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Abstract

Signaling cascades proliferate signals received on the cell membrane to the nu-

cleus. While noise filtering, ultra-sensitive switches, and signal amplification

have all been shown to be features of such signaling cascades, it is not under-

stood why cascades typically show three or four layers. Using singular pertur-

bation theory, Michaelis-Menten type equations are derived for open enzymatic

systems. Cascading these equations we demonstrate that the output signal as a

function of time becomes sigmoidal with the addition of more layers. Further-

more, it is shown that the activation time will speed up to a point, after which

more layers become superfluous. It is shown that three layers create a reliable

sigmoidal response progress curve from a wide variety of time-dependent signal-

ing inputs arriving at the cell membrane, suggesting the evolutionary benefit of

the observed cascades.

Key words: MAP-kinase network, Michaelis-Menten equations,

time-dependent ODEs

1. Significance

In MAP-kinase signaling networks, three-level cascades are a very common

motif. We try to understand why evolution would favor such a motif by analyz-

ing the set of differential equations describing such signaling cascades. Specif-

ically we study how such multi-level cascades process different time dependent5

input signals. Using a perturbation theory approach we find that the three

level cascade architecture turns many different types of input signals into the

Preprint submitted to Journal of Theoretical Biology May 22, 2014



same sigmoidal output signal. Adding additional layers in the cascade does not

change the type of output signal but delays its activation time.

2. Introduction10

Biochemical cascades, in which upstream reaction products catalyze down-

stream reactions, are common patterns in eukaryotic molecular pathways. The

mitogen-activated protein kinase (MAPK) system is an ancient, highly con-

served example [1]. Functional and evolutionary studies of such cascades tend

to emphasize their role as amplifiers of some input signal. Koshland et al. [2]15

(see also [3]) observe that “amplification” in this context involves at least two

distinct notions: amplification of the absolute size of the signal and amplifica-

tion of the change in signal intensity relative to the signal background intensity,

so-called “fold” amplification [4]. Classic examples of the former include blood

clotting [5, 6, 7, 8] and complement [9, 10] among others probably evolved from20

the same ancestral serine protease cascade [11]. The latter fold-change amplifi-

cation is characteristic of signal transduction, at least for the MAPK and Wnt,

β-catenin pathways [12, 13]. In both general cases, amplification is generated

by layering in the cascade. Layering can also produce ultrasensitive responses,

in which smooth changes in input are converted to a switch-like “off-on” output25

with a steeper signal-to-response curve than seen with traditional Michaelis-

Menten dynamics [14, 15, 16, 2, 17, 3].

The intrinsic blood clotting mechanism of mammals was among the first

biochemical cascades studied. Nearly simultaneously, Davie and Ratnof [6] and

Macfarlane [8] proposed the same “waterfall” scheme of 8 reaction steps for30

this process, starting with factor XII activation and ending with conversion of

fibrinogen (factor I) to fibrin. Macfarlane recognized immediately that such

a cascade could amplify a small initiating signal into “an explosive generation

of thrombin” and fibrin. Levine [7] studied the kinetics implied by Mcfarlane-

Davie-Ratnof scheme by constructing a time-dependent mathematical model35

representing a simple linear cascade with no feedback. A unit pulse was intro-
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duced at the first stage, and this signal propagated through n stages. Levine

defined the maximum gain of a stage—essentially the ratio of the steady state

value of the nth stage versus the steady state value of the initial stage—and out-

lined how variations in duration of the initiating pulse affected signal dynamics40

of a 3-layered system.

More recently, signal transduction cascades have attracted a great deal of at-

tention from theoreticians and modelers. In a signaling cascade, information in

the form of a chemical cue received at the cell membrane propagates to transcrip-

tion factors in the nucleus via a sequence of chemical reactions. The MAPK cas-45

cades represent the canonical examples. These systems are ubiquitous in eukary-

otic organisms and regulate a variety of both normal and pathological cellular

processes, including differentiation, proliferation, apoptosis and carcinogenesis

[18, 1, 19]. Like the blood clotting cascade, signaling cascades comprise a num-

ber of layers, and MAP-kinase cascades are typically limited to 3 or sometimes50

4 [18, pg. 102],[20]. Examples include a variety of mitogen-activated protein

(MAP) kinase pathways—e.g., via extracellular signal-related kinases (ERKs),

Jun amino-terminal kinases (JNKs) or p38 proteins [21, 22, 23]—phosphatidyl-

inositol-3-kinase (PI3K) signaling via serine/threonine-specific kinase (Akt) and

mammalian target of rifamycin (mTOR) [23, 24], Wnt signalling acting on β-55

catenin via the receptor Frizzled (Fz), Axin, glycogen synthase kinase 3 (GSK3)

and other proteins [25], and the Janus kinase/Signal transducer and activator of

transcription (Jak/Stat) pathway [23], among many others. In 2007, Coulombe

and Meloche investigated atypical MAP-kinase cascades, ancient outliers that

do not share the common characteristics of typical 3-tiered MAP-kinase cascades60

[20].

