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Abstract. The net storage heat flux (1QS) is important in
the urban surface energy balance (SEB) but its determina-
tion remains a significant challenge. The hysteresis pattern
of the diurnal relation between the 1QS and net all-wave ra-
diation (Q∗) has been captured in the Objective Hysteresis
Model (OHM) parameterization of 1QS. Although success-
fully used in urban areas, the limited availability of coeffi-
cients for OHM hampers its application. To facilitate use, and
enhance physical interpretations of the OHM coefficients,
an analytical solution of the one-dimensional advection–
diffusion equation of coupled heat and liquid water transport
in conjunction with the SEB is conducted, allowing develop-
ment of AnOHM (Analytical Objective Hysteresis Model).
A sensitivity test of AnOHM to surface properties and hy-
drometeorological forcing is presented using a stochastic ap-
proach (subset simulation). The sensitivity test suggests that
the albedo, Bowen ratio and bulk transfer coefficient, solar
radiation and wind speed are most critical. AnOHM, driven
by local meteorological conditions at five sites with differ-
ent land use, is shown to simulate the1QS flux well (RMSE
values of ∼ 30 W m−2). The intra-annual dynamics of OHM
coefficients are explored. AnOHM offers significant poten-
tial to enhance modelling of the surface energy balance over
a wider range of conditions and land covers.

1 Introduction

The essential role of an integrated land surface model is to
physically predict the land–atmosphere interactions by re-
solving the transfer of energy, water, and trace gases (Katul et
al., 2012; Liang et al., 1994; Sellers et al., 1997). Such land–
atmospheric interactions are strongly modulated by the parti-
tioning of solar energy at the land surface (Chen and Dudhia,
2001; McCumber and Pielke, 1981; Yang and Wang, 2014)
which can be considered through the surface energy balance
(SEB) equation (Oke, 1988):

Q∗−1QS =QH +QE, (1)

whereQ∗,1QS,QH , andQE are the net all-wave radiation,
net storage, turbulent sensible, and latent heat fluxes, respec-
tively. Equation (1) distinguishes the available energy at the
land surface (left-hand side) from the heat transfer through
turbulent transport (right-hand side).

The turbulent and radiative fluxes (Q∗, QH , and QE) are
more readily measured using standard techniques (e.g. eddy-
covariance instruments, radiometry) than 1QS (Offerle et
al., 2005; Pauwels and Daly, 2016; Roberts et al., 2006;
Wang, 2012). For 1QS the net energy stored or released by
changes in sensible heat within the canopy air layer, rough-
ness elements (e.g. vegetation, buildings in an urban environ-
ment), and the ground all have to be considered. The volume
of interest extends from the top of the roughness sub-layer to
the depth in the ground where the daily averaged vertical net
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heat conduction is zero (see Fig. 2 in Masson et al., 2002);
this presents very significant challenges of spatial sampling.

Knowledge of1QS is crucial to a wide range of processes
and applications: from modelling turbulent heat transfer and
boundary layer development to predicting soil thermal fields.
In rural sites, or simple bare soil sites, the flux may be a
small fraction of the net all-wave radiation (Oliphant et al.,
2004). However, in areas where there is more mass, such as
cities, the term becomes much more significant (Kotthaus
and Grimmond, 2014a) and a key element of the SEB and
well-known effects such as the urban heat island.

In urban systems a wide range of techniques have been
used to estimate 1QS (Grimmond et al., 1991; Roberts et
al., 2006). These include the following:

a. Heat conduction approach: the weighted average of heat
flows through all urban materials and surfaces by solv-
ing heat conduction equations – e.g. buildings, streets,
vegetated lands (Offerle et al., 2005; Wang et al., 2012;
Yang et al., 2014).

b. Thermal mass scheme: the storage heat is inferred from
the changes in thermal mass of all components of the
urban system (Kerschgens and Kraus, 1990).

c. Heat flux plates: combined measurements from grass
and paved surfaces (Kerschgens and Drauschke, 1986;
Kerschgens and Hacker, 1985).

d. Parameterization as a function of Q∗: either as a linear
function (Oke et al., 1981), hyperbolic (cotangent, se-
cant) function (Doll et al., 1985), or hysteresis relation
(Camuffo and Bernardi, 1982). The last of these is used
in the Objective Hysteresis Model (OHM) (Grimmond
et al., 1991).

e. Residual: practical difficulties of direct measurement
of 1QS in urban areas, result in the SEB residual
(i.e.Q∗+QF −(QH +QE)) frequently being the “pre-
ferred” observations (Ao et al., 2016; Ching et al., 1983;
Doll et al., 1985; Li et al., 2015; Oke and Cleugh, 1987)
(where QF is the anthropogenic heat flux).

