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Abstract

Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ,80% of community-acquired
urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a
complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis
and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the
roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-
UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken
embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either
barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-a and IL-
6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either
barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and
negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the
virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may
control the long-term survival of UPEC in the urinary tract.
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Introduction

In humans and animals, pathogenic E. coli causes both intestinal

and extraintestinal infections [1]. Extraintestinal pathogenic E. coli

(ExPEC), which includes uropathogenic E. coli (UPEC) and avian

pathogenic E. coli, causes extraintestinal infections in different

hosts [2]. Of these, urinary tract infection (UTI) is considered to be

the most common bacterial infection in humans [3]. In healthy

individuals up to 90% of uncomplicated UTI is caused by UPEC

[4]. Recent studies have proposed that prophylactic treatment is

unsafe because it may cause antibiotic resistance [5]. UTI is most

often caused by ascending bacterial infection contaminating the

periurethral area from the lower intestinal tract, then colonizing

the bladder via the urethra causing cystitis and in severe cases,

further infecting the kidneys via the ureters resulting in

pyelonephritis [6]. A hallmark of UPEC infection which is distinct

from intestinal pathogenic E. coli is that UPEC has to invade the

urinary tract for establishing infection. Additionally, UPEC

isolates possess genes coding for various virulence factors like

adhesins (eg. type 1, P fimbriae), iron acquisition system (eg.

aerobactin, enterobactin), host immune evasion mechanisms (eg.

capsule) and toxins (eg. cytotoxic necrotizing factor 1, hemolysin)

[7,8].

UPEC’s ability to cause common and recurrent infections

strongly indicates the presence of virulence factors that facilitate

long-term residence or survival and inhabitation in the urinary

tract. A variety of virulence genes have been identified in

association with E. coli mediated urinary tract infections [9].

Several two-component regulatory systems have been involved in

the regulation of virulence. The two-component system (TCS) is a

major signaling pathway in bacteria that involve phosphotransfer-

ing [10]. TCS is widely present in bacteria and regulates gene

expressions or protein functions by responding to various

environmental signals or stimulations. BarA protein functions as

a conserved membrane-associated sensor kinase protein [11–13].

The cognate response regulator for BarA is UvrY in E. coli [14].

The orthologs of BarA-UvrY TCS in other gram negative c-

proteobacterial species are BarA-SirA in Salmonella enterica [15,16],
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VarS-VarA in Vibrio cholerae [17], GacS-GacA in Pseudomonas

species [18,19], respectively. E. coli utilizes TCS to respond to the

drastic changes in the extracellular environment. For example,

barA mutants showed sensitivity to oxidative stress due to

impairment in catalase expression [20,21]. Environmental mag-

nesium concentration was a potent stimulus for CsrR-CsrS TCS in

group A Streptococcus [22]; intestinal short-chain fatty acids and bile

alters gene expression and virulence mediated by the BarA-SirA

TCS in Salmonella [23,24]. In E. coli, BarA-UvrY TCS also

regulates the expression of non-coding regulatory CsrB and CsrC

RNA, which in turn controls the activity of CsrA protein [16,25–

28]. The CsrB and CsrC RNA bind to CsrA protein and prevent it

from binding to its target mRNA. CsrA has been elegantly shown

to regulate carbon metabolism, flagellar biosynthesis, and biofilm

formation [16,26–28].

Previous studies have shown that BarA-UvrY TCS regulates the

pathogenicity of avian pathogenic E. coli serotype O78:K80:H9 by

in vivo and in vitro experiments [29]. The disruptions of the BarA-

SirA in Salmonella enterica [16], VarS-VarA in Vibrio cholerae [17],

and GacS-GacA in Pseudomonas species [19] lead to remarkable

reduction in their virulence. However, the intimate association of

virulence and BarA-UvrY TCS in UPEC remains elusive.

Therefore, the aim of this study was to investigate the role of

the barA-uvrY genes in regulating virulence of UPEC CFT073. In

addition, we also discussed the potential role of csrA gene in

regulating the virulence of UPEC CFT073. Revealing of BarA-

UvrY TCS involved in regulating UPEC virulence will further

allow for a more detailed understanding of uropathogenesis of E.

coli.

Materials and Methods

Bacterial strains, plasmids, cells, and animals
Precise in-frame deletions of barA, uvrY and csrA genes in human

uropathogenic CFT073 strain were constructed by using l Red

recombination as described previously [30] using the primers listed

in Table 1. The bacterial strains, mutant strains and plasmids for

complementation of mutations are listed in Table 2. Primers for

amplification of uvrY knockout with chloramphenicol cassette,

amplification and cloning primers for barA and uvrY have been

described previously [29]. The human uroepithelial SV-HUC-1

and human kidney HK-2 epithelial cell lines were obtained from

the American Type Culture Collection (ATCC, Manassas,

Virginia). The SV-HUC-1 cell line was grown in complete growth

medium F-12K (Invitrogen Life Technologies, Carlsbad, CA)

containing 10% fetal bovine serum (Invitrogen). The HK-2 cells

were cultured in Keratinocyte serum free medium containing

0.05 mg/ml of bovine pituitary extract and 5 ng/ml of human

recombinant epidermal growth factor (Invitrogen). Six to eight

week old CBA/J mouse were purchased from National Cancer

Institute (Frederick, MD).

