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Abstract

In order to determine the feasibility of utilizing novel rexinoids for chemothera-

peutics and as potential treatments for neurological conditions, we undertook an

assessment of the side effect profile of select rexinoid X receptor (RXR) analogs

that we reported previously. We assessed pharmacokinetic profiles, lipid and thy-

roid-stimulating hormone (TSH) levels in rats, and cell culture activity of rexi-

noids in sterol regulatory element-binding protein (SREBP) induction and thyroid

hormone inhibition assays. We also performed RNA sequencing of the brain tis-

sues of rats that had been dosed with the compounds. We show here for the first

time that potent rexinoid activity can be uncoupled from drastic lipid changes

and thyroid axis variations, and we propose that rexinoids can be developed with

improved side effect profiles than the parent compound, bexarotene (1).

Abbreviation

a-beta, amyloid beta; AD, activation domain; AD, Alzheimer’s disease; AUC, area

under the curve; GFP, green fluorescent protein; HDL, high-density lipoprotein;

HRE, hormone-responsive element; LBD, ligand-binding domain; LBP, ligand-bind-

ing pocket; LDL, low-density lipoprotein; LXR, liver X receptor; PD, Parkinson’s

disease; PPAR, peroxisome proliferator-activated receptor; RAR, retinoic acid recep-

tor; RXRE, RXR-responsive element; RXR, retinoid X receptor; SNuRMS, specific

nuclear receptor modulators; SREBP, sterol regulatory element-binding protein; T3,

thyroid hormone; TRE, thyroid hormone-responsive element; TR, thyroid hormone

receptor; TSH, thyroid-stimulating hormone; VDR, vitamin D receptor.

Introduction

The retinoid X receptors (RXRs) comprise three isoforms

in humans (a, b, and c) (Leid et al. 1992; Mangelsdorf

et al. 1994) all of which act as sequence-specific DNA-

binding factors (transcription factors), often partnering

with other transcriptional regulators in a larger superfam-

ily of nuclear receptors including the liver X receptor

(LXR), the thyroid hormone receptor (TR), the retinoic

acid receptor (RAR), the vitamin D receptor (VDR), and

the peroxisome proliferator-activated receptor (PPAR), to

name a few. All of the above named nuclear receptors

promote or regulate gene transcription when associated

with the proper receptor ligand. This ligand, often con-

sisting of an endogenous molecule, associates with the

receptor ligand-binding domain (LBD) and this binding

effects a conformational change that induces the receptor

to interact with a corresponding hormone-responsive ele-

ment (HRE) in DNA. While many HREs are located

inside or proximal to the regulated gene’s promoter
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region, some HREs have been found considerably distant

either downstream or upstream from their controlled genes.

Typically, HREs comprise two minimal core hexad

sequences such as AGGTCA and variants, with the orienta-

tion and spacing between which determining the binding

mode (homodimer, heterodimer, or monomer) and iden-

tity of the nuclear receptor partner (Remenyi et al. 2004).

While VDR, TR, and RAR were first believed to bind

as homodimers to their corresponding HREs (Forman

et al. 1989), these nuclear receptors actually form hetero-

dimers with RXR in order to bind to their HRE sites

(Johnson et al. 1987; Mangelsdorf and Evans 1995).

When bound with an agonist ligand, such as naturally

occurring 9-cis-retinoic acid (9-cis-RA) or a synthetic ago-

nist such as bexarotene (1), RXR forms a homodimer that

subsequently associates with the RXR-responsive element

(RXRE). When RXR acts as a partner in a heterodimer

with another nuclear receptor, however, it may do so with

or without a ligand bound to RXR depending on the

heterodimer. For example, there is strong evidence that

the LBP (ligand-binding pocket) of RXR is vacant in the

functioning RXR-VDR heterodimer (Thompson et al.

2001). In the case of the RXR-LXR heterodimer, however,

the LBP of RXR can be occupied (Svensson et al. 2003).

Because of its ability to partner with numerous other

nuclear receptors and subsequently associate with the

heterodimer HRE, RXR has been described as the central

nuclear receptor (Nahoum et al. 2007). Indeed, the obser-

vation that RXR possesses multiple dimerization surfaces

to be able to pair with different nuclear receptors, yet it

still retains the flexibility to associate with each heterodi-

meric HRE, contributes to the view of RXR as the master

partner.

As observed earlier, there are two main classifications

into which RXR-heterodimer complexes can be divided.

