
fate. ER, endoplasmic reticulum.
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thereby overall health status. For example, altered regulation
of the PDI family of enzymes is emerging as an important
contributor to a variety of pathological conditions, including
neurodegenerative and infectious diseases, cancer, and in-
fertility, with additional roles in hemostasis and lipid
homeostasis (3, 8). PDI itself is subject to inhibition by
S-nitrosylation of its cysteine residue(s), an event that may
lead to neurodegeneration in the forms of Parkinson’s and
Alzheimer’s diseases (96). Independent of enzymes, oxida-
tive stress in the myocardium may contribute to cysteine
cross-linking within the protein Titin that produces increased
passive tension and hysteresis in heart tissue (32, 61).

Oxidative protein folding can also occur spontaneously
in vitro (Fig. 1c). As initially demonstrated by the Nobel
Prize-winning work of Anfinsen and colleagues (5, 6, 35,
102, 103), many isolated, unfolded proteins exposed to ox-
ygen are not only capable of forming disulfide bonds spon-
taneously [vis-à-vis cysteine sulfenic acid (Cys-SOH)
intermediates (84)], but they also frequently do so in the
correct, native pattern provided the correct buffer conditions
are supplied and the polypeptide backbone remains intact
(95). However, correct folding ex vivo is never guaranteed.
Given, for example, the continual possibility that disulfide
scrambled protein isomers may contaminate recombinant
proteins intended for pharmaceutical/therapeutic use, the
verification of correct disulfide linkage patterns plays a sig-
nificant role in the development of modern protein-based
drugs (40, 64).

The first protein disulfide bond structure was determined
for bovine insulin by Sanger and colleagues in 1955 through a
logical but laborious process (87). In recent years, the sci-
entific capacity to study protein disulfide bonds in small
quantities of material has been accelerated, in large part, by
advances in biological mass spectrometry and follow-
on creative approaches to sample preparation and data
analysis—generating powerful analytical techniques for
determining protein disulfide structures.

However, the analysis of fully folded proteins represents
only a sub-discipline within the study of oxidative protein
folding. Accurately pinpointing,* tracking and quantifying
free cysteine residues both within folded proteins and during
the folding process are important tasks for many protein
chemists. As such, in this review, we discuss modern tools for
(and potential sources of error in) tracking, pinpointing, and
quantifying free sulfhydryl groups, quantifying the degree of
oxidative protein folding over time, and elucidating complete
protein disulfide structures. Due to its minimal sample re-
quirements and its flexible and expansive analytical capacity,
mass spectrometry has come center stage in recent years,
playing an important role in many of the techniques described.

Techniques for Tracking Reduced Cysteine Residues
in Proteins

Depending on the question(s) at hand, detecting, quanti-
fying, and determining the degree to which cysteine resi-

due(s) exist in the free thiol form may be carried out in
unfractionated biological samples, but they are more rou-
tinely carried out in ways that are specific to certain cellular
fractions (37), particular proteins (44, 58, 60, 89), or other
(semi)purified preparations. The unique chemistry of sulf-
hydryl groups enables them to serve well as molecular
‘‘handles’’ for self-quantification and for the manipulation
and analysis of proteins in general. As such, there are literally
hundreds of different thiol-specific reagents that may be
employed in a great variety of creative ways to track and
quantify sulfhydryl status within proteins (42, 54). We prefer
to categorize these probes into two groups: first, as mono-
functional small molecules that react specifically with thiol
groups under a particular set of conditions (Table 1). Alone,
these are often employed to selectively block protein thiol
groups without imparting any unique functionality. (Of
course, if mass spectrometry is to be used as the analytical
endpoint, all sulfhydryl-tagging reagents are bi-functional in
the sense that besides blocking thiols, they impart a specific
mass shift to each protein sulfhydryl group.) Second, nearly
all of the mono-functional thiol reagents in Table 1 can be
synthesized as covalent conjugates with a second small
molecule or functional group that imparts unique func-
tionality to cysteine residues tagged with the bi-functional
reagent (Table 2). Many of the possible combinations of
thiol-specific reactants from Table 1 with conjugates from
Table 2 have been synthesized and are commercially
available (42, 54). Useful example protocols for employing
most of these reagents in the laboratory have been compiled
by Hermanson (42).

In selecting a particular reagent for an experiment, re-
searchers should continually be alert to the fact that solution
chemistry—pH in particular—plays a major role in defining
the reaction rate as well as the degree of specificity with
which most labeling reagents will react with thiols. The re-
lationship of thiol reactivity with pH is, in large part, gov-
erned by formation of the highly reactive thiolate anion as
solution pH approaches and exceeds the pKa of protein
sulfhydryl groups. On average, protein sulfhydryl pKa values
range from about 8 to 9.5 (69), but can vary widely from as
low as 2.5 (28) to approximately 10 (41)—meaning that the
pKa of a single cysteine residue can dramatically affect
protein function. The pKa values of protein amino groups
tend to fall slightly above those of most sulfhydryls, so there
is generally a limited range of solution pH values in which
thiol-specific probes will react at a reasonably rapid rate
while maintaining specificity for sulfhydryls.

In many cases, the use of protein denaturants, such as
detergents, or chaotropic agents, such as urea or guanidine
hydrochloride, may also warrant consideration, as they tend
to provide improved access to internal protein residues for
larger or bi-functional probes. Denaturants should be em-
ployed with caution, however, as they may interfere with
downstream steps if they are not first removed; mass spec-
trometry-based analytical methods are often particularly
susceptible to failure caused by the presence of denaturants.

Pinpointing and Tracking Reduced Cysteine
Residues Within Proteins

Protein sequence alone is inadequate for determining
whether cysteine residues exist in fully reduced, free thiol-

*As used in this review, the term ‘‘pinpointing’’ refers merely to
obtaining knowledge that an analytical signal represents a free
cysteine residue. Thus, the term ‘‘pinpointing’’ does not provide any
information on peptide or protein identity; the term ‘‘identifying’’ is
used for this purpose.
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bearing form. The identification of such cysteinyl residues is
often necessary for adequate protein characterization. This
often starts with recognizing and pinpointing cysteinyl resi-
dues, which may be accomplished via several different ap-
proaches that rely on (i) sulfhydryl tagging, (ii) proteolysis,
and (iii) the subsequent generation of analytical signatures
that are unique to the tagged peptides. For example, simple

isotope-coded affinity tag (ICAT)-based approaches (33, 91)
that pinpoint cysteinyl residues within complex (impure)
protein samples are based on splitting a protein sample
and labeling half with a light sulfhydryl-reactive ICAT re-
agent and the other half with a heavy, stable isotope-labeled
sulfhydryl-reactive ICAT reagent, mixing, proteolytically
digesting, and then analyzing by mass spectrometry. This

Table 2. Functional Classes That Can Be Conjugated to One Or More

of the Thiol-Reactive Reagents in Table 1

Conjugatea Application/utility Example Equipment required

Visible spectrum
absorbance probes
(42, 54)

Quantification of
sulfhydryls

Ellman’s reagent (5,5¢-dithiobis-
(2-nitrobenzoic acid)

Spectrophotometer

Fluorescent probes (42,
54)

Study of protein structures
and interactions;
quantification of
sulfhydryls

Rhodamine Red� C2-maleimide Fluorimeter, fluorescence
imager

Biotin (1, 42) Isolation, identification,
and quantification of
free sulfhydryl-
containing proteins

N-[6-(Biotinamido)hexyl]-3’-
(2’-pyridyldithio)propionamide

Western blot tools or mass
spectrometer

ICAT (42), ECAT (42)
and isobaric tandem
mass tags (1)

Relative quantification of
sulfhydryl-containing
proteins in complex
biological samples

ECAT: (S)-2-(4-(2-
bromoacetamido)benzyl)-
DOTA lanthanide metal chelate

Mass spectrometer,
generally LC-MS

Solid-phase materials
(36, 43)

Sulfhydryl-based affinity
capture/affinity
chromatography

Functionalized silica, dextran,
sepharose, metals

Application-specific:
spectrophotometer and
Western blot tools are
most common

aReferences provide additional information, including lists of numerous commercially available reagents (1, 54) and example protocols (42).
ICAT, isotope-coded affinity tag.