Ethics Statement
All research protocols involving animals were approved by the

Institutional Animal Care and Use Committee of University of

Maryland School of Medicine -Baltimore. The experiments were

carried out as recommended by the Guide for the Care and Use of

Laboratory animals and the animal protocol number is 0106005.

Ascending urinary tract infection in mouse model
Virulence of the mutants were determined by comparing the

urinary tract colonizing abilities of uropathogenic E. coli (UPEC)

CFT073 [wild-type (WT)], and its isogenic barA or uvrY mutant in

CBA/J mouse by establishing an ascending urinary tract infection

(UTI) as previously described [31]. Briefly, groups of 10 female

CBA/J mice were co-infected transurethrally either with mixture

of 56107 colony forming unit (CFU) of CFT073 WT and

56107 CFU of barA mutant or with mixture of 56107 CFU of

CFT073 WT and 56107 CFU of uvrY mutant. After 72 hr post-

infection, bacterial load was assessed from urine, bladder and

kidneys by plating onto LB plates with appropriate antibiotic.

Chicken embryo lethality assay
Virulence of the bacterial strains was further determined using

chicken embryo lethality assay as described previously [29].

Twelve 12-day-old specific-pathogen-free (SPF) chicken embryo-

nated eggs were inoculated with 56103 CFU of bacteria

suspended in 0.1 ml of phosphate buffered saline (PBS) through

the allantoic cavity. The bacterial strains inoculated were E. coli K-

12 DH5a (control), UPEC CFT073 WT, CFT073 barA mutant,

CFT073 uvrY mutant, CFT073 csrA mutant, CFT073 barA/p-barA

carrying pSM1, CFT073 uvrY/p-uvrY carrying pSM2 and CFT073

csrA/p-csrA carrying pSM7. The plasmids pSM1, pSM2 and

pSM7 are all in pBR322-pACYC origin low copy number plasmid

vectors to mimic single copy gene complementation. Bacterial

strains were grown under static condition in LB broth with

appropriate antibiotics for 48 hr at 37uC. Bacterial cells were

washed twice and resuspended in PBS. Bacterial suspensions

containing 0.1 ml of 56103 CFU were inoculated into the

allantoic cavity using an 18-gauge needle. Glue was used to reseal

the holes and the eggs were incubated at 37uC in egg incubator

(NatureForm, FL). At every 12 hr post challenge, eggs were

monitored by candling and reported as alive or dead based on the

integrity of the venous system and the activity of embryo

movement.

Attachment and invasion assays
Infections of human uroepithelial cell line SV-HUC-1 were

performed in ,70% confluence monolayer by growing cells in 6-

well plates at 37uC for 48 hr. Type 1 pilus formation was induced

by growing bacteria in LB media for 48 hr under static condition.

P pilus was induced by growing bacteria on tryptic soy agar

plates. The experiments were performed under both culture

conditions and similar results were observed for attachment and

invasion. Adherence assays were performed as described previ-

ously [32].

Uroepithelial cells were infected with a 10:1 multiplicity of

infection (MOI). Before infection, fresh medium was used. Tissue

culture plates were centrifuged 6006 g for 5 minutes and then

incubated at 37uC for 2 hr. Subsequently, 20 ml of 5% Triton X-

100 was used to lyse cells from three wells and then plated onto LB

agar plates to enumerate the bacterial load for both intra- and

extracellular bacteria. Adherent bacteria calculated from infected

cells were washed with PBS for five times, finally lysed in 1 ml of

0.1% Triton X-100 and plated onto LB agar plates to measure the

number of adherent bacteria.

To calculate invasion frequencies, a set of three infected wells

were washed with PBS for five times, then bactericidal antibiotic

gentamicin (100 mg/ml), which does not penetrate uroepithelial

cells, was added to the infected cells to kill adhered extracellular

bacteria and incubated for another 4 hr. At the end of incubation

the cells were completely washed with PBS, lysed with 1 ml of

0.1% Triton X-100. Bacterial load was calculated by plating onto

LB agar plates with appropriate antibiotics. Attachment index was

determined as CFU/ml of the adherent bacteria divided by total

bacterial inoculum (CFU/ml). Invasion index was determined as

number of bacteria surviving gentamicin treatment divided by the

total number of bacteria present before gentamicin incubation.

Regulation of UPEC Virulence by BarA-UvrY
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Cytotoxicity assay on human kidney (HK-2) cells
The HK-2 cells grown in 96-well plate with 70% confluence

monolayer were treated with 50 ml of filter-sterilized culture

supernatants from equal number of bacterial cells grown in LB

media under static condition at 37uC for 48 hr for two passages

with appropriate antibiotics. Cytotoxic effects were analyzed by

cell proliferation assay (colorimetric tetrazolium WST-1) under the

absorbance at 450 nm as recommended by manufacturer (Roche,

USA). Pilot experiments were performed to determine the

optimum incubation time for cytotoxic effects. After the cells

were treated with bacterial supernatants for 180 minutes, 10 ml of

tetrazolium salt WST-1 was added to each well and the cells were

incubated for an additional 180 minutes at 37uC. Absorbance was

read at 450 nm using a PerkinElmer Victor3 plate reader.