The focus here is on the OHM approach, which is forced
by Q∗ and accounts for the diversity of the surface materi-
als (sub-facets i) in the measurement source area of interest
with weightings (f ) for their two- or three-dimensional ex-
tent (Grimmond et al., 1991):

1QS =
∑
i

fi

(
a1,iQ

∗

i + a2,i
∂Q∗i

∂t
+ a3,i

)
, (2)

where the a1, a2, and a3 coefficients are for individual
facets determined by least-square regression between 1QS
and Q∗ using results from observations (e.g. asphalt road
(Anandakumar, 1999), wetlands (Souch et al., 1998), forests
(Oliphant et al., 2004), or numerical modelling – e.g. urban

canyons (Arnfield and Grimmond, 1998) and roofs (Meyn
and Oke, 2009). These coefficients capture the net behaviour
of a facet type in a typical setting, rather than being required
to identify the component materials within a facet (e.g. mul-
tiple materials making up a roof, wall, with varying thermal
connectivity and individual properties). As such, OHM is one
of the less demanding parameterizations, yet does capture a
more realistic understanding of the relation between1QS by
Q∗ compared with other approaches. Despite the shortage of
OHM coefficients for the wide range of facet types found in
cities, OHM captures the urban 1QS overall generally well
(Grimmond and Oke, 1999; Järvi et al., 2011, 2014; Karsisto
et al., 2015; Roth and Oke, 1995).

OHM is a cornerstone in the urban land surface mod-
els SUEWS (Surface Urban Energy And Water Balance
Scheme; Järvi et al., 2011, 2014; Ward et al., 2016) and
LUMPS (Local-Scale Urban Meteorological Parameteriza-
tion Scheme; Grimmond and Oke, 2002), and plays an essen-
tial role in determining the initial energy partitioning at each
time step of the models’ simulations. Previous modelling
studies (Arnfield and Grimmond, 1998; Meyn and Oke,
2009) have led to better understanding of the OHM coeffi-
cients. Solution of the one-dimensional advection–diffusion
equation of coupled heat and liquid water transport by Gao et
al. (2003, 2008) was used to explore the physical relation of
OHM coefficients a1 and a2 to the phase lag between 1QS
and Q∗. However, insight into a3 remain unclear (Sun et al.,
2013).

In this paper, the solutions of the one-dimensional
advection–diffusion equation of coupled heat and liquid wa-
ter transport (Gao et al., 2003, 2008) are employed with the
SEB (Eq. 1) to investigate more fully the three OHM coeffi-
cients, the outcomes of which lead to development of the An-
alytical Objective Hysteresis Model (AnOHM) (Sect. 2). The
Monte Carlo-based subset simulation (Au and Beck, 2001)
approach is then used to undertake a sensitivity analysis of
AnOHM to surface properties and hydrometeorological con-
ditions (Sect. 3). An offline evaluation of AnOHM’s perfor-
mance for five sites with different land covers (Sect. 4) pro-
vides evidence that this is an alternative approach to obtain
OHM coefficients. Given that this allows applications across
a much wider range of environments and meteorological con-
ditions, we conclude that AnOHM has important implica-
tions for land surface modelling (urban and non-urban).

2 Model development

2.1 Parameterization of storage heat flux 1QS for a
land surface

For a given land surface (e.g. bare soil), the governing heat
conduction–advection equation can be written (Gao et al.,
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2003, 2010) as

∂T

∂t
= λ

∂2T

dz2 +W
∂T

∂z
, (3)

where T is the temperature at a reference depth z (positive
downward), t is time, λ is the thermal diffusivity, and W =
∂λ/∂z−

(
CW/Cg

)
wϕ is the soil water flux density (Ren et

al., 2000), with CW the volumetric heat capacity of water,
Cg the volumetric heat capacity of soil, w the pore water
velocity, and ϕ the volumetric soil water content.

The steady-periodic solution of Eq. (3) corresponding
to the principal Earth rotation frequency (ω = 2π

/
24, in

radh−1), with boundary condition

TS = ATS sin(ωt − γ )+ T S (4)

is given by (Gao et al., 2003, 2010)

T (z, t)= ATS exp(−z/M)sin(ωt − z/N − γ )+ T S, (5)

where M = 2λ
1+W

, N = 1
ω

, and 1=

√
W 2+
√
W 4+16λ2ω2

2 ;

with T S, ATS , and γ denoting the daily mean value, ampli-
tude, and initial phase of surface temperature, respectively,
which need to be determined by the boundary conditions im-
posed by the SEB.

From Fourier’s law, the soil heat flux is then given by

G(z, t)≡−
k∂T

∂z
= kATS

√
M2+N2

MN
exp

(
−
z

M

)
sin
(
ωt −

z

N
− γ + δ

)
, (6)

where δ = arctan
(
M
N

)
= arctan

[
2λω

(1+W)1

]
and k is the ther-

mal conductivity. In particular, at the surface z= 0, the
ground heat flux G0 is given by

G0 (t)= kATS

√
M2+N2

MN
sin(ωt − γ + δ) , (7)

and a simple written form of 1QS (if only one surface) can
be given as

1QS =G0 = cη sin(ωt + η), (8)

where η = δ− γ and cη = kATS

√
M2+N2

MN
.

Although the above derivation only considers the land sur-
face made of a single material type, the derived1QS (Eq. 8)
can be adapted for surfaces made of composite materials or
volumes given appropriate bulk/ensemble properties.