Table 1. Major Classes of Mono-Functional Thiol-Reactive Reagents

Major class of thiol
blocking reagent Examples Positive attributes Negative attributes

Haloacetamide/
haloacetate/
haloalkyls

Iodoacetamide, iodoacetate,
and variable-length iodo-
and bromo-alkyl chains

Highly reactive; results in
stable thioether product

Reacts with amines and other
nucleophiles if pH is too
high

Maleimide Maleimide, N-
ethylmaleimide

Very good thiol reactivity and
specificity at slightly acidic
pH

Suceptible to thiol exchange
or ring hydrolysis/opening
(2, 63, 90)

Disulfide Cystine, cystamine,
glutathione, Ellman’s
reagent (not used for
conjugation), 2,2¢-dipyridyl
disulfide

Reversible, high reaction
specificity

Susceptible to disulfide
exchange; should keep
acidic pH

Thiosulfonate Methyl methanethiosulfonate
(MMTS)

Reversible, fast reaction rate,
high reaction specificity

Susceptible to disulfide
exchange; should keep
acidic pH

Metals Mercury, gold Can be used to simply block
thiols or to create quantum
dots, gold nanoparticles,
self-assembled monolayers,
and other immobilization
applications

Hg is highly toxic; Au-S
bonds subject to
displacement or oxidative
disruption

Others Vinyl sulfones, acryloyls,
halobenzenes, aziridenes

Useful in specific niche
applications

Reactions can be slow, and
specificity can be highly
pH dependent
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results in readily identifiable pairs of mass spectral peaks in
single-stage mass spectra that are separated by the mass
difference between the light and heavy ICAT tags. Mass
mapping and, if necessary, analysis of the tagged peptides by
tandem mass spectrometry (MS/MS) can reveal the identity
of the labeled cysteine residue(s). (More complex ICAT-
based schemes for relative quantification are described next.)

If a protein is purified and investigators wish to skip di-
rectly to the identification of cysteine residues without the
need to first pinpoint them, a cyanylation/cleavage strategy
may be found useful: As studied in depth by the Watson
group, cyanylation of cysteinyl residues (51, 109) followed
by a reaction with ammonia (110, 111) or (more efficiently)
with other primary amines (27) facilitates proteolytic cleav-
age N-terminal to cysteine residues. Subsequent analysis by
mass spectrometry and mass mapping readily reveals the loci
of cysteinyl residues in the original protein.

Alternatively, after proteolysis, protein cysteinyl resi-
dues labeled with 4-dimethylaminophenylazophenyl-4¢-
maleimide can be tracked by their absorbance in the visible
spectrum. This readily facilitates the isolation of cysteine-
containing peptides by high-performance liquid chromatog-
raphy (HPLC). If this is insufficient, subsequent analysis of
labeled peptides by matrix-assisted laser desorption ioniza-
tion (MALDI)-MS produces a unique in-source decay-based
signature pattern in single-stage mass spectra, which, in
combination with mass mapping, readily reveals what cys-
teine residues existed in the free thiol form in the original
intact protein (12). This approach has been applied to tyrosine
hydroxylase, the rate-limiting enzyme in dopamine synthesis,
to investigate the susceptibility of particular cysteine residues
to modification by S-glutathionylation (10).

Quantification of Reduced Cysteine Residues

Given the number of molecular probes that are available
today (Tables 1 and 2), there are dozens, if not hundreds, of
possible approaches to sulfhydryl quantification. Broadly
speaking, this may be accomplished on either absolute or
relative terms. Some of the most widely applicable ap-
proaches that are likely to be employed well into the future
are described next.

Absolute quantification

The most common approach to absolute molar quantifi-
cation of total in-solution protein sulfhydryls involves a re-
action with Ellman’s reagent [5,5¢-dithiobis-(2-nitrobenzoic
acid) or DTNB] (24). The utility of DTNB is derived from the
red-shifted absorbance spectrum of the free 2-nitro-5-thio-
benzoic acid (TNB) species that is released on a reaction of
DTNB with protein thiols. At pH 8.0, TNB facilitates rapid
spectrophotometric quantification without the removal of
residual DTNB, provided measurements from proper nega-
tive control sample(s) are subtracted out (34). Such use of
controls is important, because the molar absorptivity of TNB
at 412 nm (which is around 14,000 M - 1 cm - 1) can vary not
only with pH, but with salt and denaturant concentration as
well (85). Selecting the appropriate control(s) is highly de-
pendent on experimental context, but they should match the
samples in as many biophysical aspects as possible without
introducing additional sulfhydryl groups. Preisolation of
protein away from sulfhydryl-containing small molecules

(such as cysteine or glutathione) is generally required before
protein-specific sulfhydryl quantification with DTNB.

Relative quantification

Relative quantification of protein thiols requires at least
two different samples or conditions—for example, a ‘‘before-
and-after’’ or a ‘‘with-and-without x treatment’’ set of
samples—and consists of parallel processing and analysis
followed by calculating the ratio of the analytical signal
measured for each sample individually. In most experiments,
changes over multiple orders of magnitude do not occur and
the assumption is appropriately made that instrument re-
sponse remains linear over the range of concentrations en-
countered. Thus, calibration curves are frequently not
employed.

There are several different classes of thiol-specific reagent
conjugates (with dozens of examples each) that may be em-
ployed for relative quantification of sulfhydryls (Table 2).
These are based on unique physical separation and/or de-
tection properties. Relative quantification can be carried out
on a whole sample #1 versus whole sample #2 basis (e.g., for
a comparison of total thiol-specific probe incorporation).
This approach has been used to show that protein thiols
represent a larger active redox pool than glutathione—
implying a role for protein thiols as a defense against cellular
oxidative stress (37). On the other hand, if there are specific
target proteins of interest, comparisons may be made on a
specific-protein(s)-in-sample #1 versus specific-protein(s)-
in-sample #2 basis (44, 59). In this case, in addition to means
for detection or separation based on the thiol-specific probe,
some form of protein separation is also necessary. Two-
dimensional gels are frequently employed for this purpose,
where it is possible to quantify the relative abundance of
sulfhydryls within specific proteins in at least two samples at
a time using difference gel electrophoresis (DIGE) (62) or
related techniques. This general approach has proved useful
for generating a comprehensive view of the changes to all
cellular proteins in response to oxidative insults (44, 59).
Though it is a powerful technique for global protein relative
quantification, two-dimensional DIGE is limited with regard
to throughput and the analysis of proteins at the extremes of
molecular weight, isoelectric point, solubility, and copy
number.