Table 1. Primers used in this study.

barA knockout with
chloramphenicol cassette

OSM 41 59-CATCGTCGCCATTCCGATATTGTTCGCGCGATTTCG CATATGAATATCCTCCTTAGT-39

OSM 42 59-CGACATTATCCATCTCGTCCAACAGTTCCAGCAGCTGTGTAGGCTGGAGCTGCTTC-39

csrA knockout with
chloramphenicol cassette

OSM 39 59-GAGACCCGACTCTTTTAATCTTTCAAGGAGCAAAGA GTGTAGGCTGGAGCTGCTTC-39

OSM 40 59-GAGAAATTTTGAGGGTGCGTCTCACCGATAAAGATGAGACGCGGAAAGACATATGAATATCCTCCTTAGT-39

TNFa amplification primers

Forward 59-AGGCAGTCAGATCATCTTCTCG-39

Reverse 59-CCTTGAAGAGGACCTGGGAGTA-39

IL6 amplification primers

Forward 59-TTCGGTCCAGTTGCCTTCTC-39

Reverse 59-GTTTTCTGCCAGTGCCTCTTT-39

IL8 amplification primers

Forward 59-CTCTTGGCAGCCTTCCTGA-39

Reverse 59-CCTCTGCACCCAGTTTTCCT-39

GAPDH amplification primers

Forward 59-TGGTCTCCTCTGACTTCAACAG-39

Reverse 59-AGGAGGGGAGATTCAGTGTG-39

doi:10.1371/journal.pone.0031348.t001

Table 2. E. coli strains and plasmids used in this study.

Bacterial Strain or Plasmid Relevant Genotype Reference or Source

DH5aK12 luxSsupE44 D(F80 DlacZM15) hsdR17 recA1 endA1 gyrA96
thi-1 relA1

Invitrogen

CFT073 Wild type 44

SM3009 CFT073 barA::cm this work

SM3010 CFT073 uvrY::cm this work

SM3011 CFT073 csrA::cm this work

SM3012 SM3009 carrying pSM1; Ampr this work

SM3013 SM3010 carrying pSM2; Ampr this work

SM3014 SM3011 carrying pSM7; Ampr this work

CFT073 CFT073 hlyD::kan 44

CFT073 CFT073 hlyD::kan carrying pSF4000 containing hlyD; Cmr 44

Plasmids

pBR322 Cloning vector; Ampr Invitrogen

pSM1 barA with EcoRI- EcoRV site of pBR322; Ampr 29

pSM2 uvrY within the EcoRV-BamHI site of pBR322; Ampr 29

pSM7 pCA114, csrA under ParaBADcontrol on pBAD18; Ampr,
subcloned into pBR322

54

doi:10.1371/journal.pone.0031348.t002
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Hemolysin assay
Hemolysin assay with sheep erythrocytes was performed as

described [33] with minor modifications. Similar results were

obtained when bacterial strains were grown either in LB (data not

shown) or in artificial urine medium. Simple artificial urine

medium was prepared as described previously [34]. The artificial

urine medium was adjusted to pH 6.5 and sterilized with 0.2-mm-

pore-size filter. Filter sterilized bacterial culture supernatants

harvested at an optical density of 600 nm (OD600) of 0.4 was used.

100 ml of 2% sheep erythrocytes (RBC) suspended in PBS was

mixed with 200 ml of filter sterilized supernatants and incubated at

30.5uC for 7 hr. The incubation time and temperature were

standardized with initial experiments in our assay for showing

maximum difference. Unlysed cells were pelleted and absorbance

of the supernatant was measured at 405 nm.

Preparation of secreted protein
Secreted proteins in supernatant were prepared as described

previously [35]. Bacterial cells were pelleted by centrifugation at

10,000 rpm for 30 minutes at 4uC and supernatant was filtered

using 0.2-mm-pore-size filter. Proteins were precipitated with

trichloroacetic acid (25% wt/vol final concentration) on ice for

4 hr, washed with acetone and analyzed in Novex 4–20% Tris-

Glycine gel (Invitrogen). The gel was stained with Coomassie blue

and appropriate bands were excised and subjected to mass

spectrometric analysis (The University of Kansas Medical Center,

Kansas City, KS).

Extraction of lipopolysaccharide (LPS)
LPS extraction was performed by a modified phenol-chloroform

method using a LPS extraction kit (Intron Biotechnology, Boca

Raton, FL). Bacterial cultures were grown under static condition

in tryptic soy broth at 37uC for 48 hr. Bacterial cells were

normalized for LPS extraction and bacterial cultures were

processed according to the manufacturer instructions. LPS pellet

was washed with 1 ml of 70% ethanol and then air dried

completely. Finally, LPS was dissolved in 70 ml of double distilled

water by boiling for 1 minute. LPS was separated in 12% SDS-

PAGE gel under reducing conditions and visualized with silver

staining as recommended by manufacturer (FastSilver, G

Biosciences, St. Louis, MO). During the fixation, 0.7 g of periodic

acid was added to 100 ml of fixing solution to oxidize the

carbohydrate as described previously [36]. LPS image was

photographed by using Kodak Electrophoresis Documentation

and Analysis System (EDAS) 290 camera. The LPS concentration

was calculated with densitometry by comparing with a standard

from E. coli LPS (Sigma, St. Louis, MO).