These are commonly referred to as permissive or nonper-

missive heterodimers, respectively. Permissive heterodi-

mers can be actuated by either a ligand binding to RXR

or a ligand binding to its partner, whereas a purely non-

permissive heterodimer can only function when a ligand

binds to the primary (non-RXR) receptor (Forman et al.

1995). Nonpermissive heterodimers are generally exempli-

fied by RXR-VDR, RXR-TR, and RXR-RAR. For the most

part, but not always, RXR is “silent” in VDR and TR

heterodimers, whereas RXR-RAR heterodimers are further

activated by specific RXR ligands in addition to a RAR

ligand. In fact, in a few cases, RXR ligands have been

observed to promote RXR-RAR functioning, even when

an RAR ligand is absent (Lala et al. 1996). Hence, the

RXR-RAR heterodimer has been termed “conditionally”

nonpermissive. In comparison to the nonpermissive hete-

rodimers described earlier, the RXR-PPARs, RXR-FXRs,

and RXR-LXRs are completely permissive heterodimers.

Developing therapeutic RXR-selective ligands is chal-

lenging not only because permissive RXR heterodimers

may lead to off-target responses but also because in some

tissue types, the availability of RXR may be limited. For

example, the natural 9-cis-RA has been observed to inhi-

bit the activation of the nonpermissive RXR-VDR (Mac-

Donald et al. 1993; Lemon and Freedman 1996;

Thompson et al. 1998) and RXR-TR heterodimers (Leh-

mann et al. 1993). The development of novel RXR-selec-

tive ligands (rexinoids) for therapeutic uses must thus be

concerned with identifying compounds that exert RXR-

heterodimer selectivity. Indeed, the approach of designing

rexinoids that drive binding to specific nuclear receptor

modulators (SNuRMs) is a topic of current interest.

As an FDA-approved drug, bexarotene (1) is also often

used “off-label” to treat non-small cell lung cancer (Drag-

nev et al. 2007) and breast cancer (Esteva et al. 2003).

While 1 and related RXR agonists have primarily been

investigated as treatments for cancer, there have been

recent reports of the exploration of 1 as a potential thera-

peutic for neurological conditions and diseases. For exam-

ple, 1 was initially reported to clear amyloid plaques,

lower levels of amyloid beta (a-beta) oligomers, and

improve cognitive deficits in aggressive Alzheimer’s dis-

ease (AD) mouse models (Cramer et al. 2012). However,

some controversy surrounds the effectiveness of 1 in mur-

ine models of AD, since other groups replicating the ori-

ginal experiments did not observe similar reductions of a-

beta or cognitive improvements though some groups did

observe lowered levels of a-beta oligomers and cognitive

improvements (Fitz et al. 2013; Price et al. 2013; Tesseur

et al. 2013; Veeraraghavalu et al. 2013). One hypothesis

suggests that 1 exerts a therapeutic effect in AD by upre-

gulating ApoE (Holtzman 2004) and ABCA1 (Koldamova

et al. 2005) expression via the activation of RXR:LXR and

RXR:PPAR (Heneka et al. 2005), and this results in

higher concentrations of larger HDL particles that prevent

a-beta plaque formation (Fan et al. 2009). Indeed, on this

basis alone, two clinical trials for 1 in AD patients are

currently underway. Interestingly, a recent report by

Fantini et al. (2014) suggests that 1 may be effective in

preventing a-beta oligomers from forming calcium trans-

port channels in neuronal cells by disrupting the oligo-

mers’ ability to bind to cholesterol, while another report

(Tai et al. 2014) finds that 1 is more effective in later

stage AD using a humanized ApoE mouse model.

In addition to AD, schizophrenia and Parkinson’s dis-

ease (PD) are also neurological conditions for which 1

may exert a beneficial effect. In the case of schizophrenia,

there is strong evidence of retinoid dysregulation (Good-

man 1994) that could potentially be ameliorated by treat-

ment with a potent retinoid such as 1. Indeed, adding

treatment with 1 to antipsychotic medications has been
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shown to mitigate symptoms associated with schizophre-

nia (Lerner et al. 2008). In the case of PD, a recent report

by Burstein and coworkers suggests that 1 interacts with

the Nurr1-RXR heterodimer, at 100-fold lower doses than

used in treatment of cancer, to restore dopamine neurons

in rat models of PD (McFarland et al. 2013).