If protein site-specific quantification of thiols relative to
their reversible oxidation product(s) is desired, oxidation-
based isotope-coded affinity tag (OxICAT)-based approaches
(58, 89) [derived from the ICAT technique (33)] may be
found useful (Fig. 2). For example, one of the original ap-
plications of OxICAT was to help identify a specific group of
redox-regulated proteins that protect Escherichia coli under
conditions of oxidative stress (58). In general, OxICAT en-
ables the detection of most reversible oxidative thiol modi-
fications (Fig. 3), but if specificity toward certain oxidative
modifications is desired, tris(2-carboxyethyl)phosphine
(TCEP) can be substituted with a modification-specific re-
ducing agent, such as ascorbate, arsenite, glutaredoxin, or
hydroxylamine [reviewed elsewhere (71)]. As reviewed and
diagramed by Murray and Van Eyk (71), these highly tar-
geted approaches are beginning to be employed in a variety of
in vivo applications vis-à-vis the popular and highly flexible
‘‘biotin switch’’ technique (52, 53) (Fig. 4).

OXIDATIVE PROTEIN FOLDING TECHNIQUES 515



Monitoring Protein Thiols During Oxidative
Protein Folding

Reduced proteins undergo spontaneous oxidative folding
in vitro. Under the appropriate buffer conditions, this process
results in formation of the correct disulfide bond structure and
restoration of protein activity (5, 35, 102, 103). Though not
necessarily representative of the enzyme-mediated in vivo
folding process (Fig. 1a, b), observation of the spontaneous
in vitro oxidative protein folding process can lend insights
into the structure(s) of folding intermediates, which, in turn,
may be able to shed light on the molecular etiology of
diseases in which protein misfolding is involved such as
Alzheimer’s, Huntington’s, Creutzfeldt-Jakob’s, and Par-
kinson’s.

The experimental process generally starts with a reduction
of prepurified protein and subsequent purification away from
reducing reagent. This can be accomplished through the use
of column chromatography (5), protein precipitation, and

subsequent dialysis (97), or (more rapidly) using spin filters
(84). Conceptually, oxidative protein folding can then be
monitored by tagging sulfhydryls at specific time points with
a reagent that facilitates their quantification relative to
maximum and minimum signal boundaries defined by par-
allel samples of completely reduced and completely oxi-
dized protein, respectively. Key to such experiments is the
ability to take a molecular ‘‘snapshot’’ of the folding pro-
cess. This entails a rapid reaction of free cysteine residues
with a reagent that renders them unable to participate further
in the folding process. Such ‘‘capping’’ reactions should
take place on a timescale that is negligible with regard to the
protein folding process of interest. Depending on the nature
of the particular experiment, this timescale may be in the
order of either milliseconds or minutes. Cysteinyl tagging as
a means of monitoring the protein folding process was
briefly discussed in a review by Konermann and Simmons in
2003 (57). As they point out, millisecond time-scale label-
ing can be accomplished with reagents such as methyl

FIG. 2. Protein site-specific
relative quantification of sulfhy-
dryls using the OxICAT tech-
nique. In general, the ICAT
reagent consists of a thiol-reactive
probe (typically iodoacetamide—
though conceptually any of the
thiol probes in Table 1 could be
utilized), a light or heavy labeled
linker, and a biotin group for
affinity purification (33, 91).
OxICAT may be employed for (a)
within-sample determination of
site-specific sulfhydryl status rela-
tive to a reversible cysteine modi-
fication or, in modified form, for
(b) relative quantification of the
degree to which specific cysteine
residues are modified after oxida-
tive treatment. Only one sulfhydryl
group per protein is shown for the
sake of simplicity; in practice, ad-
ditional sulfhydryl groups would
generate tryptic fragments with
distinct masses, and each protein
sulfhydryl group would be ana-
lyzed independently by the mass
spectrometer. Information about
modification of multiple cysteines
within a single protein molecule
can only be derived from analysis
of the intact protein in a separate
experiment. OxICAT, oxidation-
based isotope-coded affinity tag.
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methanethiosulfonate (MMTS) and DTNB, followed by
spectrophotometric measurements that assess the degree of
labeling (34).

However, such fast reactivity is not always needed, and in
many cases, traditional alkylating reagents may be used when
folding is not mediated by enzymes—provided the pH is
optimized for rapid reactivity while maintaining sulfhydryl
specificity. This approach has been illustrated by the early
studies of Anfinsen and colleagues (5, 6, 35, 103) and by
others more recently (55, 83, 84). The option to employ tra-
ditional alkylating reagents provides greater flexibility in
experimental design and has been taken advantage of in
several studies of oxidative protein folding where mass
spectrometric analysis of tagged, intact proteins has served as
the final analytical modality (55, 83, 84). The advantage of a
mass spectrometry-based analytical approach is that it pro-
vides the precise fractional distribution of protein molecules
with 0, 2, 4, 6.n free cysteine residues and, hence, detailed

kinetic information on these particular subclasses of oxida-
tive folding intermediates (Fig. 5)—enabling researchers to
determine the rates at which folding states with discrete
numbers of disulfide bonds appear and disappear. If desired,
this detailed data set can then be processed to provide ag-
gregate-type folding kinetics data such as ‘‘Percent Folded’’
(as might be obtained with spectrophotometry-based meth-
ods) and ‘‘Percent in the Fully Folded State’’ (as might
be obtained with activity-based measurements of folding)
(Fig. 5).

Besides direct sulfhydryl-labeling techniques, there are a
couple of indirect methods by which to monitor the overall
progress of oxidative protein folding in vitro. One of the
oldest of such approaches relies on measuring protein activity
as a surrogate of completely folded protein. (Naturally, this
approach only works for proteins that possess some function
which can be monitored.) This was one of the major ap-
proaches adopted by Anfinsen and colleagues back in the

FIG. 3. Biologically encountered cysteine modifications. Numbers adjacent to sulfur atoms indicate oxidation state.
Reversibility status refers to general dynamic reversibility under biological conditions (regardless of whether the modifi-
cation can be reduced in vitro). The difference between a structural disulfide bond and an allosteric disulfide bond lies in its
redox potential and whether or not it is below (out of reach of) the redox potentials of biologically relevant oxidoreductases
(20, 107). Notably, all common chemical reducing reagents readily reduce both allosteric and structural disulfides. *The
generation of cysteine sulfinic acid is enzymatically reversible in at least some cases (105, 106).
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1960s in their seminal work on the oxidative protein folding
of Ribonuclease A (6, 35, 103), but it can still be useful even
when modern techniques and instrumentation are available to
help reveal the order in which disulfide bonds form (97).

A second common indirect approach involves halting the
oxidative protein folding process by quenching with acid [or
rapid alkylator (50)], then profiling the qualitatively distinct,
partially folded intermediates by reversed-phase-HPLC (14,
15, 26, 75, 97). Since most oxidative folding intermediates
can be separated by HPLC, the process can be monitored as
chromatograms transition from a single peak representing the
fully reduced protein into a myriad of other peaks and then
(ideally) into a final peak representative of the fully folded
protein into which all of the partially folded forms eventually

coalesce. At any point during the folding process, individual
folding intermediates may be isolated by HPLC with fraction
collection and, subsequently, characterized (e.g., by MS and
MS/MS) to ascertain which disulfide bonds formed first (97).
After identification, it may be of interest to quantitatively
track one or more intermediates by HPLC in subsequent
experiments to gain a better understanding of their role in the
oxidative protein folding process. This approach has been
employed to demonstrate major differences in folding path-
ways for proteins that are structurally homologous with re-
gard to cysteine content (15). Others have extended research
in this arena by using this approach to show that amino-acid
sequence rather than cysteine pattern determines the in vitro
folding mechanisms (of at least conotoxins) (26).