Quantitative real time PCR (qRT-PCR)
SV-HUC-1 uroepithelial cells were grown to confluence in 6-

well plates. The cells were treated with equal amount of purified

LPS and incubated for 16 hr at 37uC or with whole bacterial cells

with MOI (10:1, bacteria: SV-HUC-1 cells) for 4 hr at 37uC. The

bacterial cells were grown in LB media under static condition for

48 hr at 37uC with appropriate antibiotics. Total RNA was

isolated from the infected SV-HUC-1 cells using the TRIzol

reagent (Invitrogen). The extracted RNA was treated with

TURBO DNase (Ambion, Austin, TX) and further purified using

Qiagen RNeasy mini-columns (Qiagen, Valencia, CA). For RT-

PCR, first-strand cDNA was synthesized from 5 mg of total RNA

using Superscript II (Invitrogen) with 50 ng of random hexamers

(Invitrogen). Internal gene-specific primers were used to amplify

TNF-a, IL-6, IL-8 and internal control glyceraldehyde 3-

phosphate dehydrogenase (GAPDH). The primer sequences to

amplify these genes were listed in Table 1. For qRT-PCR, 10 ng

of first-strand cDNA was amplified separately with 10 mM each of

gene or GAPDH-specific primers in a 25-ml total volume of SYBR

green 1 PCR master mix using a PTC-200 Opticon Cycler

(Biorad, Hercules, CA). The DCT values between samples were

normalized to GAPDH product and calculated as DCT = [CT of

uninfected Cytokine (eg. Mock TNF-a)2CT of infected Cytokine

(eg. Infected TNF-a)]2[CT of uninfected GAPDH (mock)2CT of

infected GAPDH]. Because sample was duplicated by each PCR

amplification cycle, the fold difference in the initial concentration

of each transcript is determined as 22DDCT.

Results and Discussion

Mutation in uvrY or barA decreases the virulence in a
mouse UTI model

The UPEC can cause cystitis or pyelonephritis. The UPEC

originate from distal gut, colonize the vagina and/or ascend the

urinary tract to the bladder via the urethra [37,38]. The UPEC

have the ability to invade the urinary tract and develop biofilms

[39]. To investigate the effect of the uvrY or barA mutant on

bacterial pathogenesis, we developed ascending urinary tract

infection via transurethral catheterization in a mouse model. To

evaluate the virulence, bacterial load was determined in various

tissues and urine. Mutation in either barA or uvrY exhibited

reduced colonization as compared to the wild-type in mouse

ascending UTI model (Figure 1). The barA mutant bacteria

colonized less efficiently in both bladder and kidneys, while uvrY

mutant bacteria colonized less efficiently in the bladder of the mice

when compared to the wild-type. The bacterial loads of barA

mutant colonized in bladder and kidneys were significantly

reduced by two and one log10 CFU/gram of tissue as compared

to wild-type (*P,0.01). The uvrY mutant demonstrated significant

reduction of bacterial loads in bladder by one log10 CFU/gram of

tissue when compared to that of wild-type (*P,0.01, Figure 1).

Our result showed that the load of mutant was slightly reduced in

the urine by approximately one log10 CFU/ml, which may further

explain the poor colonization of the bladder and kidneys. Using E.

coli DS17 it has been shown that the uvrY mutant has a lesser fitness

for survival in urine in a primate infection model [40]. Here, we

have showed the extent of colonization of both barA and uvrY

mutant in the tissues of the urogenital system.

Mutation in uvrY or barA reduces virulence in a chicken
embryo lethality assay

The virulence of BarA-UvrY TCS of avian pathogenic E. coli

strain x7122 was shown using chicken embryo lethality assay [29].

In this assay, the virulence can be determined by the number of

embryos killed within a given period of time. In our study, all the

embryos infected with WT strain were dead (100%) 72 hr post

inoculation, whereas the mortality of the embryos inoculated with

barA or uvrY mutant decreased to 67% (4 out of 12 survived) and

58% (5 out of 12 survived) even up to 6 days post inoculation,

respectively. The reduction in virulence is significant (P,0.01)

(Figure 2). The reduced virulence were reestablished to that of WT

CFT073 when the respective mutant genes were provided in trans.

Complementation was 100% in barA/p-barA strain and 91% in

uvrY/p-uvrY strain. These results obtained from mutation of either

barA or uvrY were well correlated with that of mouse UTI. Overall,

we observed a phenomenon, wherein mutation of barA or uvrY

reduced the virulence and the complementation of these genes in

trans reversed the phenotype.