Although 1 is a potent RXR agonist, treatment for can-

cer at a dose up to 300 mg/m2 per day nonetheless raises

triglycerides–up to 2.5 times the upper limit of normal–as
well as total cholesterol for most patients, and more than

half of the patients experience hypothyroidism. While the

raised triglyceride and cholesterol levels were observed to

revert to normal levels following therapy cessation, the

triglyceride and cholesterol levels were also observed to be

clinically manageable with antilipidemic therapy during

treatment with 1 (Eisai 2001).

Given the numerous applications of 1 in the treatment

of several human cancers as well as its exploration as a

potential therapy for several neurological diseases, we

undertook the determination of pharmacokinetic parame-

ters and side effect profiles of several novel analogs of 1

and other potent RXR agonists that we have recently syn-

thesized. Our results show that the majority of our novel

analogs–in cell-based assays or in Sprague–Dawley rats at

100 and 30 mg/kg–possess activities and side effect pro-

files not statistically different than 1. However, in com-

parison with 1, several of our novel compounds are

potentially more bioavailable and thus could putatively be

more useful therapeutically since a lower dose could be

given than the standard dose (100 mg/kg) for 1. Thus,

our novel analogs represent theoretically viable therapeu-

tics for several human cancers and possibly for the neuro-

logical diseases noted earlier, and we are continuing to

explore their activities in these areas.

Materials and Methods

EC50 determination

Full dose�response curves, ranging from 1 9 10�9 to

0.3 9 10�5 mol/L ligand in transfected HCT-116 cells

using an RXR mammalian two-hybrid system, were used

to generate EC50 values. HCT-116 (male Homo sapiens

colorectal carcinoma epithelium) cells were plated over-

night at 80,000 cells/well in a 24-well plate and main-

tained as described previously (Wagner et al. 2009;

Furmick et al. 2012; Jurutka et al. 2013). The cells were

cotransfected using a human RXR binding domain (BD)

vector, a human RXR activation domain (AD) vector, a

luciferase reporter gene containing BD-binding sites, and

Renilla control plasmid, using 2 lL/well of Express-IN

transfection reagent (Thermo Fisher Scientific, Lafayette,

CO) that was allowed to incubate for 24 h with the cells.

The cells were then treated with ethanol vehicle (0.1%) or

analogs (1.0, 2.5, 5.0, 7.5, 10, 25, 50, 75, 100, 250,

500 nmol/L, 1, 2, 3 lmol/L) and incubated for 24 h. The

amount of rexinoid activity at each concentration was

measured using the luciferase assay described earlier, and

EC50 values were calculated using dose�response curves

of ligand concentration versus normalized luciferase activ-

ity.

TR activation assay

The reporter construct (TRE-Luc [thyroid hormone-

responsive element]) utilized for assaying TR signaling

was constructed by inserting the double-stranded oligonu-

cleotide, CTGGGAGGTGACAGGAGGACACGAGCTGG

GAGGTGACAGGAGGACACGAG, with a BglII overhang

on the 50 end and a HindIII overhang on the 30 end,

upstream of a minimal promoter in the luciferase vector

pLUC-MCS (Stratagene Corp., La Jolla, CA). This oligo-

nucleotide contains two copies of the thyroid HRE (half

sites are underlined) from the rat myosin heavy chain

gene (Tsika et al. 1990). HCT-116 colorectal carcinoma

cells were plated overnight at 80,000 cells/well in a 24-well

plate and maintained in Dulbecco’s modified Eagle’s

medium (DMEM)/High Glucose (Hyclone; GE Life Sci-

ences, Logan, UT) enhanced with 10% fetal bovine serum

(FBS) (Invitrogen, Life Technologies, Grand Island, NY),

1 mmol/L sodium pyruvate (Invitrogen, Life Technolo-

gies, Grand Island, NY), 100 lg/mL streptomycin (Invi-

trogen), and 100 U/mL penicillin (Invitrogen). The cells

were cotransfected using 250 ng of TRE-Luc reporter

gene, 50 ng of pSG5-hTR, and 20 ng of the Renilla con-

trol plasmid along with 2 lL/well of Express-IN transfec-

tion reagent (Thermo Fisher Scientific) used for

liposome-mediated DNA delivery for 18 h. The cells were

then incubated for 24 h post-transfection with ethanol

vehicle or bexarotene or analogs (final concentration of

1 9 10�7 or 5 9 10�7 mol/L). After a 24-h incubation

period, the amount of luciferase activity was measured

using a luminescence assay. The amount of TRE activity

was measured by luciferase output utilizing a dual-lucifer-

ase reporter assay system according to the manufacturer’s

protocol (Promega, Madison, WI) in a Sirius luminome-

ter (Berthold Detection System, Pforzheim, Germany).