Why some signal transduction systems evolved into cascades remains an

open question. One possibility is that cascades are one of Darwin’s [26] predicted

“imperfections”—the systems appear over-engineered and jury-rigged because

they are cobbled together from parts that evolved originally for other purposes65

[27, pg. 104]. On the other hand, a number of alternative hypotheses have been

proposed based on the dynamical properties of tiered cascades. Among the first
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was a study by Huang and Ferrell [28], who extended an earlier mathematical

model of Goldbeter and Koshland [15] to represent a 3-layered MAPK cascade

in which double phosphorylation and dephosphorylation (activation and deacti-70

vation) of kinases were viewed as a single enzymatic reaction. They assumed a

closed system and mass action kinetics and studied the equilibrium behavior of

the resulting high-dimensional system of ordinary differential equations. They

discovered that multiple layering generates an ultrasensitive signal-to-response

curve, allowing cascades to behave like cooperative enzymes. Qiao et al. [29]75

expanded on this work by sampling a wider range of parameter values and

discovered bistability and oscillations in the Huang-Ferrell model.

Ventura et al. [30] returned to the seminal work of Goldbeter and Koshland

[15] with a more mechanistic eye. They modeled essentially the closed system of

Figure 1, but approached the problem trying to understand how concentrations80

of species within the cascade impose dynamical constraints. Using the quasi-

steady state assumption, they derived a one parameter equation for each layer,

or module, of the cascade, representing one cycle of covalent modification. They

then modeled an entire signaling cascade by linking together a sequence of these

one parameter modules. Like Huang and Ferrell [28], they found ultrasensitive85

behavior in their model. They also discover damped oscillations in both their

approximation of Figure 1. More importantly, they consider the case where

the system is in a steady-state and one of the parameters is perturbed. They

show that this information gets propagated both up and down the chain, which

suggests that multiple layers in the cascade structure can facilitate cross-talk90

between networks without the need of explicit feedback loops.

Also digging into the details, Gomez-Uribe et al. [31] analyzed the functional

repertoire of the phosphorylation-dephosphorylation reactions comprising a sin-

gle layer of a cascade. They discovered that a single cycle can exhibit 4 steady-

state response regimes. By appealing to the total quasi-steady-state assumption95

[32], they reduced their mass-action system into a single ordinary differential

equation for the activated protein and used this approximation to study the

system’s response to sinusoidal input. They found that a single cycle acts as a
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low-pass filter. Signaling pathways acting as low-pass filters was verified exper-

imentally by Fujita et al in [33]. Any combination of these various dynamical100

behaviors—ultrasensitivity, bistability, oscillations, filtering and whole-system

crosstalk—could be drivers of natural selection in signal transduction.

Here we suggest additional characteristics of multistage cascades that may be

targets of selection. Our approach is unique in that we consider time-dependent

inputs to both enzymatic “waterfalls,” like blood clotting, and signal transduc-105

tion cascades. Starting with signal transduction (Section 3.1) and moving to

enzyme cascades (Section 3.2), we explore numerically the dynamics of various

layers in response to a variety of time-varying inputs. Our explorations sug-

gest that layers deep in the cascade exhibit time dependent switching behavior

that is robust in the face of a wide range of time-dependent input functions.110

We then analyze the enzyme cascade using a perturbation analysis which re-

duces the system to a chain of one parameter modules, allowing us to establish

a Michaelis-Menten type equation for open enzymatic systems (Section 3.3.1).

Using this approximation, we validate our hypothesis that a sigmoidal time de-

pendent output is a robust characteristic of 3- and 4-layer cascades for a very115

large class of temporally varying inputs. Extensive numerical simulations and

intuition based on theoretical arguments point to the statement that a 4-stage

cascade will guarantee a robust sigmoidal output for an arbitrary continuous

input function. However, we are not able to prove this rigorously but relate

the statement to an unproven open conjecture in probability theory and con-120

vex analysis. In addition, we also show the following: i) multiple layers filter

out noise even without a deactivating enzyme;. ii) additional layers decrease

the time it takes for the output to pass a threshold in cascades with identical

modules; and iii) more than three or four layers causes a significant delay in

activation time of the ultimate signal.125
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Figure 1: A basic signaling cascade.

3. Models

3.1. A Signaling Cascade with Opposing Covalent Modifications

Although this paper is interested in a general model, the nomenclature for

MAP-kinase cascades will be used here. In a basic signaling cascade, a protein

gets modified by a kinase into an activated form. This activated protein then

acts as the kinase for the next layer in the cascade. A phosphatase converts the

activated form of the protein back into its inactive form. This study is interested

in the dynamic response of the output signal with respect to a time-dependent

input signal. In Figure 1, there is a flux of initial kinases at the top layer. The
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stoichiometry for the basic signaling cascade is:

∅ λ(t;µ)−−−−→ E0

E0 +M1

a1

�
d1

C1
k1−→ E0 +M∗1

PPT1 +M∗1
ã1

�
d̃1

X1
k̃1−→ PPT1 +M1

M∗1 +M2

a2

�
d2

C2
k2−→M∗1 +M∗2 (1)