Regulation of UPEC Virulence by BarA-UvrY
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Mutation in uvrY reduces the invasion to uroepithelial
(SV-HUC-1) cells

The roles of barA and uvrY in mediating attachment or invasion

in cultured uroepithelial cells were investigated by using standard

gentamicin protection assay [32]. Mutation in uvrY significantly

reduced the invasion abilities by two logs (,100-fold) in cultured

ureter (SV-HUC-1) (**p#0.01, relative to WT) epithelial cells

(Table 3). However, the bacterial attachment was unaltered and

there was no significant difference between WT and mutant

bacteria. Complementation of uvrY mutant in trans expressing uvrY

gene restored the invasion abilities in cultured uroepithelial cells

similar to the level of wild-type (Table 3). However, deletion of

barA had no effect on the attachment and invasion in ureter (SV-

HUC-1) cells. These results suggest that as a transcriptional

regulator, UvrY plays an important role in determining virulence.

Mutation in uvrY causes greater level of attenuation as compared

to mutation in barA.

Mutation in barA or uvrY reduces the cytotoxic effect to
cultured human kidney (HK-2) cells

Mutation in either barA or uvrY reduced the cytotoxic effects of

the bacterial supernatants on human kidney HK-2 cells detected

by addition of WST-1 reagent to infected cells (Figure 3 & Table 4).

Bacterial supernatants significantly inhibited the growth because

only 21% of the treated cells were alive in WT (Figure 3B). In

contrast, the deletion of barA (Figure 3D), hlyD (Figure 3F) and uvrY

(Figure 3E) significantly attenuated the cytotoxicity with 38% (*,

p#0.01), 35% (*, p#0.01), and 68% (**, p#0.001) of the cells

alive, respectively, when compared to the cells survived from wild-

type (Table 4). Complementation of the mutants in trans restored

the virulence to the similar level of wild-type. These results also

demonstrated the cytotoxicity of uvrY mutant is significantly

reduced compared to the barA mutant (*** p#0.0001). Taken

together, our results suggest that soluble factors, like cytotoxic

proteins or LPS, in bacterial culture supernatants may contribute

to the virulence of the bacteria.

Mutation in barA or uvrY affects hemolysin secretion
Differential expression of virulence factors in UPEC might be

an important factor for colonizing either in the bladder causing

cystitis or in kidney resulting in pyelonephritis. Since the barA or

uvrY mutant showed decreased colonization in mouse UTI model,

chicken embryo killing and reduced cytotoxicity to cultured HK-2

cells, we further compared the secreted protein profiles in the

culture supernatants from the various mutants and wild-type. By

Coomassie blue staining, we identified a unique band of

approximately 110 kDa that was reduced in its expression level

in either barA or uvrY mutant. By mass spectrometric analysis, this

band was further identified as Hemolysin (HlyA) [41,42] (Figure 4).

The exotoxin HlyA is one of the virulence factors associated with

pathogenesis; the production of hemolysin protein contributes to

the virulence of extra-intestinal pathogenic E. coli infections

[33,43,44]. E. coli bacterial suspensions containing hemolysin

treated onto cultured human kidney proximal tubular epithelial

cells resulted in highly elevated cytotoxicity; transurethral

challenge in CBA mice resulted in pyelonephritis [44]. The HlyA

was down-regulated in the uvrY mutant (Figure 4, lane 6)

compared to wild-type (Figure 4, lane 3). Furthermore, we

investigated the hemolytic function of the secreted hemolysin

Figure 1. Mutation in barA or uvrY reduces virulence in murine ascending UTI. CBA/J mice were infected transurethrally with mixture of
56107 CFU of WT bacteria and 56107 CFU of mutant bacteria. A. Bacteria were recovered 72 hr later from mice infected with CFT073 WT urine (#),
SM3009 (barA::cm) urine (N), CFT073 WT bladder (D), SM3009 (barA::cm) bladder (m), CFT073 WT kidneys (%), SM3009 (barA::cm) kidneys (&) and
were expressed in Log10 CFU. B. Bacteria were recovered 72 hr later from mice infected with CFT073 WT urine (#), SM3010 (uvrY::cm) urine (N),
CFT073 WT bladder (D), SM3010 (uvrY::cm) bladder (m), CFT073 WT kidneys (%), SM3010 (uvrY::cm) kidneys (&) and were expressed in Log10 CFU.
The results were representative of two independent experiments. Star denotes P,0.01.
doi:10.1371/journal.pone.0031348.g001

Figure 2. Chicken embryo infections by UPEC CFT073 and its
mutant. A set of twelve 12-day-old SPF embryonated eggs were
inoculated through allantoic cavity with 56103 CFU of bacteria CFT073
WT (&), DH5aK12 (%), SM3009 (barA::cm) (m), SM3012 (barA/p-barA)
carrying pSM1 (D), SM3010 (uvrY::cm) (N), SM3013 (uvrY/p-uvrY)
carrying pSM2 (#), SM3011 (csrA::cm) (¤) and SM3014 (csrA/p-csrA)
carrying pSM7 (X). The results were scored as live, morbid or dead. The
results were representative of two independent experiments.
doi:10.1371/journal.pone.0031348.g002

Regulation of UPEC Virulence by BarA-UvrY
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protein from bacterial culture supernatant by using sheep

erythrocytes at 30.5uC for 7 hr. The hemolytic activity of barA

and uvrY mutants was significantly reduced when compared to

wild-type (***, p#0.001). There was more than 5-fold or 7-fold

decrease in hemolytic activity in the mutant barA or mutant uvrY

respectively (Table 5). Functional complementation of both

mutant genes by plasmids restored the hemolytic activity similar

to the level of wild-type (Table 5). The decreased activity of the

exotoxin HlyA may also contribute to the reduction of the

virulence in barA or uvrY mutant bacteria. Taken together, the

hemolytic activities in supernatants from the barA or uvrY mutants

might contribute and well correlated to the reduced cytotoxic

effects against human kidney HK-2 cells and decreased chicken

embryo mortality.