Three independent assays were conducted with triplicate

samples for each treatment group. Significance was

analyzed by a two-tailed unpaired Student’s t-test.

TR-TRE inhibition assay

The TR-TRE inhibition assay was completed using HCT-

116 cells plated at 80,000 cells/well in a 24-well plate

and maintained as described earlier. The cells were
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cotransfected using 250 ng of the TRE-Luc reporter gene

(described earlier), 50 ng of pSG5-hTR, and 20 ng of the

Renilla control plasmid with 2 lL/well of Express-IN

again used for liposome-mediated DNA delivery for 18 h.

The cells were incubated for 24 h post-transfection with

ethanol vehicle, 10�6 mol/L thyroid hormone (T3)

alone, or 10�6 mol/L T3 in combination with bexaro-

tene or analogs (final concentration of 1 9 10�7 or

5 9 10�7 mol/L). After a 24-h incubation period, the

amount of luciferase activity was measured using the

luminescence assay described earlier. Three independent

assays were conducted with triplicate samples for each

treatment group. Inhibition of T3 activity was deter-

mined by evaluation of T3-treated cells compared to

cells treated with T3 plus bexarotene/analog. Signifi-

cance was analyzed by a two-tailed unpaired Student’s

t-test.

Sterol regulatory element-binding protein
activation assay

HCT-116 colorectal carcinoma cells were maintained as

described earlier. The cells were cotransfected using

250 ng of the pBP1c(6500)-Luc reporter gene which con-

tains an LXRE in the context of about 6500 base pairs of

flanking DNA from the mouse sterol regulatory element-

binding protein (SREBP)-1c natural promoter (Repa et al.

2000) along with 50 ng of CMX-hLXRa, 50 ng of pSG5-

hRXRa, and 20 ng of the Renilla control plasmid. The

transfection was initiated with 2 lL/well of Express-IN

transfection reagent (Thermo Fisher Scientific) used for

liposome-mediated DNA delivery for 18 h. The cells were

then incubated for 24 h post-transfection with ethanol

vehicle, 10�7 mol/L TO901317 alone, or 10�7 mol/L bex-

arotene/analogs alone, or the combination of the two

ligands. After a 24-h incubation period, the amount of

luciferase activity was measured using a luminescence

assay. The amount of SREBP promoter activity was mea-

sured by luciferase output utilizing a dual-luciferase

reporter assay system according to the manufacturer’s

protocol (Promega) in a Sirius luminometer (Berthold

Detection System). Three independent assays were con-

ducted with triplicate samples for each treatment group.

Significance was analyzed by a two-tailed unpaired

Student’s t-test.

Cyprotex toxicity and mutagenicity analysis

This analysis was performed in-house at Cyprotex Labs

(Watertown, MA). Each test compound is diluted into

dimethyl sulfoxide (DMSO), subsequently diluted into

water, and then added as a series of dilutions into a 96-

well plate. Methyl methanesulfonate is added as a positive

control for genotoxicity. The assay used two strains of

cultured human lymphoblastoid TK6 cells, the test strain

(GenM-T01) and the nonfluorescent control strain

(GenM-C01), the latter was used to allow correction for

any autofluorescence from the test compounds. The test

strain has incorporated a patented green fluorescent pro-

tein (GFP) reporter system that exploits the proper regu-

lation of the GADD45a gene, which mediates the adaptive

response to genotoxic stress; exposure to a genotoxic

compound increases expression of GFP.

Cells, media, and compound (1% DMSO final concen-

tration; either alone or activated by a rat liver S9 extract)

are added to a well to perform the assay. The microplates

are covered with a breathable membrane and incubated at

37°C with 5% CO2 and 95% humidity for 48 h. The

plates are analyzed at 24 and 48 h time points using a mi-

croplate reader, reading both cell density and GFP expres-

sion. Fluorescence is normalized to the absorbance signal

to correct for variation in cell yield caused by cytotoxicity.

Raw data collected from GreenScreen assay plates are

saved to an MS Excel file and analyzed by Cyprotex with

GreenScreen Software, Cyprotex Labs, Watertown, MA.