PPT2 +M∗2
ã2

�
d̃2

X2
k̃2−→ PPT2 +M2

...

where for every level i, the variables Mi,M
∗
i , Ci, PPTi, Xi denote the protein, its

activated form, the intermediate complex between the kinase and the protein it

acts on, the phosphatase and the intermediate complex between the phosphatase

and the protein it acts on, respectively. We call E0 the initial kinase that flows

into and out of the system at a rate of λ(t;µ) where µ is just a general set of

parameters. ai, ki, di, ãi, k̃i, and d̃i are the reaction rates. A mass-action model

can be constructed to study the dynamical properties of the cascade structure.
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For an n-layered cascade,

Ṁ1 = −a1(Λ̄(t;µ)− C1)M1 + d1C1 + k̃1X1,

Ċ1 = a1(Λ̄(t;µ)− C1)M1 − (d1 + k1)C1,

Ṁ∗1 = k1C1 − ã1PPT1M
∗
1 + d̃1X1

− a2M
∗
1M2 + (d2 + k2)C2

˙PPT 1 = −ã1PPT1M
∗
1 + (d̃1 + k̃1)X1,

Ẋ1 = ã1PPT1M
∗
1 − (d̃1 + k̃1)X1,

... (2)

Ṁn = −anM∗nMn + dnCn + k̃nXn,

Ċn = anM
∗
nMn − (dn + kn)Cn,

Ṁ∗n = knCn − ãnPPTnM∗n + d̃nXn

˙PPTn = −ãnPPTnM∗n + (d̃n + k̃n)Xn,

Ẋn = ãnPPTnM
∗
n − (d̃n + k̃n)Xn,

Λ̄(0;µ) = M∗i (0) = Ci(0) = Xi(0) = 0,

Mi(0) = M̄i, and PPTi(0) = PPT i for 1 ≤ i ≤ n.

In (2),

Λ̄(t;µ) := E0(t) + C1(t) =
∫ t

0

λ(x;µ)dx, (3)

which is the total initial kinase concentration, and Λ̄ is regarded as the input

signal. The initial conditions reflect the case where no reaction has yet taken

place, and no reaction will take place until Λ̄ is positive.130

The following assumptions about Λ̄ reflect chemistry and experimental se-

tups: Since Λ̄ is a concentration, it is a continuous and non-negative function

of time. Without a loss of generality, Λ̄(t, µ) is positive for some interval (0, δ0].

The integral of Λ̄ as time goes to infinity will be infinite reflecting the two typ-

ical examples where kinases are pumped into the system with no mechanism

to escape, or a flux that is periodic. In addition, since the total number of
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molecules is finite, Λ̄ is bounded. Let Ē be the supremum of Λ̄ and use it to

define the scaled, total kinase concentration.

Λ = Λ̄/Ē.

To summarize, there exists a δ0 > 0 such that

Λ(t;µ) ∈ C0([0,∞)),

Λ(t;µ) ≥ 0,

sup
[0,∞)

{Λ(t;µ)} = 1,

Λ(0;µ) = 0, (4)

Λ(t;µ) > 0, for all 0 < t ≤ δ0,∫ ∞
0

Λ(x;µ)dx =∞.

3.2. Enzymatic Cascade Model

The parameters listed in [29] assume that the phosphatase concentrations

are much lower than the proteins they act on. This is also argued in [30].

Taking this to the limit suggests looking at an enzymatic cascade model with

no phosphatase, and seeing if the same type of behavior is observed.135

Hence, for this basic model of an enzymatic cascade, the product of one

reaction serves as the enzyme in the next reaction without a backward reac-

tion to an inactivated enzyme. The total-enzyme concentration at the initial

layer represents the time-dependent, input signal. For an n-stage cascade, the

concentration of the final product, Pn, is considered the output signal. The
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Figure 2: A basic enzymatic cascade.

stoichiometry is similar to Eq. (1):

∅ λ(t;µ)−−−−→ E0

E0 + S1

a1

�
d1

C1
k1−→ E0 + P1

P1 + S2

a2

�
d2

C2
k2−→ P1 + P2 (5)

P2 + S3

a3

�
d3

C3
k3−→ P2 + P3

...

where S, P,C are the substrates, product and the intermediate complex, respec-

tively at each level and E0 is the initial enzyme that flows into the system. A
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mass-action model for an n-layered cascade is given by

Ṡ1 = −a1(Λ̄(t;µ)− C1)S1 + d1C1,

Ċ1 = a1(Λ̄(t;µ)− C1)S1 − (d1 + k1)C1,

Ṗ1 = k1C1 − a2P1S2 + (d2 + k2)C2,

... (6)

Ṡn = −anPn−1Sn + dnCn,

Ċn = anPn−1Sn − (dn + kn)Cn,

Ṗn = knCn,

Λ̄(0;µ) = Pi(0) = Ci(0) = 0 and

Si(0) = S̄i for 1 ≤ i ≤ n.

The initial conditions reflect the case where no reaction has yet taken place and

there are initial concentrations of substrates waiting for the influx of enzymes

to start the chain reaction. Λ̄ is defined in (3) and satisfies (4).