Deletion of uvrY affects LPS profile
is a potent endotoxin responsible for gram negative septicemia

[45] and also responsible for the production of a variety of

proinflammatory cytokines followed by septic shock and dissem-

inated intravascular coagulation of the infected animals [46]. Next,

we investigated the role of various mutants in UPEC lipopolysac-

charide biosynthesis. As shown in the Figure 5, LPS was isolated

from equal number of cells and resolved in reducing 12% SDS-

PAGE. The LPS profile of the uvrY mutant exhibited visible

Table 3. Mutation in uvrY reduces invasion of E. coli CFT073 strain to ureter (SV-HUC-1) uroepithelial cells.

Genotype
Initial cells (log10
CFU /ml)

Attached and
invaded after 2 h
(log10 CFU / ml)

Invaded fraction
surviving after 4 h
(log 10 CFU / ml)

Calculated attached
bacteria (log 10
CFU/ml) Attachment Index Invasion Index

CFT073 WT 8.460.9 7.460.8 3.160.5 7.560.8 7.761022 6.861025

barA 8.360.9 7.260.9 3.060.5 7.260.9 8.361022 6.661025

barA/p-barA 8.960.9 7.760.9 3.360.5 7.760.9 6.361022 4.761025

uvrY** 8.660.9 6.860.8 0.760.1 6.860.8 1.761022 7.161027

uvrY/p-uvrY 8.860.9 7.660.9 2.960.5 7.660.9 6.361022 1.961025

csrA 7.760.9 6.660.8 2.260.3 6.660.8 8.961022 3.661025

csrA/p-csrA 7.760.9 6.660.8 0.760.1 6.660.7 7.861022 1.361026

Results represent mean 6 SD from three individual experiments.
**Mutation in uvrY significantly reduces the virulence (p#0.01, relative to WT).
doi:10.1371/journal.pone.0031348.t003

Figure 3. Phase-contrast photomicrographs of human kidney (HK-2) cells. Photomicrographs were taken 6 hr later from either untreated
control (HK-2 cells) (A), or treated with supernatants from CFT073 WT (B), csrA (C), barA (D), uvrY (E), hlyD (F), barA/p-barA (G), uvrY/p-uvrY (H) and
hlyD/p-hlyD (I). The rounding and detachment of cells in the treated monolayer are marked with arrow or arrowhead. The pictures were
representative of three individual experiments.
doi:10.1371/journal.pone.0031348.g003
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differences in the core and O-antigen compared to that of LPS

from wild-type. Mutation in uvrY (Figure 5, lane 4), caused

differences in both migration pattern of O-antigen bands and

quantity of the LPS as compared to the LPS from wild-type

(Figure 5, lane 1). Some bands of the O-antigen were missing and

few other bands were less prominent when compared LPS in WT

CFT073. Complementation of the uvrY mutant (Figure 5, lane 5) in

trans restored the WT phenotype of LPS. In csrA mutant LPS, one

high molecular weight O-antigen band became less prominent and

few low molecular weight O-antigen bands showed more

prominence (indicated by arrows in Figure 5, lane 6). The csrA/

p-csrA complemented strain had reduced LPS expression (Figure 5,

lane 7). Quantification of the LPS from equal number of E. coli

cells (46109) by densitometry, titrated the amount of LPS from

uvrY (Figure 5, lane 4, 723 ng/ml) mutant strain was partially

reduced when compared to the wild-type (Figure 5, lane 1,

853 ng/ml) and the complementation of uvrY mutant restored the

WT phenotype (Figure 5, lane 5, 1065 ng/ml). One possible

mechanism is that mutation of uvrY may modulate the rfa gene

cluster responsible for LPS biosynthesis resulting in differential

expression of LPS. Loss of LPS or changes in LPS profile may also

lead to reduction in colonization and invasiveness. Also rough

strains do not persist in vivo as efficiently as the smooth strains.

This might help in explaining uvrY mutant is not so invasive or

have low level of colonization in mouse UTI model.

Mutation in uvrY down-regulates inflammatory cytokines
LPS is an integral part of outer membrane of UPEC. Either

bacterial infection or LPS treatment triggers cytokine production

in mucosal tissue [47–49]. The epithelial cells lining urinary tract

play a major role in host pathogen interaction by secreting various

cytokines in response to infections. First, UPEC invades and

colonizes in uroepithelial cells, which triggers the release of

proinflammatory cytokines. It has been shown that the uroepi-

thelial cell lines secrete interleukin-6 (IL-6) and chemokine IL-8

when stimulated by UPEC [47,49]. During gram negative

septicemia, the proinflammatory cytokines like tumor necrosis

Table 4. Mutation in barA or uvrY reduces and csrA increases
the cytotoxic effect to human kidney (HK-2) cells.