2.2 Parameterization of net all-wave radiation Q∗ for a
land surface

Given the parameterizations of incoming longwave radiation
L↓, outgoing longwave radiation L↑, sensible heat flux QH ,

latent heat flux QE , and storage heat flux 1QS as follows:

L↓ = εaσT
4

a , (9)

L↑ = εsσT
4

S︸ ︷︷ ︸
1

+ (1− εs)L↓︸ ︷︷ ︸
2

(10)

QH = ChU (TS− Ta) , (11)
QE =QH /β, (12)
1QS =G0. (13)

The boundary condition imposed by the SEB relation can be
rewritten as

(1−α)K↓+ εaσT
4

a − εsσT
4

S

= ChU
(

1+β−1
)
(TS− Ta)+G0, (14)

where the turbulent fluxes QH and QE are parameterized
as functions of temperature gradient TS− Ta with albedo α,
bulk transfer coefficient Ch, wind speed U , and Bowen ra-
tio (β =QH /QE). Theoretically, the second part of Eq. (10)
(i.e. (1− εs)L↓) should be accounted for in the estimation
of L↑ (Oke, 1987); however, given that it is usually less
than ∼ 5 % of the first part of the equation (see full discus-
sion in Appendix A) for most land covers (Oke, 1987), here
it is omitted from consideration and in the development of
AnOHM.

By assuming that the incoming solar radiation K↓ and
air temperature Ta follow sinusoidal forms through a day as
function of the mean value for the day (e.g. K↓) (Sun et al.,
2013),

K↓ = AK sin(ωt)+K↓, (15)

Ta = AT sin(ωt − τ)+ T a, (16)

and introducing the solar radiation scale,

A∗K = (1−α)AK , (17)

and longwave radiation scale (assuming εa ≈ εs ≈ ε as a
first-order estimate (as AnOHM is insensitive to this parame-
ter; see Sect. 3.2); see clear sky of ∼ 0.85 (Staley and Jurica,
1972) and urban surfaces of ∼ 0.95 (Kotthaus et al., 2014):

A∗T =
(

4εσT
3
a +

(
1+β−1

)
ChU

)
AT

= (fL+ fT )AT = fAT , (18)

where τ denotes phase differences between Ta and K↓, the
f = fL+ fT consists of the longwave energy redistribution
factor: fL = 4εσT

3
a and a turbulent energy redistribution fac-

tor: fT =
(
1+β−1)ChU . Linearizing the fourth-order long-

wave expressions of temperature at mean daily air tempera-
ture Ta (Sun et al., 2013), the values of TS and ATS are ob-
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tained:

T̄S =
1−α
f

K↓+ T a (19)

ATS =
fMN sin(τ )

N (fM + k)sin(γ )− kM cos(γ )
AT

=
1√

M2
∗ +N

2
∗

sin(τ )
sin(γ − ζ )

AT

= χγAT ,

(20)

where ζ = arctan(N∗/M∗), γ = ζ + arctan
(

sin(τ )
cos(τ )+A∗K/A

∗
T

)
,

M∗ = 1+ k/(fM), N∗ = k/(fN) and χγ =
1√

M2
∗+N

2
∗

sin(τ )
sin(γ−ζ ) .

The net all-wave radiation Q∗ is parameterized as

Q∗ = (1−α)K↓+ εσT 4
a − εσT

4
S

= (1−α)
(
AK sin(ωt)+K↓

)
+ fL (Ta− TS)

= cϕ sin(ωt +ϕ)+
fL

f
(1−α)K↓,

(21)

where ϕ = arctan
[

(χγ sin(γ )−sin(τ ))
(fA∗K)/(fLA

∗
T )−(χγ cos(γ )−cos(τ ))

]
and

cϕ =

√√√√√[ (fA∗K)2(
fLA

∗

T

)2 − (χγ cos(γ )− cos(τ )
)]2

+
[
βγ sin(γ )− sin(τ )

]2
.

2.3 Derivation of AnOHM coefficients

Based on the above parameterizations of Q∗ (Eq. 21) and
1QS (Eq. 8), together with OHM for a specific surface:

1QS = a1Q
∗
+ a2

∂Q∗

∂t
+ a3, (22)

the coefficients can be readily derived from the parameteri-
zation in Sect. 2.2, as

a1 =
cη

cϕ
cos(η−ϕ), (23)

a2 =
cη

ωcϕ
sin(η−ϕ), (24)

a3 =−
cη

cϕ
cos(η−ϕ) ·

fT

f
(1−α)K↓

=−a1 ·
fT

f
(1−α)K↓.

(25)

In the densest parts of cities, the anthropogenic heat (QF )

often has a large influence on the SEB and it needs to be ac-
counted for (Allen et al., 2011; Chow et al., 2014; Nie et al.,
2014; Sailor, 2011). This requires the governing SEB relation
(Eq. 14) to be rewritten:

(1−α)K↓+ εσT 4
a − εσT

4
S +QF

= ChU
(

1+β−1
)
(TS− Ta)+G0. (26)

Assuming QF is diurnally invariant (as a first-order es-
timate – e.g. Best and Grimmond, 2016), the derivation

(Sect. 2.2) can be extended to include a first-order estimate
of QF to obtain

a3F =−
cη

cϕ
cos(η−ϕ) ·

fT

f
(1−α)K↓−QF

=−a1 ·
fT

f
(1−α)K↓−QF , (27)

where a3F (subscript “F ” indicates the inclusion of QF ).
The other two coefficients remain unchanged.