Of related interest, Happersberger et al. in 1998 developed
a method to monitor protein folding in which arsonous acid
derivatives were employed to trap (lock in place) spatially
neighboring but disconnected cysteine residues (38). This
permitted mass spectrometry-based structural characteriza-
tion of unique but merely transient protein conformations. In
turn, they employed the technique to elucidate the folding
pathway of recombinant human macrophage-colony stimu-
lating-factor b (39).

Several years later, Welker et al. developed the use of
reductive pulses of 5–10 mM dithiothreitol (DTT) for 0.5–
2 min to reduce only those structured intermediates whose
disulfide bonds were exposed to solvent; intermediates with
buried disulfide bonds were not reduced (Fig. 6). The tech-
nique was found to be useful in the characterization of oxi-
dative folding pathways (101).

It should be noted that in some cases the in vitro folding
process may end with a mixture of native and disulfide-
scrambled fully oxidized protein molecules. At this point,
neither labeling techniques nor HPLC alone can identify the
properly folded protein structure. In 2008, Narayan et al.
(72) reported a technique based on the combination of a
2-min reductive pulse with DTT to reduce ‘‘.disulfide
bonds not protected by stable, three-dimensional structure’’
(Fig. 6), with analysis by high-resolution mass spectrometry
to detect the remaining fully folded (and, therefore, properly
disulfide bonded) protein molecules. The robust technique
was demonstrated with a mixture of seven different proteins
(72).

In vivo, under enhanced cellular oxidative stress, the oxi-
dative protein folding process may result in the formation of
abnormal interprotein disulfide bonds. These are most readily
identified using diagonal electrophoresis or redox gels (22,
92) in which proteins are separated under nonreducing con-
ditions, then reduced, and separated along a second dimen-
sion. Proteins that do not form intermolecular disulfides run
at the same molecular weight in both dimensions, resulting in
their deposition along a diagonal. Off-diagonal proteins
should have experienced a significant change in molecular
weight after reduction and, by virtue of being off the diago-
nal, are readily pinpointed. Coupled with modern proteomics
techniques for protein identification, this represents a pow-
erful approach to solve the otherwise nearly intractable
problem of identifying novel disulfide-based protein hetero-
dimers. Among other applications, this technique has been
applied to mammalian neurons (22) and cardiac myocytes
(13) to ascertain the widespread effects of intracellular oxi-
dative stress in disease.

FIG. 4. Generic biotin switch-based strategy (52, 53)
for the analysis of selectively reversible cysteine modifi-
cations. Besides facilitating detection, this approach may be
combined with the ICAT strategy for relative quantification
of reversible protein thiol modifications (108, 121). -NO,
nitrosylation; -OH, sulfenylation; -SG, glutathionylation;
S-Palm, palmitoylation; ICAT, isotope coded affinity tag.
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Sources of Error in the Analysis of Protein
Thiols and Related Modifications

The conclusions drawn from most experiments that em-
ploy techniques for tracking the status of cysteine residues in
proteins are based on the assumed specificity, completeness,
and/or (in some cases) irreversibility of sulfhydryl reactivity
with particular reagents. Under certain circumstances, these
underlying assumptions may become invalid. As such, it is
important for researchers to be aware of such situations and
either avoid them or verify that they do not affect their in-
vestigations.

Lack of labeling specificity
(over-labeling/nonspecific labeling)

Most alkylating reagents that react with sulfhydryl groups
may also react with other protein nucleophiles (such as

primary amino groups) at an appreciable rate if the pH of
the reaction solution approaches the pKa of the nucleophile
in question (42). Experiments, for example in which a
bi-functional sulfhydryl probe is employed to label sulfhydryl-
containing protein(s) followed by spectroscopic or antibody-
based detection, are particularly susceptible to a potentially
false assumption of labeling specificity. Control experiments
(e.g., with sulfhydryl-free proteins or proteins with sulfhydryls
blocked with a dissimilar reagent or proteins containing known
numbers of free cysteine residues) and/or verification by mass
spectrometry (if feasible) are vital to ensuring the integrity of
such experiments.

Incomplete labeling

Similar to ‘‘over-labeling’’ or ‘‘non-specific labeling,’’
under-labeling of cysteinyl residues may lead to false
conclusions in the interpretation of experimental results.

FIG. 5. Oxidative protein folding monitored by mass spectrometric analysis of intact protein. In vitro protein folding
monitored via sulfhydryl alkylation with maleimide at pH 5 and analysis of the intact protein (ribonuclease A) by electrospray
ionization-mass spectrometry (a). Charge deconvoluted mass spectral peak areas were used to calculate the relative quantities
of protein in each oxidative folding state over time (b). Percent of total folding progress (such as might be reported with a
chromo- or fluorophoric probe) as well as the proportion of protein in the fully folded state (c) were calculated in an analogous
manner as described elsewhere [(84), data from oxygen atmosphere folding experiment; Fig. 3 of indicated reference]. Percent
of total folding progress subtracts from 100% any remaining protein sulfhydryls without distinction between different folding
states. (In this case, however, since we directly measured the relative abundance of individual folding states, partially folded
states were weighted in proportion to the remaining number of sulfhydryl groups within them. This weighted value was then
subtracted from 100%.) Percent of total folding progress is an arbitrary form of measurement that is not molecularly specific. It
is often used because spectrophotometric approaches to measuring protein folding cannot quantify individual protein states and
read the sample as an aggregate. Percent of protein in the fully folded state is generally not equal to the former measurement
due to the existence of partially folded intermediates that represent a form of ‘‘folding progress.’’
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False-negative conclusions are most easily envisioned under
such circumstances, but these conclusions may be inverted or
amplified depending on experimental design. For example,
under-labeling during oxidative protein folding experiments
(in which an alkylating reagent is employed to tag and
‘‘count’’ remaining sulfhydryl groups) may be misinterpreted
as an increased state of folding. Otherwise, in more compli-
cated interpretation schemes such as the negative signature
mass algorithm developed by the Watson group for elucidation
of protein disulfide bond structures (80) (described next), un-
der-labeling may result in ruling out a correct conclusion and
ending up with no valid conclusion whatsoever. In such cases,
additional steps may be required to validate and ensure com-
prehensive labeling of cysteinyl residues (11).

Label reversibility

Incorrectly assuming label irreversibility can lead to pit-
falls similar to those of incomplete labeling. Two situations,
in particular, warrant mention. First, disulfide bonds gener-

ated by labeling reactions are susceptible to disulfide ex-
change or inadvertent reduction. As such, experimental
workflows involving such labeling reactions should involve
subsequent acidification (to prevent formation of reactive
thiolate anions) and extreme precaution (coupled with veri-
fication) to prevent reduction and/or disulfide exchange.
When acidification is not an option, it is generally necessary
to remove all traces of residual reducing reagent as well as all
sample thiols; in many cases, this may entail excess addition
of a nondisulfide-based alkylating reagent. Second, and less
well known, is the fact that protein-maleimide bonds may
be susceptible to hydrolysis or exchange—particularly in
biological environments (2, 63, 90). Shen et al. (90) have
shown that maleimide ring opening via hydrolysis results in
ring-opened adducts with greater stability. If the label has a
specific binding affinity (e.g., biotin) or spectral properties,
purification of the labeled protein by affinity column, gel
electrophoresis, spin column, or HPLC can be used to verify
label retention. If necessary, mass spectrometry can be used
to verify the retention of nearly any label.