Genotype Percentage of survivala (relative to control)

Control 100

CFT073 WT 2163

hlyD 3562*

hlyD/p-hlyD 2162

barA 3863*

barA/p-barA 2262

uvrY 6862**,***

uvrY/p-uvrY 2263

csrA 1364

csrA/p-csrA 3663

aData obtained from three independent experiments with 6 replicates per
condition.

(*, p#0.01; **, p#0.001, relative to WT, *** p#0.0001, relative to barA mutant).
doi:10.1371/journal.pone.0031348.t004

Figure 4. Protein profiles of wild type and mutant bacteria supernatant. Secreted supernatants were filter purified and separated on 4–20%
SDS-PAGE gel and stained with Coomassie blue. Bands of the interest were incised and subjected to mass spectrometry analysis. Star indicates the
location of the hemolysin protein band. The results were representative of three individual experiments. Lanes: 1. protein marker, 2. LB media, 3.
CFT073 wt, 4. barA, 5. barA/p-barA, 6. uvrY, 7. uvrY/p-uvrY, 8. csrA, 9. csrA/p-csrA, 10. protein marker.
doi:10.1371/journal.pone.0031348.g004

Table 5. Mutation in barA or uvrY decrease and csrA increase
hemolysis of sheep erythrocytes.

Genotype Hemolysis of sheep erythrocytes (OD405)a

CFT073 WT 2.760.19

hlyD 0.5760.09

hlyD/p-hlyD 10.360.28

barA 0.5360.12***

barA/p-barA 1.8560.10

uvrY 0.3560.14***

uvrY/p-uvrY 3.660.18

csrA 3.960.28**

csrA/p-csrA 0.3960.22***

aData obtained from mean values 6 standard deviations from three different
experiments.

(**, p#0.01; ***, p#0.001 compared to WT).
doi:10.1371/journal.pone.0031348.t005
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factor a (TNF-a) and IL-6 and chemokine IL-8 activate the

inflammatory cascade and trigger the systemic infection [48–51].

Here, we further investigated the cytokine responses of human

uroepithelial cell line SV-HUC-1 cells to infection with either

whole bacterial cells or treatment with purified LPS alone by

quantitative RT-PCR analysis (Table 6). Both whole bacterial cells

and LPS treatment stimulated the mRNA expressions of TNF-a,

IL-6 and IL-8. Their expression levels were higher in SV-HUC-1

cells infected with whole bacterial cells than in cells treated with

LPS alone. Possible explanation for this higher expression of TNF-

a, IL-6 and IL-8 from stimulation with whole bacterial cells may

be due to surface expression of virulence factors like Type 1 or P

fimbriae, capsule, outer membrane proteins or O-specific antigen

and toxins including hemolysin and LPS. The infection with WT

bacteria and its LPS treatment had the highest expression of all

three cytokines. These results support the previous findings [47–

49] while infection with uvrY mutant bacteria down-regulated

TNF-a, IL-6 and IL-8 by ,4, 5 and 9-folds compared to the WT

bacteria (**, p#0.01) (Table 6). The cells treated with purified LPS

from uvrY mutant also down-regulates the cytokines TNF-a and

IL-6 by ,3-folds compared to the WT LPS (*, p#0.05). The uvrY/

p-uvrY complemented strain restored the effects on the level of

cytokine production similar to that of wild-type (Table 6). The

difference in the LPS profile pattern (Figure 5) may contribute to

the lowered expressions of these cytokines. These factors might

also contribute to the reduction in virulence of the uvrY mutant.

Majority of UTI were caused by UPEC [38,52]. Our results

with murine UTI showed the important roles of BarA-UvrY TCS

in the virulence of UPEC. Mutation with barA and uvrY reduced

the invasion and colonization in bladder and kidneys, decreased

chicken embryo killing, and reduced cytotoxicity to HK-2 cells

(Figure 1, 2& 3; Table 4). There was 1–2 log reduction in bacterial

colonization and 58–67% reduction in chicken embryo killing,

suggesting that the pathogenicity and virulence factors of UPEC

CFT073 were controlled by various virulence determinants.

Hence, mutation in BarA-UvrY TCS was less efficient and

various other TCS and signaling pathways may also contribute to

the virulence of UPEC CFT073. Between the mutations in BarA-

UvrY TCS, effect of uvrY mutation is more pronounced and less

virulent as compared to mutation in barA, a membrane sensor

protein. This conclusion is strongly supported by reduction of

other virulence determinants like LPS, hemolysin and proin-

flammatory cytokines and chemokine (Figure 4& 5, Table 5 &6).

It has been shown that CsrA is a RNA binding protein. More

interestingly, mutation in csrA increased the virulence of UPEC

CFT073. This conclusion is supported by several evidences. First,

deletion of csrA in strain CFT073 increased the virulence to 75% (3

out of 12 survived) in a chicken embryo lethality assay (Figure 2).