2.4 Physical interpretations of AnOHM coefficients

Based on the parameterizations of AnOHM coefficients
(Eqs. 23, 24, 25/27), physical interpretations can be more
fully described compared with OHM:

a. a1 characterizes the ratio of 1QS and Q∗ and depends
on the energy scales (i.e. cη and cϕ) and their phase
difference (i.e. η−ϕ). The energy scales, representing
daily amplitudes of 1QS and Q∗, determine the over-
all magnitude, while the phase difference moderates the
ratio value.

b. a2 accounts for the temporal changes in 1QS and Q∗

by including the principal Earth rotation frequency ω,
in addition to the same determinants of a1 (i.e. cη, cϕ ,
and η−ϕ). The complementary sinusoidal functions,
with phase difference (i.e. sin(η−ϕ) and cos(η−ϕ)),
in the formulations of a1 and a2 are inversely related
with a stronger lag effect from a2, and less contribution
to 1QS by Q∗ (i.e. smaller a1).

c. a3 (or a3F ) indicates the baseline 1QS determined by
energy redistribution factors (i.e. fT and f ) and energy
inputs (i.e.K↓, andQF if anthropogenic heat is consid-
ered) as well as a1. It can be inferred from Eq. (2) that
the nocturnal 1QS is largely determined by a3 when
the absolute values and variability of Q∗ are small at
night. A larger daytime energy input (i.e. K↓, and QF

if anthropogenic heat is considered) suggests more heat
released at night.

3 Sensitivity analysis

Given the complex dependence of AnOHM coefficients on
surface properties and meteorological forcing (Sect. 2.3), the
impacts of these coefficients are assessed further by a sensi-
tivity analysis.

3.1 Subset simulation

To improve the computational efficiency of undertaking
Monte Carlo sensitivity analyses, subset simulation is used
(Au and Beck, 2001). This is an adaptive stochastic simu-
lation procedure with particular efficiency in analysing the
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short-tail of a distribution probability (while also adaptable
to long-tail scenarios) (Wang et al., 2011).

If the probability that a critical response Y exceeds a
threshold y,P (Y > y), a range of exceedance regions can be
specified and sampled using Markov chains. Initially a direct
Monte Carlo method is used to choose possible values for the
parameter of interest in the anticipated range with a specified
distribution (or probability distribution function, PDF) of the
uncertainty. From this (level 0), the first exceedance level
probability is determined, F1 at which P (Y > y1). Then a
Markov chain Monte Carlo (MCMC) procedure is used to
generate samples of a given conditional probability p0, lead-
ing to the exceedance of y1 in the earlier simulations. This
procedure is repeated, for exceedance events Fi at which
P (Y > yi)= p

i
0, i = 1, 2, 3, . . ., until simulations reach a

target exceedance probability, e.g. associated with rare events
or risk analysis. Further details of this subset simulation pro-
cess are provided in Wang et al. (2011).

Subset simulation efficiently generates conditional sam-
ples with Metropolis algorithms (Hastings, 1970; Metropolis
et al., 1953). This is the basis of MCMC. To generate sam-
ples that successively approach a certain conditional prob-
ability, a specific Markov chain is designed with the target
PDF as its limiting stationary distribution trend as its length
increases. The selection of a distribution is key as this con-
trols the next sample generated from the current one. Ideally,
the distribution selection would be automatic but this has an
efficiency cost relative to the robustness benefit. For the sur-
face parameters (Table 1a) and hydrometeorological forcing
(Table 1b) analyses a normal distribution PDF is used (Au
and Beck, 2003; Au et al., 2007), with three conditional lev-
els (Nlevel = 3) and a conditional probability of p0 = 0.1 –
i.e. at each level the highest 10 % of the outputs are consid-
ered to exceed the intermediate threshold. As such, the three-
level simulation can effectively capture a rare event with the
target exceedance probability of 10−4 (i.e. the probability of
occurrence is less than 1 in 10 000) and generate appropriate
samples of different conditional probabilities.

The metric S (in %), used to indicate the sensitivity of the
model output Y to a specific uncertainty parameter X (Wang
et al., 2011), is

S =

[
1

Nlevel

Nlevel∑
i=1

E
[
X|Y > yi

]
−E [X]

E [X]

]
× 100, (28)

where i = 1, 2, . . .,Nlevel is the index of conditional sam-
pling level, E [X] is the expectation that the unconditional
distribution of a specific uncertainty parameter X, while
E
[
X|Y > yi

]
is the expectation of X at conditional level i.

A positive (negative) S indicates an increase will lead to in-
crease (decrease) in simulated value. Hence the sign of S in-
dicates the impact of a change in parameter uncertainty. The
absolute magnitude of S indicates the sensitivity.

This assessment does not consider if the simulated values
have low probability. Later analyses (Sect. 4) consider the
simulation results relative to observed fluxes.

3.2 Impacts of surface properties

Following the sensitivity analysis of AnOHM coefficients to
the surface properties, the distributions of conditional sam-
ples for thermal conductivity k, bulk heat capacity Cp, and
emissivity ε are similar to the original proposal distributions
(Fig. 1), implying weak dependence of a1, a2, and a3 on these
properties. However, for albedo (α) both a2 and a3 are sen-
sitive, but a1 is not; changes in inverse Bowen ratio (β−1)

impact all three coefficients; and the bulk transfer coefficient
Ch impacts a1 and a2, but has little effect on a3.