FIG. 6. Reductive pulses to
facilitate correct oxidative
protein folding, monitored
by HPLC. As described by
Scheraga and colleagues (72,
101), reductive pulses of di-
thiothreitol can be employed
to eliminate improperly folded
intermediates and fully folded
non-native (incorrect) struc-
tures, enabling them to refold
in the correct manner. I, prop-
erly folded intermediate; II,
improperly folded intermedi-
ate; N, native, properly folded
form; NN, non-native fully
folded form; R, fully reduced
form. Chromatograms adapted
with permission from Welker
et al. (101). Copyright 2004
American Chemical Society.
HPLC, high-performance liq-
uid chromatography.
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Sulfhydryl instability

Protein sulfhydryl groups are not intrinsically stable
ex vivo in the presence of oxygen. The same chemical prin-
ciples that mediate protein folding in vitro (4, 5, 35, 102, 103)
also facilitate in-solution dimerization of single cysteine-
containing peptides (84) and, in some cases, protein poly-
merization due to spontaneous intermolecular disulfide bond
formation when the concentration of protein is too high (6).
Such disulfide bond formation is an oxidation reaction: Two
thiols do not spontaneously react with one another in the
absence of an oxidizing reagent that, ultimately, receives the
lost electrons. In vitro, the oxidizing reagent is oxygen, and
the oxidized thiol intermediate is Cys-SOH (84).

The implications of this are primarily twofold. First, ex-
periments carried out on sulfhydryl-containing proteins
in vitro should be carried out on ‘‘fresh’’ samples—not on
samples that have been stored in solution for prolonged pe-
riods of time without particular attention paid to their redox
status. Thus, for example, when DTNB is employed to
quantify sulfhydryls, absorbance should be read without de-
lay, as TNB can re-oxidize to DTNB when exposed to air.
Second, in vitro experiments designed to elucidate proteins
that are biologically modified by Cys-SOH should be carried
out with great caution to avoid false-positive findings, as
every sulfhydryl group is likely to be susceptible to this form
of artifactual Cys-SOH formation—including simple, free-
cysteine containing peptides (84). Sample processing in an
oxygen-free glove box, exclusion of metals and/or addition of
chelators, or, if possible, the addition of excess ‘‘sacrificial’’
sulfur-containing compounds can help investigators avoid
such artifactual sulfhydryl oxidation.

Techniques for Elucidating Protein Disulfide Structures

The techniques covered up to this point are largely de-
signed to interrogate whether protein cysteine residues exist
in the free thiol form, disulfide-bound (cystinyl) form, or in
what ratios (reduced vs. oxidized) redox-regulated proteins
exist under different conditions. It has been recognized for
decades that the activity of proteins which contain multiple
disulfide bridges depends not only on the formation of dis-
ulfides, but also on the correct bridging pattern or ‘‘disulfide
structure’’ (35). Hence, the determination of disulfide bond
structure is as integral to understanding protein structure-
function relationships as is the knowledge of amino-acid
sequence (the latter generally being required for elucidation
of the former).

Most of the modern techniques for solving protein disulfide
structures involve techniques such as mass spectrometry,
NMR, or X-ray crystallography that require advanced ana-
lytical instrumentation. Besides the general requirement for
significantly greater quantities of purified protein, NMR and
crystallographic approaches are generally employed for the
purpose of gaining structural information well beyond that of
disulfide structure alone—that is, disulfide structures are often
a ‘‘bonus feature’’ of NMR or crystallographic datasets. As
such, this review will focus on mass spectrometric approaches
that enable the targeted determination of disulfide structures
with limited quantities of protein which would generally
contra-indicate the use of NMR or crystallography.

Broadly speaking, there are two general sample prepara-
tion approaches in which mass spectrometry may be em-

ployed to elucidate protein disulfide bond structures: the
‘‘Direct’’ approach in which disulfide linkages are kept intact
and analyzed directly (such as outlined in Fig. 7), and ‘‘In-
direct’’ partial reduction-based strategies in which disulfide
linkages are logically deduced based on the interpretation of
mass spectral data through the lens of sample preparation.
The former was the only mainstream approach available till
the early 1990s when partial reduction-based strategies came
online and offered an attractive alternative. Since the mid-
2000s, however, the Direct approach has received renewed
interest and research focus vis-à-vis its coupling with MS/MS
and novel data mining algorithms. For most investigators, the
decision of which technique(s) to use often comes down to
practical matters involving target protein characteristics and
available instrumentation.

Irrespective of which general approach is taken, the care
and precise manner in which samples are prepared are criti-
cally important to an investigator’s ability to glean valid,
useful information. The need for such care and precaution
begins even before formal steps to elucidate disulfide struc-
tures: During all preliminary protein purification steps, for
example, it is important to minimize opportunities for dis-
ulfide scrambling by maintaining a buffer pH that is at least
slightly acidic. This minimizes the formation of thiolate an-
ions on cysteinyl residues that may potentially displace a
half-cystine in an existing disulfide bond. In many cases, it
may be useful to block cysteine residues with an alkylating
reagent as the first analytical step (120). Thorough protein
isolation before analysis and, when necessary, the use of
proteases that are immobilized will also help minimize am-
biguous or difficult-to-interpret results due to proteinaceous
contaminants. Notably, both the Direct and Indirect ap-
proaches require foreknowledge of the protein sequence and
the total number of disulfide bonds; the latter can be deter-
mined using techniques described earlier.

The Direct Approach

The classic, commonly employed Direct approach to the
determination of protein disulfide structures (Fig. 7) is ex-
plained in complete detail by Tang and Speicher (94). In
modern terms, the procedure consists of (i) proteolytic cleav-
age; (ii) separation of the resulting peptides by HPLC before
and after sample reduction to facilitate the pinpointing of dis-
ulfide-containing peptides on the basis of chromatographic
peak shifts; (iii) single-stage mass spectral mass mapping
analysis and identification of the peptides represented by HPLC
peaks of interest; and (iv) further peptide isolation, partial re-
duction, and iterative sample processing as needed to map all
the disulfide bonds within the original protein structure.

As illustrated in Figure 7, the ideal scenario after prote-
olysis is one in which all peptides joined by a disulfide bond
contain just a single cystine. If these polypeptides can be
accurately mass mapped (i.e., identified by virtue of highly
accurate mass measurements) and their identities confirmed
by Edman sequencing or MS/MS (or MSn—i.e., MS/MS/MS
or more), disulfide connectivity is obvious and no additional
work is necessary. If, on the other hand, there is more than
one cystine and the protein backbone cannot be cleaved be-
tween critical cysteine residues, additional iterative work-
flow(s) become necessary. In unmodified form, 10–50 nmol
of purified protein are recommended and likely to be required
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for use with this approach (94). Modifications that scale down
the chromatography, couple it with mass spectrometry and
eliminate Edman sequencing, however, can significantly
decrease these sample requirements.