The increased virulence was reduced to 50% in a complemented

csrA/p-csrA strain. This result is in agreement with a previous study

that mutation of csrA in E. coli K-12 enhanced biofilm formation by

regulating intracellular glycogen biosynthesis and catabolism and

over expression of csrA repressed biofilm formation [28]. These

results suggest that csrA gene represses certain virulence factors;

CsrA may exhibit distinct mechanism from BarA-UvrY TCS in

modulating virulence factors. Second, deletion of csrA gene which

controls carbon metabolism and flagellum biosynthesis [26,27]

resulted in unaltered invasiveness in ureter (SV-HUC-1) cells while

the csrA/p-csrA complemented mutant strain reduced the inva-

siveness by one log (,10-fold) in SV-HUC-1 uroepithelial cells

(Table 3).

The differences exhibited by the invasion ability of csrA mutant

in ureter (SV-HUC-1) may be due to the growth rate of the csrA

mutant or owing to the changes in the expression of virulence

factor during invasion. Indeed, mutations of csrA gene affect the

growth of the bacteria and these mutants tend to grow slowly.

Figure 5. Lipopolysaccharide profiles of wild type and mutant bacteria. LPS was extracted from equal number of cells and separated on
12% SDS-PAGE gel and visualized with silver stain. The upper bands represent the O antigen and the lower bands represent the core LPS antigen. The
results were representative of three individual experiments. Lanes: 1. CFT073 wt, 2. barA, 3. barA/p-barA, 4. uvrY, 5. uvrY/p-uvrY, 6. csrA, 7. csrA/p-csrA,
8. protein marker.
doi:10.1371/journal.pone.0031348.g005
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Third, csrA mutant was more cytotoxic (Figure 3C) compared to its

wild-type (Figure 3B), where only 13% of treated HK-2 cells

(Table 4) were alive and mutation in csrA gene resulted in

moderate increase in hemolytic activity and its complementation

in plasmid decreased the hemolytic activity, indicating that CsrA

represses the hemolysin expression (Table 5). Fourth, the csrA

mutant had the highest concentration of LPS (Figure 5, lane 6,

2080 ng/ml) and csrA/p-csrA complemented strain led to reduction

in the level of LPS expression (Figure 5, lane 7, 643 ng/ml).

Interestingly, even though the csrA mutant had the highest

concentration of LPS (Figure 5, lane 6, 2080 ng/ml) from equal

number of bacterial cells, SV-HUC-1 cells treated with equal

amount of LPS (10 ng/ml) did not produce the cytokine levels like

that of wild-type (Table 6). Taken together, our assay demon-

strated that increased virulence determinants, like hemolysin

activity and LPS, may contribute to the enhanced virulence in csrA

mutation and over-expression of csrA suppresses the bacterial

virulence. However, the increase in virulence seen with the csrA

mutant in these in vitro experiments needs to be further verified by

in vivo animal experiments.

In spite of this, our in vitro experimental results are in agreement

with the previous study that csrA represses pgaABCD transcript

involved in the synthesis of polysaccharide adhesion, thereby

repressing biofilm formation in E. coli [53], but different from

another study that mutation of csrA gene in Salmonella enterica

serovar Typhimurium reduces the invasion of HEp-2 epithelial

cells and expression of Salmonella pathogenicity island 1 (SPI1)

invasion genes [54]. However, over-expression of csrA in trans also

suppress the expression of SPI1 invasion genes [54]. Also, in

Legionella pneumophila, over-expression of CsrA suppress virulence

associated traits and mutation of csrA gene result in increased

virulence associated gene letE, stationary-phase sigma factor, RpoS

and enhance flaA and fliA genes resulting in premature flagellation

[55]. These studies, including ours, demonstrated that CsrA acts as

both repressor and enhancer of invasion genes and its expression

could be tightly regulated. The future study can be directed to

examine the expression level of CsrA protein in the uvrY mutant

and establish a functional relationship between BarA-UvrY TCS

and CsrA in regulating the expression of virulence genes either

positively or negatively.

In summary, our work further delineates the role of BarA-UvrY

TCS in regulating various virulence factors. In UPEC, the Cpx

two-component signal transduction system, CpxA/CpxR controls

P pilus biosynthesis and regulates phase variation of pap and other

virulence factors [56]. It is also reported that pyelonephritogenic

E. coli strains are more cytotoxic to cultured human renal tubular

epithelial cells and the cytotoxin hemolysin contributes to this

potent virulence as well [44]. A previous study showed that

disruption of the BarA-UvrY TCS reduced the fitness of the uvrY

mutant in a monkey cystitis model [40]. Similarly, in our assay,

mutation in uvrY reduces the cytotoxicity to the cultured human

kidney (HK-2 cells) and hemolysin production (Figure 3 & 4,

Table 4 & 5). Previously our microarray data showed and we also

hypothesize that BarA-UvrY two-component system may regulate

the expression of pap gene cluster encoding P pilus, fimbrial genes

encoding Type 1 fimbriae, outer membrane protein such as ompC

or LPS biosynthesis genes like rfa gene cluster, hly locus encoding

hemolysin synthesis and secretion, which may directly or indirectly

contribute to the virulence of the UPEC [57]. Further investiga-

tion is needed to understand the role of these genes in the

pathogenesis of UPEC in the UTI. Taken together, our results

show that BarA-UvrY TCS regulates various virulence determi-

nants contributing to the pathogenicity of the UPEC CFT073.
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