3.3. Approximating the Enzymatic Cascade

3.3.1. Singular Perturbation Theory140

We will express the enzymatic cascade model as a sequence of identical

function operations. We will generate an operator relating input and output of

a module, parametrized by a single parameter using perturbation techniques. In

previous works such as [30], the authors used perturbation techniques to reduce

the order of the set of ordinary differential equations, whereas this work aims145

to describe a cascade simply as an input/output functional operator.

The fundamental building block is a basic enzyme-substrate reaction:

∅ λ(t;µ)−−−−→ E

E + S
a1

�
d1

C
k1−→ E + P (7)
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Following the approach by Segel and others [34, 32, 35], who examined a system

that is closed in the sense that there is no flux of molecules into or out of the

system, we will derive a single, algebraic expression for the scaled product in

the open system where the initial enzymes can flow into or out of the system.

The following set of equations models the reaction (7):

E + C = Λ̄(t;µ) =
∫ t

0

λ(x;µ)dx,

S + C = Sc,

Ṡc = −k1C, (8)

Ċ = a1(Λ̄(t;µ)− C)(Sc − C)− (d1 + k1)C,

Sc(0) = S̄, C(0) = 0,

where Sc is the total substrate concentration. In order to non-dimensionalize

these equations we are going to scale the dependent variables by their suprema.

It can be argued physically or by analyzing (8) that C has a maximum. To get

an estimate for the maximum of C, we set Ċ equal to zero and determine a time

t0 such that

Cmax =
Λ̄(t0;µ)S(t0)
Km + S(t0)

≤ ĒS̄

Km + S̄
= C̄.

Here Ē is the supremum of Λ̄, and Km = (k1 + d1)/a1 is the Michaelis-Menten

constant. The timescale for the total substrate depletion, as characterized in

[36], can be estimated by:

tSc = (Scmax
− Scmin

)/
∣∣∣Ṡc∣∣∣

max
≈ S̄/

∣∣k1C̄
∣∣ =

Km + S̄

k1Ē
.

Defining the dimensionless variables

T =
t

tSc
, sc(T ) =

Sc(t)
S̄

, c(T ) =
C(t)
C̄

, Λ(T ) =
Λ̄(t)
Ē

,

and using the dimensionless parameters:

σ =
S̄

Km
, κ =

d1

k1
, ε =

Ē

Km + S̄
,
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the scaled dimensionless system of Equations (8) becomes:

s′c(T ) = −c,

εc′(T ) = (κ+ 1) [((σ + 1)Λ (T ;µ)− σc) (sc − εc)− c] ,

s(0) = 1, c(0) = 0.

We now take the limit of ε to an arbitrarily small parameter ( ε � 1) and

expand sc and c in powers of ε so that perturbation techniques can be used.

sc(T ) ∼ sc0(T ) + εsc1(T ) + · · · ,

c(T ) ∼ c0(T ) + εc1(T ) + · · · ,

Then the O(1) equations are:

s′c0 = −c0,

c0 =
(σ + 1)Λ (T ;µ) sc0

σsc0 + 1
, (9)

sc0(0) = 1, c0(0) = 0,

which can be solved for explicitly as

sc0 =
1
σ
W

[
σ exp

(
σ − (1 + σ)

∫ T

0

Λ(x;µ)dx

)]

where W is the Lambert-W function. If p = P/S̄ is the scaled product, then

p(t) ≈ p0(T ) = F (Λ;σ) ≡ 1− sc0

= 1− 1
σ
W

[
σ exp

(
σ − (1 + σ)

∫ T

0

Λ(x;µ)dx

)]
. (10)

It should also be noted that by unscaling (14), one gets

Ṡc =
−VmaxΛSc
Km + Sc

,

where Vmax = k1Ē is the maximum velocity at which P can be formed. This

suggests that Michaelis-Menten parameters derived from closed systems should

be applicable to the open enzymatic system. We discuss the accuracy of this

perturbation expansion in [37].150
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3.3.2. Viewing the Cascade as an Iteration

Assuming that the timescales are the same at each stage and that ε � 1,

then the functional operator F in (10) allows us to approximate (5) as a series

of function compositions

Λ F−→ p1
F−→ p2

F−→ p3 · · · (11)

treating the cascade as an iteration of the operation F , i.e. p1 = F (Λ), p2 =

F (p1), and so on. Since each stage of the iteration is based on the perturbation

expansion, repeated iterations will lead to an accumulation or errors, details of

which are discussed in [37].155

4. Results

We present three sets of simulation results for the basic signaling cascade

(Fig. 1), the enzymatic cascade (Fig. 2) and the functional operator (Eq. 11),

respectively. It is shown that the most basic cascade (the functional operator)

fundamentally leads to the same output signal as the other two cases hence160

isolating the function of the cascade to its basic mechanism.

Figure 3 plots simulation outputs for a basic signaling cascade with identical

modules for various inputs. The reaction rates and initial conditions for the

modules used in this study were taken from the range listed in [29]. However,

unlike in [29], we assume that all modules are identical, and let Ē, the supremum165

of the enzymatic input, vary up to the same order of magnitude as M̄ , the

maximum of the substrate concentration.