Animal dosing

All in vivo work was performed by Covance Laboratories

in Madison, WI. Covance has approval through the NIH

OLAW (Office of Laboratory Animal Welfare); their

assurance number is A3218-01. Approvals were obtained

both from Covance IACUC and ASU IACUC before

experiments commenced. All compounds were suspended

in sesame oil, as in the original analysis at Ligand Phar-

maceuticals (Howell et al. 2001) and as in other analyses

(Tai et al. 2014), due to the hydrophobic nature of the

compounds (Bolko et al. 2014) and to try to maximize

drug absorption (Eisai 2001), at a final concentration of

10 mg/mL. Male Sprague–Dawley rats (8–12 weeks old

and 250–350 g, obtained from Harlan Laboratories, India-

napolis, IN) were allowed to acclimate for over 2 days,

fasted 24 h prior to a single dose at a target concentration

100 mg/kg for lipid analysis and PK analysis (Howell

et al. 2001) and 30 mg/kg for thyroid-stimulating hor-

mone (TSH) analysis (Liu et al. 2002), and then allowed

to feed ad libitum 4 h post dose (Harlan Certified Rodent

Diet #2016C or 2016CM and clean water). Dosing was

done by oral administration using a blunt needle. Blood

was drawn from three animals at the indicated time

points, and processed for analysis. For lipid and pahrma-

cokinetic (PK) analysis, half of the sample was processed

for plasma and half was allowed to clot and processed for

serum. For TSH analysis, blood was drawn from animals

at the indicated time points and allowed to clot and pro-

cessed for serum.

2015 | Vol. 3 | Iss. 2 | e00122
Page 4

ª 2015 Arizona State University. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,

British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

Rexinoids With Differential Side Effect Profiles P. A. Marshall et al.



Lipid analysis

Serum was analyzed for cholesterol, high-density lipopro-

tein (LDL), low-density lipoprotein, and triglycerides

using a Lipid Profile Panel at Covance. For the LC-MS/

MS analysis, the plasma samples are prepared by liquid–
liquid extraction using ethyl acetate. Following extraction,

the supernatant is transferred to a new plate and evapo-

rated under nitrogen. The samples are then reconstituted

using mobile phase B for injection on the instrument.

The LC-MS/MS instrument comprised a Shimadzu HPLC

(Columbia, MD) and a API5000 mass spectrometer.

Chromatographic separation is achieved using a C18 col-

umn in conjunction with gradient conditions (ammo-

nium acetate/acetic acid in water [A] or 80:20 ACN:water

[B]). MS detection is accomplished through monitoring

of MRM transitions unique to each analyte in negative

mode. The calibration curves range from 1 to 20

(depending on the analyte) to 1000 ng/mL, and no QC

samples are included. The clinical pathology samples are

analyzed using a Roche Modular P instrument (InIdiana-

polis, IN).

TSH analysis

Serum was analyzed via enzyme-linked immunosorbent

assay (ELISA) (Catalog No. KT-29925; Kamiya Biomedi-

cal Company, Seattle, WA) for TSH concentration analy-

sis according to manufacturer’s instructions. An unpaired

heteroscedastic two-tailed Student’s t-test was employed

to determine if the decrease in the TSH in each case was

statistically different than the bexarotene treatment.

PK analysis

Plasma was analyzed via liquid chromatography and tan-

dem mass spectrometry for compound concentration.

Whenever possible, determination of maximum concen-

tration (Cmax), time to maximum concentration (Tmax),

and total area under the curve (AUC) was performed.

Pharmacokinetic parameters are calculated by noncom-

partmental analysis using WinNonlin Professional Edition

(Version 5.2; Pharsight Corporation, Princeton, NJ).

Nominal doses and sampling time points were used for

all groups.

UV-vis e and water solubility determinations

A 2.0 mmol/L stock solution in ethanol of 1, 2, 4, 7, 9,

and 14 was made from which e was determined from a

Beer’s law plot of dilutions. A 10 lmol/L solution in 10%

ethanol/water of 1 and each compound was also made by

dissolving 0.020 mmol of 1, 2, 4, 7, 9, and 14 in 200 mL

of ethanol and then diluting to 2.0 L with water. Dilu-

tions of the 10 lmol/L solution in 10% ethanol/water

were made to determine an equation for the Beer’s law

plot by linear regression. Saturated aqueous solutions at

20°C of 1, 2, 4, 7, 9, and 14 were prepared by placing

~25 mg of micronized compound in 10 mL of deionized

water and agitating, intermittently, for 24 h, and filtering

with a 0.22 lm Millipore filter (Darmstadt, Germany).

