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Abstract 23 

The impacts of climate extremes on terrestrial ecosystems are poorly understood but 24 

central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle 25 

models typically assume that vegetation recovery from extreme drought is immediate and 26 

complete, which conflicts with basic plant physiological understanding. We examine the 27 

recovery of tree stem growth after severe drought at 1,338 forest sites globally comprising 28 

49,339 site-years and compare it to simulated recovery in climate-vegetation models. We find 29 

pervasive and substantial “legacy effects” of reduced growth and incomplete recovery for 1-4 30 

years after severe drought, and that legacy effects are most prevalent in dry ecosystems, 31 

Pinaceae, and species with low hydraulic safety margins. In contrast, no or limited legacy effects 32 

are simulated in current climate-vegetation models after drought. Our results highlight hysteresis 33 

in ecosystem carbon cycling and delayed recovery from climate extremes.   34 
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Main text 46 

Anthropogenic climate change is projected to alter both climate mean and variability, 47 

leading to more climate extremes such as heat waves and severe drought (1). Increasing 48 

variability is likely to profoundly affect ecosystems, as many ecological processes are more 49 

sensitive to climate extremes than changes in mean states (2–4). In turn, the impacts of these 50 

extremes can have major effects on ecosystem carbon cycling, feeding back to accelerate or 51 

reduce climate change. The 2003 European heat wave, for example, led to a strong anomalous 52 

carbon source, reversing four years of carbon uptake by terrestrial ecosystems on a continental 53 

scale (5).  54 

Forest ecosystems store nearly half of the carbon found in terrestrial ecosystems (6), but 55 

the fate of forests under climate change and with increasing climate extremes remains uncertain 56 

and controversial. While some studies see large regions of forest as poised on the verge of 57 

“collapse” to an alternative state (7–9), others suggest forests are relatively “resilient” and likely 58 

to experience only modest changes (10–12). The sensitivity of forests to climatic extremes has 59 

become apparent in global patterns of widespread forest mortality (13), which highlight that the 60 

forest carbon sink could be weakened or even transition rapidly to a carbon source in some 61 

regions (13–15). Thus, the response of forests’ growth and mortality to extreme drought and heat 62 

constitutes a large uncertainty in terrestrial carbon cycle feedback projections (16).  63 

Treatment of drought in carbon cycle models is limited by a lack of representation of 64 

processes that capture the dynamics of ecosystem response, such as recovery following drought 65 

and the potential for legacies or hysteresis, features which are likely critical to predicting future 66 

system behavior (17, 18). For example, lags in precipitation, particularly in semi-arid regions, 67 

have been shown to be important in the interannual variability of the land carbon sink (19). In 68 
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current climate-carbon cycle models, plant physiological recovery from drought is often assumed 69 

to be complete and relatively fast. This is at odds with current understanding of physiological 70 

mechanisms in many ecosystems, particularly those with long-lived individual plants. Legacy 71 

effects and hysteresis after drought have been documented in stomatal conductance (20, 21), 72 

wood anatomy and density (22), xylem vulnerability to drought (23), drought-induced tree 73 

mortality (24, 25), and aboveground primary productivity (21, 26).  Dynamics of recovery from 74 

severe drought as a biological legacy can have a major influence on vulnerability to subsequent 75 

drought events, particularly if the drought return interval is shorter than the recovery time (17). 76 

The rate of recovery, for example in the re-establishment of hydraulic function following 77 

drought, is largely unknown for the vast majority of tree species (24). 78 

We test here the occurrence, prevalence, and magnitude of legacy effects after severe 79 

drought using tree growth (i.e. tree ring width) stand-level chronologies from 1,338 sites, 80 

representing 49,339 site-years, across the globe, primarily in northern hemisphere extra-tropical 81 

forest ecosystems. We selected tree-ring master chronologies (typically of 10-20 trees per site) 82 

from the International Tree Ring Data Bank (27) that contained at least 25 years of data during 83 