Using S (Eq. 28) to quantify this, it is found that the sur-
face properties (k, Cp, and ε) have less sensitivity, with less
skewed conditional samples between levels, so S values close
to 0 (Fig. 2). The S of k is the largest of the three. From the
S results for the α sensitivity analysis (Fig. 2), it is appar-
ent that an increase in α will increase a1 while decreasing a2
and a3, whereas the reverse occurs for β−1 and Ch (i.e. their
decreases leads to larger a2 and a3 values but smaller a1).

From this, the links between the key surface parameters
and the storage heat flux can be considered. With an increase
in α, there is reduced solar energy in the SEB. This reduces
the temporal change in 1QS (smaller a2) and decreases the
baseline value of1QS (smaller a3); larger β−1 indicates that
more available energy is dissipated byQE than byQH , lead-
ing to decreased Ts and 1QS (smaller a1); a smaller por-
tion of Q∗ will be dissipated by 1QS (smaller a1) as the
increased Ch can facilitate the turbulent convection and thus
increase the total turbulent fluxes.

3.3 Impacts of hydrometeorological conditions

Similarly, the sensitivity of AnOHM to hydrometeorologi-
cal variables is explored (Fig. 3). The air temperature (range,
mean) and water flux density related variables (i.e. AT , T a,
and W) have minimal influence on the skewness of the con-
ditional samples. In contrast, the incoming shortwave (solar)
radiation (range, mean) and wind-related variables (i.e. AK ,
K↓, and U) and the phase lag τ between K↓ and Ta have
large impacts. In terms of the greatest impact on the coeffi-
cients (a1, a2, and a3):AK andU influences a1, τ impacts a2,
and a3 responds more toAK andK↓ than the other variables.

Variables that strongly modulate the interactions between
1QS and Q∗ can be informed by the S results (Fig. 4).
For instance, a greater range in K↓ (i.e. larger AK) will oc-
cur with larger energy input from solar radiation, leading to
stronger heating of the near-surface atmosphere and a smaller
portion to1QS (smaller a1) but higher baseline1QS (larger
a3). This is consistent with a reduction in K̄↓ having a de-
crease in a3. The temporal change in 1QS is highly corre-
lated with the change in τ , an increase in which implies a
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Table 1. Range of values used as basis for the sensitivity analysis: (a) surface parameters and (b) hydrometeorological variables. All are
assumed to have normal PDF. Values of surface parameters are based on values reported in Stull (1988).

Parameter/variable Unit Min Max Mean Standard deviation

(a) Surface

Thermal conductivity k W m−1 K−1 0 3 1.2 0.1
Bulk material heat capacity Cp MJ m−3 K−1 0 4 2.0 0.04
Albedo α – 0 1 0.27 0.07
Emissivity ε – 0.8 1.0 0.93 0.025
Midday* mean Bowen ratio (inverse) β−1 – 0 20 0.05 0.05
Bulk transfer coefficient Ch J m−3 K−1 0 8 4 0.5

(b) Hydrometeorological

Amplitude or range of the daily incoming shortwave radiation AK W m−2 0 1200 800 200
Mean daytime incoming shortwave radiation K↓ W m−2 0 500 200 50
Amplitude or range of the daily air temperature AT

◦C 0 15 8 2
Mean daily air temperature T a

◦C 0 40 30 7.5
Phase lag between radiation and air temperature τ rad 0 π/2 π/4 π/10
Mean daytime wind speed U m s−1 0 4 2 0.5
Mean daily water flux density W 10−7 m3 s−1 m−2 0 100 10 5

* midday period: 1000–1400 local standard time.

Table 2. Characteristics of the flux towers at the study sites.

Site UK-Ldn US-Wlr CA-NS5 US-SRM US-SO4

Location 51.50◦ N, 0.12◦W 37.52◦ N, 96.86◦W 55.86◦ N, 98.49◦W 31.82◦ N, 110.87◦W 33.38◦ N, 116.64◦W
Land cover classification Urban/built-up Grassland Evergreen needleleaf

forest
Woody savannas Closed shrublands

Land cover code URB GRA ENF WSA CSH
Study year 2011 2003 2004 2004 2005
Reference Kotthaus and Grim-

mond (2014a, b)
Klazura et al. (2006),
Coulter et al. (2006)

Goulden et al. (2006) Scott et al. (2009) Luo et al. (2007)

slower response of the surface to solar radiation and an over-
all decrease in 1QS (smaller a1, a2, and a3). The greater
sensitivity to τ of a2 is a key part of the original hysteresis
nature of the heating/cooling of a surface. The sensitivity re-
sponses of a1, a2, and a3 to U are very consistent with those
to Ch, suggesting the similar pathway that turbulent fluxes
(i.e. QH and QE) modulate 1QS. As W mostly influences
the heat conduction–diffusion in the underlying surface as
thermal properties (i.e. Cp and k), less dependence is ob-
served on it. This is similar with Cp and k.