In the first row of Figure 3 various input signals Λ̄(t) are plotted. In column

(a), a sharply increasing function is plotted, a periodic function in column (b),

and a slowly increasing function in column (c). In the second row, the outputs170

for various n-layered cascades are shown. In columns (a) and (b), it takes 3

stages for an output signal to become a regular sigmoidal curve. With a slowly

increasing input, it takes 6 layers. The last row shows that adding additional

layers appears to only move the output signal to the right. After a certain
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number of layers, additional layers only delay the activation time for the final175

output.

Figure 3 illustrates the main results of our study: i) Multiple layers in a

cascade filter out a wide variety of input signal behavior into a sigmoidal output

curve—sigmoidal in the sense that the curve is increasing, bounded, and has a

unimodal derivative. The only pertinent information that gets transmitted in a180

given time interval are
∫ t

0
Λdx and max{Λ̄}. ii) Although the output of a multi-

layered cascade can approach a steady-state faster by increasing the number of

layers, eventually additional layers will cause a delay.

Simulating the basic enzymatic cascade, we observe in Figure 4 the behavior

of the outputs turning sigmoidal after a few layers, and additional layers delaying185

the approach to a steady-state after a certain point. These results are almost

identical to the behavior observed in Figure 3, which strongly suggests that

the cascade structure is responsible for these phenomena and not the cycle of

kinase/phosphatase reactions.

Finally, iterating F with the same input functions as in Figures (3) and (4)190

we find qualitatively the same results, shown in Figure 5. Specifically we find

that a sharply increasing input immediately leads to an output signal that is

sigmoidal in time (row 2, column (a)), it takes three layers for the output to

become sigmoidal for a periodic input (row 2, column (b)) and three layers for

the output signal generated by a slow input to converge to a fixed sigmoidal195

shape (row 2, column (c)). Figure 5 row 3 shows that after a four layer cascade,

the output signals all look the same, independent of the initial form of the input.

If we define the inflection point of the sigmoidal output as the switching time we

find that for signals that don’t increase slowly, after four layers, each subsequent

cascade layer shifts the switching time by the same amount.200

In producing the results for Figure 5, each iteration assumed that σ = 5/3.

However, the fact that the curves appear to become sigmoidal after 3 iterations

doesn’t appear to be dependent on that fact. With a sinusoidal input, an

experiment was ran where σ was sampled uniformly from [0, 5] for each layer.

In 1000 trials, every 3-layered cascade had a sigmoidal output curve.205
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4.1. Properties of the Functional Operator

Simulations suggest that analyzing the operator F (Eq. (10)) may explain

why the cascade structure creates a sigmoidal output curve and why the timing

of the output switch moves to the right with additional levels of the cascade.

Basic calculus can be used to show that F (Λ) will be increasing and F 2(Λ) will210

be strictly increasing. The following lemma can also be proven.

Lemma

If the input function Λ(T ) is an increasing, log-concave function with the proper-

ties listed in (4), then F (Λ) will be sigmoidal in the sense that it will be smooth,215

bounded, increasing, and have a unimodal derivative.

Proof:

From Eq. (14), it can be shown that:

c′0
c0

=
Λ′

Λ
− (σ + 1)Λ

(σsc0 + 1)2
.

It is easy to show that based on Eq. (14), sc0 is a decreasing function. Since

Λ is assumed to be increasing, this implies − (σ+1)Λ
(σsc0+1)2 is decreasing. Since Λ is

assumed to be log-concave, Λ′

Λ is decreasing. Therefore, c0 is log-concave, and220

hence, unimodal. It is easy to show that F (Λ) = p0 is smooth, bounded, and

increasing. �

Interestingly, p0 can be extended so that it defines a cumulative probability

distribution with semi-infinite support. c0 can be considered the probability

density. This motivates the following conjecture in probability theory.225

Conjecture: Let Λ be a continuous probability distribution with semi-infinite

support and let F (Λ) be defined as in Eq. (10). Then there exists an n ∈ N

such that F k(Λ) will be a probability distribution with a unimodal density for

all k ≥ n.230
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The form of F from (10) suggests why the cascade structure acts as a time-

dependent filter. To restate,

F (Λ) = 1− 1
σ
W

[
σ exp

(
σ − (σ + 1)

∫ T

0

Λ(x)dx

)]
.

Notice that since F integrate the input signal over time, any input signal is

smoothed. Defining

h(T ) = 1− 1
σ
W [σ exp (σ − (σ + 1)T )] , (12)

it is straightforward to show that h is strictly increasing and concave by looking

at the properties of W from [38], or by starting from the ODE from which h is

derived. Hence, since F (Λ) = h(
∫ T

0
Λ(x)dx), F smoothes the input signal and

composes it with a strictly increasing, concave function, which suggests why the

outputs become sigmoidal.235

While our simulations suggest that if Λ satisfies (4), then F 3(Λ) is sigmoidal,

by carefully analyzing F , we find a (although biologically unlikely) counterex-

ample to this statement: Figure 6 shows an input signal where Λ(t) is a periodic

sequence consisting of short and small trapezoidal signal followed by a delayed,

large δ-type impulse. The same figure shows the third layer output which is not240

sigmoidal since its derivative is not unimodal. However, the fourth layer output

becomes sigmoidal.