1948-2008. We define drought legacy as a departure of observed tree growth (ring-width index) 84 

in the period following a drought episode from that expected based on the relationship between 85 

growth and climate.	
  Wood growth is ideal to test for drought legacy effects because it provides a 86 

long temporal record and has major carbon cycle implications. Wood is a carbon pool with slow 87 

turnover that stores immense amounts of ecosystem carbon (6), and wood growth is tightly 88 

correlated with net primary productivity (28). We further examine the extent to which observed 89 

legacy effects are simulated in current vegetation models from the Coupled Model 90 

Intercomparison Project, Phase 5 (CMIP5). We ask: i) Are legacy effects after extreme droughts 91 
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pervasive in tree growth? ii) Are legacy effects more prominent in wet or dry environments? iii) 92 

Do legacy effects vary among species with different hydraulic safety margins (29), a measure of 93 

how close a tree approaches catastrophic damage to its xylem during drought (e.g. (25)). iv) Are 94 

the legacy effects simulated in CMIP5 coupled climate-carbon cycle models similar to those 95 

observed in tree rings?  96 

We quantified legacy effects in tree-ring width chronologies using two methods: 1) the 97 

departure of observed from predicted growth recovery after drought based on correlations with 98 

climate and 2) partial autocorrelation coefficients. We focused primarily on sites where ring 99 

width anomaly exhibited significant correlations (r>0.3; mean correlation r=0.51) with drought 100 

(here Climatic Water Deficit; (30)) because we seek to quantify the duration of growth 101 

suppression or enhancement after a drought. We found significant legacies in radial growth after 102 

severe drought (>2 standard deviations) that lasted 2-4 years (Fig 1a; Fig S1). These effects were 103 

substantial in magnitude: ~9% decrease in observed vs. predicted growth in year 1 and 5% in 104 

year 2 after drought (Fig 1a). Legacy effects were observed regardless of the minimum climate 105 

correlation cut-off (Fig S1) or the drought variable used (Fig S2; Fig S3), and also observed in 106 

the partial autocorrelation analysis (Fig S4). There did not appear to be a strong link between the 107 

magnitude of the legacy effect and the peak intensity of the observed drought (R2=0.01, p=0.08) 108 

(Fig S5).  109 

Legacy effects were most pronounced in arid ecosystems (Fig 1b). Mean annual 110 

precipitation was the only significant predictor of the magnitude of drought legacy effects in tree 111 

growth, although with low explained variance (R2=0.05, p=0.0003; Fig S6). Correlations with 112 

mean annual temperature and potential evapotranspiration both insignificant (p>0.05). Strong 113 

legacy effects also tended to occur in semi-arid regions in the northern hemisphere (Fig 2a) and 114 
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where correlations between growth and drought were higher (Fig 2b). Tree-ring chronologies in 115 

the southwestern and midwestern United States, as well as parts of northern Europe, exhibited 116 

particularly strong legacy effects (Fig 2a). Positive legacy effects – where observed growth was 117 

higher than predicted after drought – were most frequent in California and the Mediterranean 118 

region (Fig 2a).  119 

Gymnosperms exhibited slight but statistically significantly larger (magnitude and 120 

duration) legacy effects than angiosperms (t=2.25, p=0.02) (Fig S7). Among families, Pinaceae 121 

(e.g. pines) and Fagaceae (e.g. oaks) were best represented in the dataset, accounting for >90% 122 

of chronologies analyzed. Pines exhibited substantially larger legacies than did oaks (Fig 1c). 123 