4 Model evaluation

In this section, the actual ability of AnOHM to determine
the storage heat flux relative to observations is evaluated
using 30 min observations from five sites of different land
use/covers (Table 2). The measurements include turbulent
sensible and latent fluxes, along with incoming and outgoing
shortwave and longwave radiation and basic meteorological
variables (see Kotthaus and Grimmond, 2014a, b; Klazura et
al., 2006; Coulter et al., 2006; Goulden et al., 2006; Scott et

al., 2009; Luo et al., 2007, for details). Anthropogenic heat
flux QF at the urban site (i.e. UK-Ldn) is estimated using
the GreaterQF model (Iamarino et al., 2011); the heat storage
flux 1QS is thus estimated as the modified residual of urban
energy balance as 1QS =Q

∗
+ 0.75QF − 1.2(QH +QE)

(Kotthaus and Grimmond, 2014a, b), which is then used
in this evaluation. A similar approach for estimating 1QS
(i.e. residual of surface energy balance, 1QS =Q

∗
+QF −

(QH +QE)) is applied at the other (non-urban) sites but with
QF = 0.

AnOHM is first calibrated with observations under sunny
conditions, when the assumptions of AnOHM are best sat-
isfied (i.e. diurnal cycles of K↓ and Ta follow sinusoidal
forms), to obtain surface properties required by AnOHM (Ta-
ble 3). As the Bowen ratio β varies daily and monthly (Kot-
thaus and Grimmond, 2014a, b), β is either determined as
the daily value if available, or based on the observation-based
monthly climatology (Table 3). The seasonality in albedo α
is accounted for also by using its monthly climatology (Ta-
ble 3). AnOHM is driven by atmospheric forcing (i.e. K↓,
Ta, and U) and/or their derived scales (AK ,K↓, AT , T a, and
τ ) to generate the OHM coefficients (i.e. a1, a2, and a3, see
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Figure 1. Histograms of conditional samples at different conditional levels for surface property parameters (rows from top: thermal conduc-
tivity k in W m−1 K−1, heat capacity Cp in MJ m−3 K−1, albedo α, emissivity ε, inverse Bowen ratio β−1, and bulk transfer coefficient Ch
in J m−3 K−1) with AnOHM coefficients as the model output (columns from left: a1, a2 and a3). Each subplot x axis is the parameter value
and y axis is the PDF value. The original proposal distribution (dashed line) and simulation levels (different colours) are shown.

a1 a2 a3

k Cp α ε β 1 Ch

100

50

0

50

100

S

Figure 2. Relative variation in sensitivity (S, %, Eq. 28) to surface
parameters. See Fig. 1 for further details.

Fig. 5), from which the net heat storage flux 1QS can be
predicted (Fig. 6) using the observed Q∗ with Eq. (2).

To examine the seasonality of the OHM coefficients, rather
than the daily variations in hydrometeorological forcing,
LOESS (LOcally wEighted Scatter-plot Smoother; Cleve-
land and Devlin, 1988) curves are obtained to filter out day-

to-day variations in the OHM coefficients (see Appendix
B for a direct comparison of these coefficients by different
modelling and observational regression approaches). Intra-
annual variations are found in all the three OHM coeffi-
cients (Fig. 5), indicating the strong impact of seasonality
of meteorological conditions. These controls, as indicated by
Eqs. (23)–(25/27), are complex and will vary with local con-
ditions. For instance, comparison of OHM coefficients be-
tween the AnOHM predictions (LOESS fitted solid lines in
Fig. 5) and observations at an asphalt road site in Alland,
Austria, reported in Anandakumar (1999) (empty squares
in Fig. 5) demonstrates differences in a1 (Fig. 5a) and a2
(Fig. 5b) but general similarity in a3 (Fig. 5c). Compared to
a1 and a2, it is noteworthy that, in addition to the S results
(see Fig. 4) given the more explicit mechanism by which the
atmospheric conditions moderate a3 (see Eqs. 25 and 27),
such seasonality in a3 is predicted by AnOHM, and evident
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Figure 3. Histograms of conditional samples at different conditional levels for ambient forcing parameters (rows from top: incoming solar
radiation amplitude AK in W m−2 and its daytime mean K↓ in W m−2, air temperature amplitude AT in ◦C and its daily mean T a in ◦C,
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Figure 4. Relative variation in sensitivity (S, %, Eq. 28) to forcing
parameters. See Fig. 3 for further details.

in the observations (Fig. 5c, also Ward et al., 2013). Larger
K↓ in warm seasons (May–September) will lead to smaller
a3 (Eqs. 25, 27) and vice versa.

The AnOHM simulated and observed 1QS agree well
at the five different land cover sites, with RMSE values of
∼ 30 W m−2. For comparison purposes, it is noted that the
urban land surface model comparison (Best and Grimmond,
2015; Grimmond et al., 2011) found 1QS to be the most
poorly represented among all the SEB components with the
best RMSE values of 53 W m−2 (Lipson et al., 2017). Al-
though the much smaller 1QS RMSE obtained by AnOHM
uses a prescribed Bowen ratio in the offline evaluation, such
improvement indicates the ability of AnOHM to simulate
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Table 3. Surface properties used in AnOHM simulation for the study sites based on calibration. The values of α and β are monthly climatol-
ogy from January to December and are used when observations are not available (see Table 1 for notation definition).