5. Discussion

The derivation of Equation (10) allows us to model an enzymatic cascade

as a sequence of function operators assuming that at each stage the timescales245

are the same and that ε � 1. If these hypotheses are satisfied, an interesting

theoretical backbone emerges as to function and structure of multiple enzymatic

cascades.

Our approach looks at extensive simulations, understanding that they lack

analytic rigor, in combination with the mathematical analysis of simpler, ap-250

proximated models, understanding that these simpler models may not encap-

sulate every physically relevant situation—approximations and restrictions are
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made when deriving these simpler models; however, the combination of both

supports our hypotheses. We have observed through simulations some very in-

teresting signal processing properties of a cascade architecture, and this may255

be because at their core, these cascades behave like the iteration of a func-

tional operator that integrates the incoming signal, which smoothes it out, and

then composes the result with a bounded monotonic function. The use of the

functional operator is interesting because it allows tools from other disciplines,

such as probability theory and convex analysis, to be used to try and answer260

questions regarding the behavior of enzymatic cascades.

We find that the cascade structure acts as a filter to transform a variety of

persistent input signal types into a common sigmoidal response, and typically

no more than 3 layers are required to produce this effect. For slowly increasing

inputs, additional layers will speed up the time it takes for the product concen-265

tration to approach the steady-state. After a certain number of layers, typically

after three, increasing the number of layers further will delay the time it takes

for the final output to approach steady-state. To study the details of behav-

ior, we investigated a drastically simplified enzymatic cascade showing the same

phenomena.270

Biologically, the cascade structure may have evolved in part because it cre-

ates a very reliable sigmoidal response robust to variations in input. In partic-

ular, cells must decipher noisy input signals using an enzymatic system that,

due to promiscuous interactions among component proteins and other causes,

itself generates noise [39, 40]. By organizing the signal into a cascade, the only275

information that gets transmitted in a given time interval is the total amount

of enzymes in the system during that time interval — it doesn’t matter if the

total enzyme concentration is fluctuating or increasing. Therefore, the cascade

structure generates a reliable switch, irrespectively of the way the total enzyme

concentration arrives at the critical value. It seems for most practical purposes,280

a three layer cascade will do precisely this; therefore, adding more layers to the

cascade serves no apparent purpose.

To understand why the output is indeed sigmoidal and that after a certain
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point additional layers only delays the activation time, a functional operator

was derived for an open enzymatic system based on perturbation techniques285

similar to the ones employed by [34] and [35]. This functional operator smoothes

the signal by integrating and then composes the integral with a monotonically

increasing concave function. This generates a novel conjecture in probability

theory that we are unable to prove rigorously at this time.

An interesting consequence of our perturbation analysis is that if ε� 1, then290

the steady-state parameters derived for a closed enzymatic system can be used

when those systems are open networks embedded in a larger chemical reaction

network. Such open networks have been discussed in Eq. (7) motivated by the

need to modularize the enzymatic cascade. We show that it is possible to use

Michaelis-Menten parameters when a module is embedded in a larger network.295

In addition, there are other open networks such as those with a flux of substrates

[41] or networks with mechanisms that destroy enzymes where our results may

apply.

As is often the case in perturbation arguments, if ε = O(1), the results

may still hold: For the parameters listed in Table 1, ε ≈ 0.6 the simulations300

of the basic model and the functional iteration model are qualitatively correct

and quantitatively close but not perfect. In [37] we discuss in detail the error

behavior of the perturbation scheme and show that the errors between the full

simulation and the perturbation scheme go to zero as ε→ 0.

The fact that the simplified enzymatic cascade is based on the assumption305

that the phosphatase concentration is much smaller than the proteins they act

on (true for signaling cascades) is important for the sigmoidal output signal:

If the phosphatase concentration is allowed to be on the same order as their

target molecules, then the filtering behavior of signaling cascades deteriorates

dramatically. By using the same parameters as in Table 1, but with PPT i =310

0.5µM , the oscillations from an input can persist much longer. Figure 7 shows

the output for a 1-layer, 5-layer, and 10-layer cascade. Another issue with the

simplified enzymatic cascade is the fact that that there is no mechanism to shut

the system down. A small pulse, no matter how small or brief, is guaranteed
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to activate a full response in an enzymatic cascade with more than one layer.315

Future work will focus on brief pulses which are likely to be subcritical and on

the shut down behavior of signaling cascades.

Table 1: The parameters used for Figures 3, 4, and 5. i ≥ 1 and j > 1.

ai = ãi = 200 (µM ·min)−1 Ē = 0.1 µM ε1 = 0.125 εj = 0.625

ki = k̃i = 30 min−1 S̄i = 0.5 µM tsc1 = 0.2667 min tscj = 0.0533 min

di = d̃i = 30 min−1 PPT i = 0.024 µM σ1 = 1.67 σj = 1.67

6. Appendix

This appendix presents some of the mathematical details of the singular

perturbation theory for time dependent Michaelis Menten models. It follows320

closely the presentation in [37].