Unambiguously pinpointing and then identifying{ chro-
matographic peaks (or mass spectral ions) representative of
intra- or inter-chain disulfide-linked peptides (without
necessarily identifying disulfide connectivities in cases
where more than one cystine is present) is the first major
challenge in all workflows that seek Direct identification
and connectivity assignment of disulfide linkages. De-
pending on proteolytic cleavage patterns and the resulting
linkage types encountered (Fig. 8), the identification of
disulfide-linked peptides may comprise well more than half
of the information required to elucidate a complete disulfide
structure. Indeed, complete disulfide structures may be

solved in one pass if all of the identified intra- and inter-
chain peptides contain only a single disulfide bond—making
cleavage between all cysteine/cystine residues a major goal
of proteolysis in the Direct approach. Thus, both bench-
based and MSn/informatics-driven approaches have been
developed to meet the challenge of disulfide-bridged pep-
tide identification.

Unique bench chemistry-focused approaches
to pinpointing and identifying disulfide-linked peptides

In 2001, Wallis et al. (98) described a clever technical
maneuver involving proteolysis in 50% H2

18O to facilitate
the pinpointing and, therefore, eventual identification and
connectivity mapping of proteolytic fragments containing
inter-chain disulfide bonds. The technique results in unique
isotopic signatures in single-stage (i.e., ‘‘full scan’’/non-MS/
MS) mass spectra and obviates the need for analysis by HPLC
before and after reduction to facilitate the pinpointing of
disulfide-linked peptides. The approach has been reviewed in
detail elsewhere (30).

In 2009, Pompach et al. (78) reported that the inclusion of
200 lM cystamine during initial protein purification and

FIG. 7. The Direct ap-
proach to solving disulfide
bond structures. Adapted
with permission from Tang
and Speicher (94).

{As used in this section, the term ‘‘pinpointing’’ refers merely to
obtaining knowledge that a chromatographic or mass spectral signal
represents an intra- or interchain disulfide-linked peptide; ‘‘pin-
pointing’’ does not provide any information on peptide identity. The
term ‘‘identifying’’ refers to the ascertainment of the intra- or in-
terchain peptide sequence(s), but it does not provide a disulfide
connectivity pattern if more than one cystine is present.
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during proteolytic digestion facilitated digestion at normal,
slightly alkaline pH without disulfide bond scrambling—
making it easier, in general, to achieve all-important cleavage
of the protein backbone between as many cysteine residues as
possible. HPLC-based separation of the resulting peptides
was carried out in line with ultra-high resolution/high mass
accuracy Fourier transform mass spectrometry and semi-
automated data analysis using the Automated Spectrum As-
signment Program (119) to generate a library of single-chain
and disulfide cross-linked peptides. The approach was uti-
lized to successfully characterize the disulfide structures of
hen egg lysozyme, human CD69, mouse leukocyte receptor
NKR-P1A, and b-N-acetylhexosaminidases from Aspergillus
oryzae and Penicillium oxalicum. Only several micrograms
of each protein were required under this approach. It was
noted, of course, that if proteolytic cleavage was not suffi-
cient between cysteine residues (as evidenced by a lack of
protease-specific cleavage sites or simply the inability to
assign all disulfide linkages), then accurate mass measure-
ment alone would not suffice the complete assignment of all
disulfide bonds and the implementation of additional work-
flow(s) would become necessary.

Building on their own earlier work, Huang et al. (47) re-
cently published a novel technique in which protease-derived
peptides are dimethylated to significantly enhance a1 ion for-
mation during mass spectral collision-induced dissociation
(CID){. After one-pot sample preparation, low microgram

quantities of sample are analyzed by LC-MS/MS, during
which inter-chain disulfide-containing peptides are readily
pinpointed when two abundant a1 ions are observed in an MS2

spectrum. Identification of the linked peptides is then provided
by (i) the mass of the precursor ion, (ii) the identities of the
amino acids at the N-termini (given by the masses of the a1

ions), and (iii) the masses of additional b and y ions. To au-
tomate data interpretation using this custom technique, Huang
et al. developed an accompanying software package known as
RADAR that takes all of the peptide features mentioned earlier
into account, providing rapid disulfide connectivity informa-
tion for dipeptides linked by a single cystine. (As of October,
2013 a free trial of RADAR software may be accessed at
www.mass-solutions.com.tw/Index_Eng.aspx) The approach
was demonstrated on the monoclonal antibodies bevacizumab
(Avastin) and trastuzumab (Herceptin), with a note from the
authors that with the aid of multiple proteases the connectivity
of all bevacizumab disulfide bonds can be solved automati-
cally. As with most other Direct approaches, cleavage between
cysteine residues constitutes a key hurdle to deriving complete
solutions of disulfide connectivity.

Gas-phase fragmentation, MSn, and informatics-
focused approaches for identifying disulfide-linked
peptides

Besides creative bench-based chemistries, numerous un-
ique sample and time-saving mass spectrometric approaches
have been developed to facilitate the critical task of rapidly
pinpointing inter-chain disulfides. As described earlier, the
identification of such peptides is the first major hurdle in
Direct approaches to disulfide structure elucidation. Thus,
many MS-based techniques are now being complemented by
software algorithms that help pinpoint, identify, and even
map the connectivity of disulfide-linked peptide chains.
Offsetting the sample and time-saving advantages of these

FIG. 8. The 10 unique types of intra- and interchain disulfide bond structures that can be derived from a protein/
peptide with two cystines. The first generation represents intact proteins. Subsequent generations represent substructures
(denoted by lower case letters in boxes) that result when cleavage has taken place in the preceding generation at corre-
sponding capital letter sites—that is, capital letters (logically read as ‘‘OR’’ when present more than once within a single
structure) indicate cut positions which result in their lowercase counterpart structures. Single cystine-containing peptides
‘‘a’’ and ‘‘g’’ are the most desirable products in the Direct approach, because disulfide linkages can be assigned immediately
once they are identified. However, as illustrated, the production of single cystine-containing peptides requires thrice the
number of backbone cleavages when disulfide bonds overlap one another along the original protein/peptide.

{CID is a means of fragmenting gas-phase ions by which the ions
are accelerated into a region of the mass spectrometer containing an
inert gas. Here, they become vibrationally excited and, subse-
quently, decompose into fragments that can be analyzed in an
ensuing stage of mass spectrometry. a1 ions are generated by N-
terminal fragmentation of the first amino-acid residue where
cleavage occurs between the a-carbon and the carbonyl carbon.
Since the side chain is retained on the ion, its mass can (in most
cases) provide the identity of the N-terminal amino acid.
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techniques is the fact that proteases and follow-on gas-phase
approaches to fragmenting peptide ions often fail to break
apart polypeptides in ways which reveal desired information
on disulfide connectivities. Thus, as with all mass spec-
trometry-based methods for solving disulfide structures, there
is no routine way of ensuring the acquisition of complete data
sets in a single experiment that will provide all desired dis-
ulfide connectivities; as such, additional follow-up experi-
ments using complementary approaches are often necessary.

Matrix-assisted laser desorption ionization

Depending on experimental conditions employed, the laser
energy imparted to disulfide-linked polypeptides during
MALDI can lead to in-source cleavage of C-S and S-S bonds
(21, 76, 81, 122), generating triplet peak sets separated by 32
Da (the mass of a sulfur atom), which can be useful toward
pinpointing and eventually mapping disulfide bond connec-
tivities (21, 81, 88) (Fig. 9). [Notably, such triplets have also
been observed in high-energy CID of disulfide-linked pep-
tides (7).] The MALDI matrix employed plays a critical role
in generating the triplet pattern (21, 48, 76) and, if desired,
can be adjusted to suppress the pattern altogether (48).