Parameter Unit Site

UK-Ldn US-Wlr CA-NS5 US-SRM US-SO4

k W m−1 K−1 2.8 0.43 0.51 0.41 0.56
Cp MJ m−3 K−1 2.4 0.31 0.36 0.56 0.27
α – 0.24, 0.24,

0.22, 0.20,
0.14, 0.13,
0.12, 0.14,
0.18, 0.24,
0.24, 0.18

0.29, 0.29,
0.17, 0.18,
0.18, 0.12,
0.11, 0.10,
0.19, 0.13,
0.24, 0.35

0.30, 0.29,
0.22, 0.15,
0.10, 0.10,
0.10, 0.11,
0.22, 0.24,
0.28, 0.30

0.13, 0.17,
0.16, 0.14,
0.13, 0.12,
0.13, 0.15,
0.14, 0.19,
0.13, 0.18

0.22, 0.11,
0.11, 0.10,
0.11, 0.10,
0.10, 0.10,
0.11, 0.10,
0.17, 0.24

ε – 0.92 0.93 0.95 0.95 0.92
β – 6.1, 5.1,

8.3, 7.9,
5.4, 3.9,
5.3, 4.2,
5.2, 4.3,
4.8, 3.2

2.9, 0.8,
7.6, 2.7,
0.3, 0.3,
0.3, 0.8,
0.5, 0.7,
2.3, 2.3

6.1, 6.0,
8.7, 8.0,
1.9, 1.6,
0.7, 0.7,
1.3, 1.4,
3.1, 8.0

1.9, 5.5,
3.3, 2.0,
10.1, 9.7,
2.0, 0.9,
3.0, 4.3,
10.0, 3.3

1.5, 1.4,
1.9, 3.0,
1.4, 1.4,
2.1, 1.2,
2.8, 1.9,
2.1, 4.1

Ch J m−3 K−1 4.3 1.9 5.1 3.6 3.9
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Figure 5. Intra-annual variations of OHM coefficients: (a) a1, (b) a2, and (c) a3. LOESS fits (solid lines) through the daily values predicted
by AnOHM and daily values (squares) measured at an asphalt road site (Anandakumar, 1999) are shown. The LOESS (Cleveland and Devlin,
2012) fitting is a locally weighted polynomial regression approach.

a more consistent 1QS with observations. Compared with
OHM predictions (orange lines in Fig. 6), AnOHM (blue
lines in Fig. 6) better reproduces the seasonality in 1QS but
gives larger bias at two sites with natural land covers (i.e.
US-SRM and US-SO4). This can be attributed to the over-
estimates of nocturnal 1QS by AnOHM. Overall, the eval-
uation demonstrates good performance of AnOHM in pre-
dicting the long-term1QS with clear seasonality reproduced
across a wide range of surface types.

5 Discussion and concluding remarks

In this study, the Analytical Objective Hysteresis Model
(AnOHM) is developed to obtain OHM coefficients across
a wide range of surface and meteorological conditions and
to improve physical understanding of the interactions be-
tween 1QS and Q∗. The sensitivity of AnOHM to sur-
face properties and hydrometeorological conditions is anal-
ysed through Monte Carlo-based subset simulations (Au and
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Figure 6. Monthly median (line) diurnal cycles and interquartile range (shaded) values of 1QS for AnOHM predictions (blue), OHM
predictions (orange) and observations (green) at (a) UK-Ldn (URB), (b) US-Wlr (GRA), (c) CA-NS5 (ENF), (d) US-SRM (WSA), and
(e) US-SO4 (CSH) (see Table 2 for site information). Statistics include average bias and RMSE (W m−2). The OHM coefficients a1, a2, and
a3 used for different land covers are: 0.553, 0.303, and −37.6 at the urban site (UK-Ldn) (Ward et al., 2016), 0.32, 0.54, and −27.4 at the
grass-covered sites (US-Wlr and US-SRM) (Grimmond and Oke, 1999), and 0.11, 0.11, and −12.3 at the forest-covered sites (CA-NS5 and
US-SO4) (Grimmond and Oke, 1999).

Beck, 2001). The results highlight the importance of the
albedo, the Bowen ratio, and the bulk transfer coefficient, and
the importance of solar radiation and wind speed in regulat-
ing the heat storage. The importance of albedo in modulat-
ing the heat storage was also found by Wang et al. (2011),
who also used the same subset simulation approach with the
single-layer urban canopy model (SLUCM; for details see
Kusaka et al., 2001). This demonstrates the consistency in
heat storage modelling between AnOHM and SLUCM. From

the sensitivity results, variations in OHM coefficients of a
similar size may arise from either surface property parame-
ters or hydrometeorological forcing that are associated with
the same physical processes (see bulk transfer coefficient Ch
in Fig. 2 and wind speed U in Fig. 4). This supports the
ability of AnOHM in representing physical processes. An
offline evaluation of AnOHM using flux observations from
five sites with different land covers demonstrates its abil-
ity to predict the intra-annual dynamics of OHM coefficients
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and shows good agreement between simulated and observed
storage heat fluxes. In particular, the seasonality in the OHM
coefficient a3 observed in a previous study (Anandakumar,
1999) is well predicted by AnOHM.