The water solubility of 1, 2, 4, 7, 9, and 14 was estimated

by solving the linear regression equation from the Beer’s

law plot for the 10% ethanol/water solutions with the

observed absorbance of the saturated aqueous solutions of

1, 2, 4, 7, 9, and 14.

pKa calculations

Absolute pKas were calculated using the thermodynamic

cycle shown in Figure 1 (Shields and Seybold 2013). All

protonated and deprotonated structures were geometry

optimized at the B3LYP/6-311+G(d,p) level, and the nat-

ure of the minimum was confirmed by harmonic fre-

quency calculations. The scaled frequencies (Merrick et al.

2007) were then used to calculate gas-phase free energies.

The solvation free energies DGs of the optimized struc-

tures were calculated using the SM8 continuum model

(Marenich et al. 2009) at the B3LYP/6-311+G(d,p) level.

For the proton, experimentally derived values of

�6.28 kcal/mol for the gas-phase free energy and

�264.61 kcal/mol for the solvation free energy were used.

All calculations were performed with Gaussian 09 (Frisch

et al. 2009).

RNA sequencing analysis

Brains from animals treated above were removed and

snap frozen in liquid nitrogen and then sent to LabCorp

Clinical Trials (formerly Covance Genomics Lab) where

they were suspended in 500 lL of RLT buffer (Qiagen,

Valencia, CA) containing b-mercaptoethanol and homog-

enized using a Covaris homogenizer (Woburn, MA). Fol-

lowing trizol/chloroform treatment, RNA was extracted

gas
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sagsagsag

s s s

qaqaqa

(AH) (A ) (H )
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Figure 1. Thermodynamic cycle used in calculating pKa.
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using Promega SV96 isolation kits. RNA was qualified

using an Agilent Bioanalyzer and quantified using ribo-

green. RNA_Seq libraries were constructed using Illu-

mina’s TruSeqTM Total RNA strand specific kits (San

Diego, CA) with 250 ng of total RNA. Briefly, rRNA was

removed from FF or FFPE total RNA using Epicentre’s

Ribo-Zero GOLD rRNA Removal kit (Madison, WI).

Ribo-Zero RNA was then incubated with Random Prim-

ers (Invitrogen, Grand Island, NY) at 65°C for 5 min.

Illumina TruSeqTM RNA Sample Prep Kit was then used

to construct the library according to the manufacturer’s

protocol from the step of first strand cDNA synthesis.

The sequencing libraries were quality controlled using an

Agilent 2100 Bioanalyzer and quantified using qPCR prior

to cluster generation on an Illumina cBot. Sequence data

were generated on Illumina HiSeq instruments as paired

end 51-bp reads, following the manufacturer’s protocols

using TruSeq SBS v3 chemistry. An in-house pipeline for

analysis, which integrates several open source programs,

was used to analyze data. Briefly, initial FASTQ files were

subjected to quality control with the FastQC tool. Raw

reads from each capture library were aligned to the rat

reference genome (rn5) with STAR version 2.3.1r, using

default parameters. Expressed transcriptome was built

using Cufflinks (version 2.1.1) and was annotated using

cuffmerge (Cufflinks version 2.1.1). The rn5 refGene.gtf

annotation (UCSC), filtered to include only canonical

chromosomes was used as the reference GTF.

Results

Rexinoid structures and EC50 values

Figure 2 depicts the structures of the compounds we uti-

lized for the assays. Bexarotene (1) is the standard by

which the rexinoids were compared, as it is the FDA-

approved drug. Characteristics of these compounds and

their synthesis were described in our previous work

(Wagner et al. 2009; Furmick et al. 2012; Jurutka et al.

2013). In Table 1, we summarize the EC50 values for these

compounds.

TRE activation via select rexinoids

In order to assess potential side effect differences between

our rexinoids, we first utilized a cell culture model. We

assessed the ability of each rexinoid to bind to RXR and

allow the receptor to act as a permissive partner to acti-
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vate an RXR/TR heterodimer in the absence of thyroid

hormone (Castillo et al. 2004) at two concentrations

(1 9 10�7 and 5 9 10�7 mol/L). The cells were transfect-

ed with TR and a TRE (thyroid hormone-responsive ele-

ment) driving a luciferase reporter gene, so that RXR was

in limiting concentrations. As can be seen in Figure 3,

each rexinoid (except analog 8) can significantly

(P < 0.05) stimulate RXR to act as a permissive partner

(in the absence of thyroid hormone) with the TR at

1 9 10�7 mol/L of analog (Fig. 3A), but not at

5 9 10�7 mol/L (Fig. 3B). Since RXR is limiting, at a

higher concentration of ligand (5 9 10�7 mol/L) the

rexinoids may be driving formation of RXR homodimers

rather than acting to stimulate RXR/TR heterodimers,

and/or some of the analogs result in a TR-RXR heterodi-

mer conformation that recruits corepressors to the tran-

scriptional complex resulting in either no activation or

even repression below ethanol vehicle levels (Fig. 3B, ana-

logs 8, 11–14).