Coupled with the right matrix and rapid mass analysis (i.e.,
Time-of-Flight), the MALDI phenomenon of in-source
decay-mediated disulfide scission of polypeptide chains into
two separate peptides enabled Schnaible et al. (88) to develop
an alternate but widely applicable pattern-based method for
the screening of disulfide bonded polypeptides in single-
stage MALDI mass spectra (Fig. 9). Subsequent LIFT-TOF/

TOF-MSx (a form of MS/MS) of the disulfide bonded pep-
tides facilitated confirmation and mapping of disulfide bond
connectivities. This technique represents an efficient com-
bination of in-source fragmentation and directed MSn for
disulfide structure determination.

Collision-induced dissociation

Low-energy CID (also known as collisionally activated
dissociation) of protonated gas phase peptides is currently the
most commonly employed form of biological MS/MS. It
routinely provides peptide backbone cleavage and, therefore,
sequence information in MSn spectra, but has a reputation for
not disrupting disulfide bonds in high abundance (67, 70, 123,
124). Notably, however, Clark et al. have found that double
backbone cleavages of disulfide-bonded, double-chain pep-
tides are common (but not predictable) under CID conditions
(19). In fortuitous cases, such cleavages may provide cystinyl
linkage patterns in multi-chain peptides containing more than
one disulfide bond—suggesting that such cleavages ought to
be considered in algorithms that seek to solve disulfide
structures based on MS/MS data (discussed next). For ex-
ample, cleavage at both ‘‘F’’ sites in the second-generation
‘‘b’’ structure (Fig. 8) instantly jumps the complexity down
two levels—that is, to the point of two fourth-generation ‘‘g’’
structures that readily provide information on disulfide con-
nectivity.

Electron capture dissociation and electron
transfer dissociation

Electron capture dissociation (ECD) and electron transfer
dissociation (ETD) involve the acquisition of a destabilizing
low-energy electron by a multiply protonated gas-phase

FIG. 9. MALDI-induced cleavage of
cystines can generate peak patterns in
single-stage (‘‘full scan’’) mass spectra
that readily pinpoint disulfide bridged
peptides. The matrix 2,5¢-dihydrox-
ybenzoic acid, high laser fluence, and
relatively long time spans before mass
analysis (microseconds or more) favor
generation of the peaks observed in the
upper spectrum (76, 81). The matrix a-
cyano-4-hydroxycinnamic acid, minimal
laser fluence, and rapid mass analysis
(e.g., time-of-flight) favor generation of
the peaks observed in the lower spectrum
(88). MALDI, matrix-assisted laser de-
sorption ionization.

xLIFT is not an acronym but it refers to the process of raising the
potential energy of product ions for acceleration after they have
been selected for MS/MS and fragmented (88, 93.)

524 BORGES AND SHERMA

http://online.liebertpub.com/action/showImage?doi=10.1089/ars.2013.5559&iName=master.img-009.jpg&w=312&h=288


polypeptide. Cleavage at disulfide linkages is the most com-
mon dissociation pathway for inter-chain disulfide-containing
peptide ions under both ECD (124) and ETD (17) conditions.
Such cleavages help pinpoint these important peptides.

In a new technique that illustrates the utility of this phe-
nomenon, Clark et al. (18) provide a way to take advantage of
it in a common-sense, highly efficient manner (Fig. 10): After
collection of LC-ETD-MS2 datasets from tryptic digests, they
plot the theoretically unmodified/unlinked, sequence-and-
cleavage-site predicted extracted ion chromatograms
(XICs)** for all cysteine-containing peptides in their target
protein. Since ETD causes cleavage between the sulfur atoms
of a disulfide bond, any two of these different XICs that
produce perfectly aligned HPLC retention times represent
candidate disulfide-linked peptide chains which were linked
together before ETD. To confirm a pairing, the summed
masses of the partners are verified to match with those of the
precursor ion for the MS2 spectrum. Assigned pairs are ad-
ditionally confirmed from CID fragmentation data collected
in a separate analysis. The authors demonstrate that special
cases such as multi-chain peptides and intra-chain disulfides
can be dealt with in relatively simple ways without the need
for additional experimentation. As demonstrated by its utility
in assigning the disulfide bond structure of a recombinant
monomer of the HIV envelope protein gp120, this insightful
data analysis technique represents an excellent starting point

(if not ending point as well) for ETD-based attempts to di-
rectly characterize protein disulfide structures.

ETD-mediated cleavage at disulfide linkages nicely com-
plements the tendency of CID to cause fragmentation along
the peptide backbone—as recognized and capitalized on
several years ago by Wu et al. (114), who combined ETD and
CID within the same instrument for in-line sequential mixed
MSn experiments in which one and then the other fragmen-
tation technique was employed to identify cystine-containing
peptides and map disulfide connectivities therein. The next
year, the same group followed up this initial study with the
multi-enzyme-mediated complete disulfide mapping of re-
combinant tissue plasminogen activator, which contains 17
cystines and an unpaired cysteine (113). After this feat, they
reported the disulfide structures of three monoclonal anti-
bodies, including the elucidation of scrambled disulfide
linkages (99). Most recently, they have used the technique to
map the disulfide structure of recombinant human Ar-
ylsulfatase A (73), a glycolipid metabolizing protein with a
cystine knot and a pair of nested disulfides. Obviously, this
constitutes a powerful approach, one that has been caught on
to by other groups as well (65, 66, 68, 74). Notably, Pike et al.
(77) have employed ECD MS2 and CID MS2 data of pro-
teolytically generated peptides to map seven out of nine
disulfide bonds in an engineered viral glycoprotein.

Algorithms and software for use
with the direct approach

A couple of algorithms for use with particular disulfide
mapping strategies have already been mentioned. Widely

FIG. 10. Clark et al.’s LC-ETD-MS2 XIC-based technique for assigning disulfide bond connectivities (18) in tryptic
peptides. Shown is a figure that illustrates the assignment of peptides with one disulfide bond. XICs are constructed to show
where peptide mass marker ions of cysteine-containing peptides elute. Co-eluting peptides are assigned as disulfide pairs
after further scrutiny, as described in the text. The inset shows an example mass spectrum of the peptides
GYSLGNWVCAAK and CK that were disulfide bonded and dissociated in ETD. Data from lysozyme are shown. Reprinted
with permission from Clark et al. (18). Copyright 2013 American Chemical Society. ETD, electron transfer dissociation;
XIC, extracted ion chromatograms.

**XICs are chromatograms consisting of continuous ion abun-
dance measurements from a single nominal mass. They are analo-
gous to chromatograms corresponding to a single wavelength from
an HPLC run monitored by a diode array detector.
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employed and readily available software tools designed to
help users sift through single-stage mass spectral data to
pinpoint and identify disulfide-linked peptides in-
clude GPMAW (www.gpmaw.com), PROWL’s Peptide-
Map (http://prowl.rockefeller.edu/prowl/peptidemap.html),
and Protein Prospector’s MS-Bridge (http://prospector
.ucsf.edu). Notably, most algorithms designed for use with
the Direct approach are largely focused on the identification
of inter-chain disulfide bonds; single-chain peptides with one
or more disulfides are readily identifiable by common mass
mapping approaches and, if they generate adequate sequence
information, can be found by most MS/MS search algorithms
such as Sequest and MASCOT.