Although pines were on average found at drier locales than oaks (average MAPpine = 660 mm/yr; 124 

average MAPoak = 760), a model allowing for interactions between precipitation and family was 125 

highly significant (t=2.55, p=0.01), indicating that the precipitation-family interaction was 126 

important. Indeed, both wet and dry pine sites exhibited strong negative legacy effects while wet 127 

oak sites exhibited slightly negative legacy effects and dry oak sites had strong positive legacy 128 

effects (Fig S8). Pines also had stronger negative legacy effects than the other main gymnosperm 129 

family in the database, Cupressaceae (Fig S9). This is consistent with the generally higher 130 

drought tolerance in Cupressaceae than in Pinaceae (31) and is supportive of a hydraulic damage 131 

mechanism underlying legacy effects (see below).  132 

Several physiological mechanisms may underlie the observed legacy effects of reduced 133 

growth post-drought. Loss of leaf area and/or stored non-structural carbohydrates during drought 134 

may impair growth in subsequent years (25). Pest and pathogen impacts may lag drought or 135 

accumulate in drought-stressed trees, thereby lowering growth rates (25). Finally, stress-induced 136 

shifts in xylem anatomy and associated vulnerability to hydraulic dysfunction, or remnants of 137 
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drought-induced xylem cavitation, could impair water transport and therefore growth (25). While 138 

data for the first two hypotheses are not available, testing the third hypothesis is possible with an 139 

existing global hydraulic trait database (29).  We found that species with lower hydraulic safety 140 

margins, defined as the water potential at which 50% conductivity is lost minus the minimum 141 

measured water potential (Ψ50 – Ψmin), exhibited larger legacy effects (R2=0.33, F=4.95, p=0.04) 142 

(Fig 3) (Table S1). This indicates that species most at risk of hydraulic damage are also those 143 

that have the slowest growth recovery after drought. Previous studies at individual sites have 144 

observed drought-induced shifts in plant hydraulics especially in the first 3-4 years post-drought 145 

in oaks and poplars (22, 25), and our results generalize these findings across many taxonomic 146 

groups and a broad geographic range.  147 

The CMIP5 models captured little to no detectable legacy effects from severe drought in 148 

the same grid cells where the tree-ring chronologies were located (Fig 4). In many cases, 149 

interannual variability of wood carbon growth was quite low and more weakly correlated with 150 

water limitation or drought (mean correlations of R=0.01-0.09) than the observed tree-rings at 151 

the same locations (mean correlation R=0.25). Only the GFDL ESM2G model exhibited 152 

significant legacy effects of 1-2 years (Fig 4a), although of lower magnitude than the observed 153 

legacies (Fig 1a). Both GFDL ESM2G and CanESM use a dynamic carbon allocation scheme, 154 

but different approaches to allocate carbon, particularly under drought conditions. ESM2G’s 155 

scheme (32) is based on the pipe model for the relationship between sapwood area and leaf area 156 

(33) and allows drought-induced loss of living carbon, including from the sapwood pool, which 157 

may allow it to capture legacy effects. Most CMIP5 class models use constant fractional 158 

allocation among the vegetation pools, and this appears to be a crucial limitation to capturing 159 

legacy effects of drought.    160 
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The response of terrestrial ecosystems to drought has been reported to be one of the 161 

largest uncertainties in the carbon cycle (34) and is not well-represented in current vegetation 162 

models, as evidenced by our model-data comparison. Current models lack representation of some 163 

basic physiological and structural properties of plants, such as vulnerability of plant xylem 164 

transport to hydraulic water stress, that lead to growth suppression, legacy effects and drought-165 

induced mortality (35). We note that mortality is generally not measured or reported at these 166 

sites, so our analysis does not examine drought-induced mortality, but mortality or canopy 167 

dieback of surrounding trees could potentially generate some of the positive legacy effects in 168 

surviving trees that we observed due to increased resource availability. While the impacts of 169 

climate extremes on plant mortality and species turnover will also influence carbon cycling (14), 170 

we detect a strong, pervasive, and previously undocumented legacy effect of drought on tree 171 

growth, especially in dry regions. That is, even when climatic conditions return to normal, 172 

surviving trees do not recover their expected growth rates for an average of 2-4 years. Given that 173 

(i) woody plant growth is a central component of carbon storage and often correlated with 174 

productivity and (ii) semi-arid regions’ prominent role in global carbon cycle variability (19), 175 

these legacy effects have potential ramifications for interannual variability of ecosystem carbon 176 

cycling and long-term carbon storage. For example, a simple estimate based on southwestern 177 