Rexinoid inhibition of T3-stimulated TR-TRE
transcription

Hypothyroidism is a widely reported problem with bex-

arotene treatment (Sherman et al. 1999), and is thought

to occur partly because bexarotene stimulates RXR ho-

modimers, which in turn diverts the RXR away from

partnering with TR. We utilized a TRE-linked reporter

vector and cell culture system in which cells were treated

with both a thyroid hormone (T3) and a rexinoid to

determine the percentage of inhibition by the rexinoid

treatment. In this system, RXR is limiting and thus add-

ing a rexinoid should stimulate RXR homodimerization,

and remove the RXR from the RXR/TR heterodimer,

blunting the T3 response, as assayed by TRE activation.

As shown in Figure 4, each rexinoid demonstrates a dif-

ferent inhibition profile, with analogs 3 and 8 demon-

strating the most inhibition at 1 9 10�7 mol/L (Fig. 4A,

P < 0.01) and at 5 9 10�7 mol/L (Fig. 4B) analogs 3, 4,

6, 7, 8, 12, 13, and 14 inhibit the TRE-mediated activa-

tion significantly (P < 0.01).

More important than the inhibition profile, is the series

of analogs that show little inhibition in this assay. This

lack of inhibition hints that rexinoids, even with excellent

RXRE activation profiles (Wagner et al. 2009; Furmick

et al. 2012; Jurutka et al. 2013), and EC50s comparable to

bexarotene (Table 1) can be synthesized that, with the

correct chemistry and binding profile, may alleviate or

minimize thyroid hormone axis side effects. At a concen-

tration of 1 9 10�7 mol/L, compounds 2, 5, 6, 7, 10, 11,

12, 13, and 14 demonstrate at least 85% (or more) of the

activity of T3 alone (second bar from left), with less inhi-

bition than 1 (bexarotene), and indeed 2, 5, 6, 7, 10, 12,

and 13 are statistically the same as T3 alone (using a two-

tailed heteroscedastic t-test). While at treatment concen-

tration of 5 9 10�7 mol/L, we observe that compounds 9

and 10 show no inhibition of the T3 stimulation. Our

novel results indicate that it is possible to uncouple the

thyroid inhibition from the RXRE activation of rexinoid

compounds and suggests a potential method to alleviate

one of the untoward side effects of rexinoid treatment.

Activation of SREBP promoter-induced
transcription of rexinoids

In order to assess potential lipid profile side effects, analy-

sis of transcription driven by the SREBP promoter was

undertaken. SREBP is a transcription factor that drives

expression of genes involved in lipid synthesis by binding

to a sterol regulatory element in DNA and promoting

transcription. SREBP expression is driven in part by

RXR/LXR binding to the SREBP promoter and stimulat-

ing transcription. To determine the ability of each rexi-

noid to stimulate SREBP expression, as a proxy for

analysis of lipid anomalies induced by rexinoid treatment,

we analyzed luciferase expression driven by the SREBP

promoter in cells treated with rexinoid alone or in combi-

nation with T0901317 (T0), an LXR selective ligand. Each

rexinoid was analyzed for its ability to stimulate tran-

scription (Fig. 5) with and without T0, and we observed

a range of activities. With analog alone, compounds 2, 3,

4, 9, 10, and 13 demonstrated a similar transcriptional

profile to bexarotene; while the remainder of the com-

pounds showed an increased transcriptional response

(P < 0.05, using a two-tailed heteroscedastic t-test). In

Table 1. EC50 values of compounds evaluated in this study.