Two additional, readily available search algorithms of note
that were specifically designed for identifying disulfide-
containing peptides include MassMatrix (115) and DBond
(16). Both of these algorithms are designed to search tandem
mass spectra from low-energy CID datasets for the presence
of intra- and inter-chain disulfide bonds. DBond reports
peptides with single cystines, and MassMatrix reports peptide
fragments with up to two cystines. DBond, however, takes
into account fragmentation patterns that are specific to dis-
ulfide bonds such as cysteine thioaldehyde ( - 2 Da), cysteine
persulfide ( + 32 Da), and dehydroalanine ( - 34 Da). Both
programs employ scoring models to assign confidence levels
to putative identifications. Neither algorithm, however, is

able to assign disulfide connectivities in cases where there is
more than one disulfide bond.

The recently introduced algorithm DisConnect (9) takes a
major step forward by automating the interpretation of MSn

data that can often carry information on disulfide connectivity
in peptides linked by more than one disulfide. This approach
promises access into some of the perceived advantages of CID-
based MS/MS for disulfide structure analysis that up until now
had been largely unrealized in practice—including minimal
sample requirements and the potential to eliminate iterative
bench-based sample preparation loops in the disulfide struc-
ture-solving process (Figs. 7 and 8).

Indirect, Partial Reduction-Based Strategies

As an alternative to the direct identification of intact dis-
ulfide linkages, partial reduction approaches seek to reduce a
single disulfide bond within a folded protein molecule, then
alkylate and identify the resulting tagged cysteine residues.
Partial reduction-based strategies to assign disulfide bond
linkages have existed for more than 30 years (25, 82). In-
troduction into the workflow of reducing reagents such as
TCEP (31) that are reactive at acidic pH—and hence prevent
disulfide exchange during reduction—were key to the further
development and widespread implementation of partial re-
duction-based approaches.

FIG. 11. The Wu and Watson (110)
partial reduction/cyanylation strategy
for solving disulfide bond structures.
Ideally, for a protein with n cystines, all
n unique singly reduced isoforms would
be produced and isolated by HPLC,
providing the complete disulfide struc-
ture. When this is not possible, the
negative signature mass algorithm (80)
(see text) may be employed to rule out
potential disulfide linkages. TCEP,
tris(2-carboxyethyl)phosphine; CDAP, 1-
cyano-4-dimethylaminopyridinium tetra-
fluoroborate; itz, iminothiazolidine group.
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In the mid-1990s, the Watson group coupled partial re-
duction strategies with the old discovery (51) that cyanylated
cysteine residues may be employed to induce site-specific
protein backbone cleavage immediately N-terminal to cys-
teine residues (110). This resulted in a routinized laboratory
workflow (Fig. 11) for the elucidation of oxidative protein
folding intermediates (100, 112, 117) and complex disulfide
structures (11, 79)—including proteins with adjacent cyste-
ine residues (116). Other strategically complementary partial
reduction strategies based on differential alkylation have also
been developed (29, 118). Notably, the technique developed
by Goransson and Craik (29) alkylates cysteine residues such
that they become tryptic cleavage sites.

Different proteins follow divergent pathways of partial
reduction, many of which are not ideally suited to provide
optimal information content under the partial reduction/
cyanylation approach (i.e., do not produce copious quantities
of all possible singly reduced protein isoforms that are readily
separable by HPLC). In addition, proteins with complex
disulfide structures generate numerous partially reduced,
often-inseparable isoforms and large quantities of mass
spectral data in need of interpretation. These problems gave
rise to the conceptual development and software-based im-
plementation of the ‘‘Negative Signature Mass Algorithm’’
for use with the partial reduction/cyanylation approach (80).
This approach operates on the principle of ruling out (rather
than ruling in) possible disulfide linkages based on the ob-
servations of specific cyanylation-induced cleavage products.
In short, the algorithm is driven by the fact that, given
complete cyanylation (11, 80), the internal cysteine residues
of cyanylation-induced cleavage products cannot logically be
connected to the cysteines at the peptide termini. Thus, in
Figure 11, for example, without fractionation of partially
reduced isomers, the observed itz71-150 fragment enables an
arrival at the conclusion that Cys71 and Cys 151 may (but not
necessarily) be connected to one another, but Cys71 cannot
be connected to Cys102 or Cys130—otherwise, there would
have been cleavage at the connected residue [or at least mass-
based evidence of side-chain b-elimination (110)]. The Ne-
gative Signature Mass Algorithm is compatible with all
stages of protein partial reduction as well as with the lack of
physical separation of partially reduced isoforms. Notably,
the study of Echterbille et al. (23) suggests that, in the future,
ion mobility mass spectrometry may serve as an alternate
technique to HPLC when it comes to separating the different
partially reduced isoforms of peptides and proteins. This
approach may already be feasible with top-down compatible
fragmentation strategies such as ECD and ETD.

Conclusions

The unique chemistry of cysteine side chains enables them
to serve as molecular handles for protein manipulation and
has facilitated the development of dozens of unique probes
and corresponding approaches to track cysteine residue status
within proteins. Given its continually increasing resolving
power and analytical sensitivity, mass spectrometry is em-
ployed to handle an increasing share of research effort on this
front. Nevertheless, as approaches to probing cysteine status
become more and more advanced, the fundamental concern
for labeling specificity, labeling completeness and potential
reversibility, and consideration of sulfhydryl instability in the

presence of oxygen should continue to be respected, as these
features often underpin assumptions that are generally taken
for granted when experimental results are interpreted.

As a related discipline, disulfide structure analysis is now
largely oriented toward direct mapping of intact disulfide
bonds using a bottom-up mass spectrometric approach in
combination with CID as well as other modern fragmentation
techniques such as ETD. The complex datasets generated from
such experiments require greater reliance on algorithms and
software-based tools for data interpretation. Thus, perhaps the
greatest hurdle to truly routinized workflows for disulfide
structure analysis lies in improving the reproducibility of
sample preparation and mass spectral datasets. Ultimately,
continued progress in this direction will mean a significantly
decreased need for iterative experimental workflows and,
therefore, faster resolution of complex disulfide structures to
meet the quality control demands of modern biological ther-
apeutics and other challenging cystinyl proteins.
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Abbreviations Used

CDAP¼ 1-cyano-4-dimethylaminopyridinium
tetrafluoroborate

CID¼ collision-induced dissociation
Cys-SOH¼ cysteine sulfenic acid

DIGE¼ difference gel electrophoresis
DTNB¼ 5,5¢-dithiobis-(2-nitrobenzoic acid)

DTT¼ dithiothreitol
ECD¼ electron capture dissociation

ER¼ endoplasmic reticulum
Ero1¼ER oxidoreductin 1
ETD¼ electron transfer dissociation

HPLC¼ high-performance liquid chromatography
ICAT¼ isotope-coded affinity tag

itz¼ iminothiazolidine group
MALDI¼matrix-assisted laser desorption ionization
MMTS¼methyl methanethiosulfonate
MS/MS¼ tandem mass spectrometry

MSn¼ tandem mass spectrometry with two
or more stages of fragmentation

OxICAT¼ oxidation-based isotope-coded affinity tag
PDI¼ protein disulfide isomerase

TCEP¼ tris(2-carboxyethyl)phosphine
TNB¼ 2-nitro-5-thiobenzoic acid
XIC¼ extracted ion chromatograms
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