The limitations of AnOHM are important to consider.
First, given the assumption that the incoming solar radiation
K↓ and air temperature Ta diurnal cycles are sinusoidal, op-
timal performance of AnOHM occurs under clear-sky con-
ditions. The current parameterizations of K↓ and Ta within
AnOHM only consider the harmonics of principal frequen-
cies for formulation simplicity. More frequencies may po-
tentially resolve more realistic diurnal variations in K↓ and
Ta. As the reflected part of L↓ (i.e. (1− εs)L↓) is assumed
negligible, and similar emissivity values are assumed for sky
and land surface (i.e. εs ≈ εa ≈ ε), the outgoing longwave ra-
diation is underestimated. These simplifications greatly facil-
itate the AnOHM formulation without qualitatively changing
the final results as the sensitivity analyses (see the minimal
S values for ε in Fig. 2) demonstrate. The inclusion of water
flux density W equips AnOHM with an ability to investigate
the hydrological impacts of the underlying surface on land–
atmosphere interactions. However, estimation of W remains
challenging (Wang, 2014) and the resulting uncertainty in the
final results warrants caution in conducting simulations over
land covers with strong soil moisture dynamics (e.g. grass-
land with high soil moisture under clear-sky condition).

Despite these limitations, AnOHM does permit improved
modelling of the surface energy balance through its phys-
ically based parameterization scheme for storage heat flux
1QS. Compared to OHM, AnOHM has the benefit of allow-
ing 1QS to be simulated for land covers for which coeffi-
cients are not available and to allow for seasonal variability
to be accounted for. As AnOHM shares similar hydromete-
orological forcing inputs (i.e. K↓, Ta and U) to other land
surface models (LSMs), it can potentially be used within in
LSMs to estimate 1QS, or if turbulent fluxes are included to
be a complete LSM. The overall improvements from adopt-
ing AnOHM in modelling land surface processes will be pre-
sented in forthcoming work in the SUEWS–AnOHM frame-
work.

Code availability. The Fortran source code for AnOHM can be ob-
tained from the corresponding authors upon request.
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Appendix A: Rationale for a simplified formulation of
outgoing longwave radiation

In the formulation of outgoing longwave radiation L↑, a sim-
plified form (i.e. εsσT

4
s ) is used for AnOHM by ignoring part

2 of Eq. (10) (i.e. (1− εs)L↓). The rationale for such simpli-
fication is that given εs is usually larger than 0.9, (1− εs)L↓
contributes a relatively small portion to the total longwave
component (Oke, 1987) and omission of this part is well
accepted in the parameterization of outgoing longwave ra-
diation for land surface modelling across various land cov-
ers (Bateni and Entekhabi, 2012; Lee et al., 2011; Stensrud,
2007).

Using the parameterization of incoming longwave radia-
tion in the AnOHM framework (i.e. L↓ = εaσT

4
a ≈ εsσT

4
a ),

we conduct a sensitivity analysis of the ratio between the
ignored part (i.e. (1− εs)L↓) and total outgoing longwave
radiation (i.e. εsσT

4
s + (1− εs)L↓) at a constant air temper-

ature of 20 ◦C and find this ratio is generally less than 5 %
given εs ranges between 0.90 and 0.99 (Fig. A1).

Moreover, if (1− εs)L↓ is included in the net longwave
radiation, the induced effect can be incorporated into a mod-
ified sky emissivity ε′a = εsεa as follows:

Lnet = L↓−L↑
= L↓−

(
εsσT

4
s + (1− εs)L↓

)
= εsL↓− εsσT

4
s

= εsεaσT
4

a − εsσT
4

s
= ε′aσT

4
a − εsσT

4
s

. (A1)

Then by assuming ε ≈ ε′a ≈ εs, the derivation following
Eq. (18) still holds. The sensitivity analysis suggests that the
derived coefficients are insensitive to ε (see S for ε in Fig. 2).

As such, we deem the omission of (1− εs)L↓ will not
qualitatively change the results of this work.
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Figure A1. Ratio between the second part of Eq. (10) (i.e.
(1− εs)L↓) and total outgoing longwave radiation (i.e. εsσT

4
s +

(1− εs)L↓) at a constant air temperature of 20 ◦C.
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Appendix B: Comparison in OHM coefficients between
different modelling approaches and observation
regression

The comparison in OHM coefficients by different modelling
and observational regression approaches (Fig. B1) indicate
AnOHM generally follows the results by observation regres-
sion, whereas the typical coefficient values adopted by OHM
do not.
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Figure B1. Comparison of OHM coefficients (left, central and right columns for a1, a2 and a3, respectively) between different modelling
approaches and observation regression at five sites: UK-Ldn (a, b, c), US-Wlr (d, e, f), CA-NS5 (g, h, i), US-SRM (j, k, l) and US-SO4 (m,
n, o). The blue dots denote the paired values between AnOHM and observation regression. The orange lines represent the reference value
used in OHM simulations for land covers of grass and tree (Grimmond and Oke, 1999), whereas the green lines show median values derived
from results by observation regression at corresponding sites.
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