6.1. Accuracy of the Time-Dependent Approximation

In our analysis, we do not invoke the quasi-steady state assumption because

the complex concentration can fluctuate depending on the behavior of the input

signal, Λ̄. Also, unlike the work done on the closed system, the existence of325

a boundary layer is dependent on whether there is a boundary layer in the

dynamics of Λ̄. However, when the system is scaled on the time of the product

formation and perturbation methods are invoked, the initial values for the O(1)

equations are the same as the system they are approximating. Discrepancies

could arise, depending on Λ̄, in the initial conditions when looking at the O(ε)330

equations. We would like to keep Λ̄ as general as possible, and do our analysis

on the time-scale of product formation, which is the same as looking at the

total-substrate depletion, Sc.

To scale the dependent variables, it is necessary to get an estimate for their

maximum values. Clearly, S(0), which is labeled as S̄, is the maximum of Sc,

and by assumption Ē is the supremum of Λ̄. It is not as easy to estimate the

maximum of C given the generality of Λ̄. In all cases that would make physical
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sense, C has a global maximum. Let t0 be the time at which the global max

occurs. At this maximum, the derivative of C will be zero, and an upper bound,

C̄, can be derived which will be used as an estimate for C.

Cmax =
Λ̄(t0)S(t0)
Km + S(t0)

≤ ĒS̄

Km + S̄
= C̄.

This estimate can then be used to derive an estimate for the maximum of∣∣∣Ṡc∣∣∣ and an estimate for the time-scale of Sc. Since Ṡc = −k1C,

tSc = (Scmax
− Scmin

)/
∣∣∣Ṡc∣∣∣

max
≈ S̄/

∣∣k1C̄
∣∣ =

Km + S̄

k1Ē
.

Defining the dimensionless variables

T =
t

tSc
, sc(T ) =

Sc(t)
S̄

, c(T ) =
C(t)
C̄

, Λ(T ) =
Λ̄(t)
Ē

,

and using the dimensionless parameters:

σ =
S̄

Km
, κ =

d1

k1
, ε =

Ē

Km + S̄
,

the dimensionless system is:

s′c = −c,

εc′ = (κ+ 1) [((σ + 1)Λ− σc)(sc − εc)− c] , (13)

sc(0) = 1, c(0) = 0.

The O(1) equations are:

c0 =
(σ + 1)Λsc0
σsc0 + 1

, (14)

s′c0 = −c0.

It should be useful to note that

c′0 =
(σ + 1)sc0Λ′

σsc0 + 1
+

(σ + 1)s′c0Λ
(σsc0 + 1)2

.

The O(ε) equations are:

c1 =
1

1 + σsc0

(
c0(σc0 − (σ + 1)Λ) + ((σ + 1)Λ− σc0)sc1 −

c′0
κ+ 1

)
,

s′c1 = −c1.
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The equation for sc1 can be expressed as:

s′c1 = −P (T )sc1 +Q(T ),

where

P (T ) =
1

1 + σsc0
((σ + 1)Λ− σc0) =

−s′c0
sc0

+
σs′c0

1 + σsc0
,

Q(T ) =
1

1 + σsc0

(
c′0

κ+ 1
+ c0((σ + 1)Λ− σc0)

)
=

1
1 + σsc0

(
(σ + 1)sc0Λ′

(κ+ 1)(σsc0 + 1)
+

(σ + 1)s′c0Λ
(κ+ 1)(σsc0 + 1)2

− (σ + 1)Λs′c0 +
σs′c0(σ + 1)sc0Λ

σsc0 + 1

)
.

Hence, the integrating factor is:

exp

(∫ T

0

P (x)dx

)
=

1 + σsc0
sc0

.

Hence,

exp

(∫ T

0

P (x)dx

)
Q(T ) =

(σ + 1)Λ′

(κ+ 1)(σsc0 + 1)
+(σ+1)Λ

(
s′c0

(κ+ 1)sc0(σsc0 + 1)2
−

s′c0
sc0(σsc0 + 1)

)
.

Let u(y) = sc0(y) and v(y) = Λ(y). Then∣∣∣∣∣
∫ T

0

exp
(∫ y

0

P (x)dx
)
Q(y)dy

∣∣∣∣∣ ≤ σ + 1
κ+ 1

∫ Λ

0

dv+
σ + 1
κ+ 1

∣∣∣∣∣
∫ 1

sc0

1
u(σu+ 1)2

du

∣∣∣∣∣+(σ+1)

∣∣∣∣∣
∫ 1

sc0

1
u(σu+ 1)

du

∣∣∣∣∣ .
We are left with the inequality:

|sc1 | ≤
(σ + 1)sc0Λ

(σsc0 + 1)(κ+ 1)
+

σsc0(1− sc0)
(κ+ 1)(σsc0 + 1)2

− (σ + 1)sc0
(κ+ 1)(σsc0 + 1)

log
(

(σ + 1)sc0
σsc0 + 1

)
− (σ + 1)sc0

σsc0 + 1
log
(

(σ + 1)sc0
σsc0 + 1

)
≤ 1
κ+ 1

(
2 +

1
e

)
+

1
e
< 3,

which implies that sc1 is bounded and hence the perturbation scheme is valid.