United States forests revealed that legacy effects could conservatively lead to 3% lower 178 

ecosystem carbon storage in semi-arid ecosystems over a century, equivalent to 1.6 Gt carbon 179 

when considering all semi-arid ecosystems across the globe (30). 180 

Drought could lead to changes in a tree's carbon allocation, with less being allocated to 181 

bole growth and more to roots ore leaves (36, 37), which would imply that growth declines might 182 

not immediately reflect decreases in forests’ carbon uptake. The fast turnover of leaves and roots, 183 
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however, would still result in overall decreases in ecosystem-level carbon storage relative to 184 

cases without legacy effects (37). A major remaining question is how prominent are legacy 185 

effects in tropical forests, where tree-ring analyses are challenging. There are some indications of 186 

legacy effects in the Amazon in satellite (38) and time-series inventory plot analyses (39) 187 

following the severe 2005 and 2010 droughts. The lack of legacy effects in CMIP5 models 188 

implies that drought impacts and their effect on carbon cycling are not accurately captured. 189 

These findings reveal the critical roles of contingency and hysteresis in ecosystem response 190 

following climate extremes.  191 

 192 
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thank the climate modeling groups (listed in Supplementary Material of this paper) for producing 373 

and making available their model output. For CMIP the U.S. Department of Energy's Program 374 

for Climate Model Diagnosis and Intercomparison provides coordinating support and led 375 

development of software infrastructure in partnership with the Global Organization for Earth 376 

System Science Portals. 377 
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Figure Legends 379 

Figure 1: Legacy effects are substantial and persist for 3-4 years. Legacy effects are quantified as  380 

the difference between observed and predicted growth (unitless index) after two standard 381 

deviation anomaly in climatic water deficit. (a) Legacy effects observed across all 1,338 382 

tree ring chronologies (dashed line) and 695 tree ring chronologies at sites that correlate 383 

significantly with the climatic water deficit (solid line and red polygon). (b) Legacy 384 

effects at a subset of the above 695 sites categorized as arid (mean annual precipitation < 385 

500 mm) and wet (mean annual precipitation > 1000 mm) sites. (c) Legacy effects at a 386 

subset of the above 695 sites supporting either of the two main represented families: 387 

Pinaceae and Fagaceae. Shaded regions represent the 95% confidence interval around the 388 

mean from bootstrapping (n=5000).  389 

Figure 2: Legacy effects are most prevalent in the southwestern and midwestern United States 390 

and parts of northern Europe (e.g. integrated legacy effects < -1.5; dark red symbols). 391 

Legacy effects are quantified as the difference between observed and predicted growth 392 

(unitless index) after two standard deviation anomaly in climatic water deficit across 393 

1,338 sites. (a) Site-level legacy effect summed over the first four years post drought. (b) 394 

Average correlation between tree growth (ring width) and the climatic water deficit (soil 395 

moisture from 0-100 cm minus potential evapotranspiration).  396 

Figure 3: Higher legacy effects are associated with species with low hydraulic safety margins. 397 

Integrated legacy effects are quantified as observed – predicted growth (unitless index) 398 

after two standard deviation drought, summed over 1-4 years, averaged across all 399 

droughts within a chronology, and averaged across all chronologies for a given species. 400 
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Each point represents a species where legacies and hydraulic traits were both available. 401 

Error bars represent ± 1 standard error.  402 

Figure 4: Legacy effects after drought are not observed in predicted woody biomass in Earth 403 

System Models. (a-f) Legacy effects after a two standard deviation drought in grid cells 404 

that correlate significantly with drought and overlapped the locations of the 1,338 tree 405 

ring chronologies in the real world. Shaded regions represent the 95% confidence interval 406 

around the mean from bootstrapping (n=5000). 407 
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Supplementary Materials are available online and include Materials and Methods, Supplemental 422 

Tables, and Supplemental Figures (references 40-67).  423 