335

Figure 8 shows plots demonstrating the accuracy of the approximated solu-

tions for σ = 1, κ = 1, ε = 0.1 and Λ1 = 0. Figure 8b shows that the O(1)

solution based on Equation (14) has a small error (approximately O(ε)) relative

to the actual solution calculated from Equation (13). Adding the solution based

on the O(ε) expansion gives high accuracy as can be seen in Figure 8d.340
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6.2. Accuracy of the Iteration Scheme

Since F is an O(1) approximation to the true output, treating a cascade as

an n-fold iteration of F has the potential to introduce additional error. It is

intuitive that one can trade the number of iterations against the smallness of ε.

We can see how perturbations in the input would propagate through the

approximated model. Suppose Λ is the input and Λ + εΛ1 is the perturbed

input. Let sc0 be the output for Λ and s̃c0 be the output to the perturbed

input. Then

log(sc0) + σsc0 = σ − (σ + 1)
∫ T

0

Λ(x)dx,

log(s̃c0) + σs̃c0 = σ − (σ + 1)
∫ T

0

Λ(x) + εΛ1(x)dx,

which implies

log(sc0)− log(s̃c0) + σ(sc0 − s̃c0) = (σ + 1)ε
∫ T

0

Λ1(x)dx.

By the Mean Value Theorem, there exists ξ ∈ (s̃c0 , sc0) ⊂ (0, 1], such that

log(sc0)− log(s̃c0) =
1
ξ

(sc0 − s̃c0).

This implies that

|sc0 − s̃c0 | =
∣∣∣∣ σ + 1
σ + 1/ξ

∣∣∣∣
∣∣∣∣∣ε
∫ T

0

Λ1(x)dx

∣∣∣∣∣ ≤ ε
∣∣∣∣∣
∫ T

0

Λ1(x)dx

∣∣∣∣∣ .
This suggests that using a sequence of function compositions as a model of a345

signaling cascade works well if
∣∣∫∞

0
s1(x)dx

∣∣ is bounded. Unfortunately, given

the general properties of the input Λ, it can be shown that
∣∣∫∞

0
s1(x)dx

∣∣ can

be made arbitrarily large and could quite possible be unbounded. It is possible

to contrive counter-examples demonstrating a large error between the outputs

with inputs that are O(ε) between each other, but for most relevant situations,350

the outputs tend to stay close to each other. More work is needed to determine

exactly what additional properties of Λ would guarantee close outputs.

Figure 9 shows examples of when ε = 0.1 and when ε = 0.01 for a 1-layer,

5-layer, and 10-layer cascade.
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Figure 3: Plots of various inputs and their outputs for a basic signaling cascade

with identical modules. In the first row, various input signals are plotted. Λ̄(t) is

increasing fast in column (a), is periodic in column (b) and increases very slowly

in column (c). In the second row, the outputs for various n-layered cascades are

shown. We see that the point of inflection of the output signal advances (moves

to the left) with additional cascade levels. The last row shows that adding

additional layers beyond 4 (for column (a) and (b)) and seven (column (c)) only

delays the rise of the output signal. The small amount of phosphatase in the

system means that the signaling cascade will behave similarly to an enzymatic

cascade, so multiple layers will smooth out an oscillating input.
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Figure 4: Plots of various inputs and their outputs for a basic enzymatic cascade

with identical modules. The behavior of the outputs for the enzymatic cascade

model is similar to that of the results for the signaling cascade model in Figure

3. One major difference is in the center graph. Unlike the signaling cascade

with opposing covalent modifications, there is no mechanism for the product

molecules to be deactivated. Hence, they are always increasing, but the effect

of an oscillating input is still apparent.
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Figure 5: Plots of various inputs and their outputs for (11) model of an enzy-

matic cascade. As in Figures 3 and 4 the first row shows a sharply increasing

input function (column (a)), a periodic input column (b)) and a slowly increas-

ing input (column(c)). The outputs for these inputs for the first three cascades

are shown in row two and the outputs for cascades four to ten is shown in row

three. In all cases, it appears that the shift to the right becomes constant. The

parameters used for these simulations can be found in Table 1.
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Figure 6: A 3rd layer output that is not sigmoidal.
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Figure 7: What happens when the phosphatase concentration is on the same

order of its substrate.
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Figure 8: Plots demonstrating the accuracy of the perturbation expansion. (a)

the input function Λ0, (b) the exact solution and the O(1) approximations, (c)

the O(ε) correction and (d) the actual solution and the solution up to O(ε).
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Figure 9: Plots demonstrating the accuracy of approximating an enzymatic

cascade.

In column (a), the scaled input function and outputs for various n-layered cas-

cades are plotted. ε = 0.1 for the first column. In column (b), the same plots

are displayed, except with ε = 0.01.
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