Compound EC50 value1 nmol/L (�SD)

Compound 1 55 (6)

Analog 2 34 (6)

Analog 3 13 (3)

Analog 4 42 (3)

Analog 5 74 (7)

Analog 6 21 (2)

Analog 7 44 (12)

Analog 8 15 (3)

Analog 9 50 (10)

Analog 10 72 (11)

Analog 11 15 (2)

Analog 12 69 (7)

Analog 13 109 (8)

Analog 14 71 (10)

RXR, rexinoid X receptor.
1EC50 values were determined from full dose–response experiments

with each compound in the range of 10�9 to 10�5 mol/L in transfect-

ed HCT-116 cells using an RXR mammalian two-hybrid system.

ª 2015 Arizona State University. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd,
British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

2015 | Vol. 3 | Iss. 2 | e00122
Page 7

P. A. Marshall et al. Rexinoids With Differential Side Effect Profiles



analyzing rexinoids with T0, we saw a similar pattern,

with compounds 2, 4, 7, 10, 12, and 13 possessing similar

activation to bexarotene (1) + T0 treatment. In contrast,

with analog plus T0 treatment, only compounds 3 and 9

demonstrated lower SREBP promoter activation

(P < 0.05). Interestingly, compounds 5, 6, 8, 11, and 14

showed higher activation (P < 0.05, using a two-tailed

heteroscedastic t-test).

Select rexinoids show similar cytotoxicity
profiles to bexarotene

Considering multiple characteristics, such as transcrip-

tional activation of RXR based on reported EC50 values

(Table 1) and performance in SREBP promoter activation

assays (Fig. 5), we selected compounds 2, 4, 7, 9, and 14

as compounds to further explore as potential leads. To

assess cytotoxicity and mutagenicity of these compounds

prior to any in vivo studies, a GreenScreenTM assay was

performed by Cyprotex. Compounds are solubilized in

DMSO and added at several concentrations to a geneti-

cally modified human lymphoblastoid TK6 cell line, car-

rying the GFP gene driven by the GADD45a promoter.

Compounds were either added alone or after activation

with an S9 rat liver extract. Cytotoxicity was measured by

a cell viability assay and genotoxicity (mutagenicity) was

assayed by GFP fluorescence normalized to cell count. As

seen in Table 2, bexarotene (1) is cytotoxic at 1.12 lg/mL

without S9 activation and at 18 lg/mL with S9 activation,

and is not genotoxic. These novel rexinoids show similar

ranges of cytotoxicity as bexarotene, and only 14 demon-

strates genotoxicity, at the same concentration that it is

demonstrated to be cytotoxic; thus, this genotoxicity

would never be clinically relevant as the dose is too high

to be useful because that dose is also cytotoxic as well.

Notably, 9, an analog of LGD100268, was the least
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Figure 3. Thyroid hormone-responsive element (TRE) activation of select analogs. HCT-116 cells were transfected with thyroid receptor and a TRE

driving luciferase, and luciferase activity was plotted as percentage of T3 response, which was normalized to 100%. Cells were treated with

1 9 10�6 mol/L T3 and 1–4 at (A) 1 9 10�7 mol/L and (B) 5 9 10�7 mol/L for 24 h.
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cytotoxic without S9 activation (up to 8.57 lg/mL), and

9 was the only analog that showed no cytotoxicity or

genotoxicity with S9 activation. Thus, these new rexinoids

have potential as therapeutics as they demonstrate similar

toxicity patterns to bexarotene.

Select rexinoids have the same primary TSH
phenotype as bexarotene

Bexarotene treatment often induces hypothyroidism in

patients (e.g., S�anchez-Juan et al. 2007). In order to assess

the side effect profiles of our novel rexinoids, male

Sprague–Dawley rats were dosed at 30 mg/kg and TSH

was assayed over a 24 h time course. The suppression of

TSH occurs acutely due to the inhibition of the secretion

of TSH from the pituitary (Liu et al. 2002), but after

16 h (or less) this inhibition is due to repression of the

TSH promoter itself (Sherman et al. 1999). As seen in

Figure 6, TSH decreased in all animals treated with rexi-

noid in the same manner with the same time course as

bexarotene (1), with no statistically significant differences,

indicating that these RXR ligands have no worse side

effect profile over the first 24 h of treatment than the

parent compound, bexarotene.
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Figure 4. Select rexinoids inhibit thyroid hormone-responsive element (TRE) activation by T3. HCT-116 cells were transfected with thyroid

receptor and a TRE driving luciferase, and luciferase activity was plotted as percentage of T3 response, which was normalized to 100%. Cells

were treated with 1 9 10�6 mol/L T3 or with 1–14 at (A) 1 9 10�7 and 10�6 mol/L T3 and (B) 5 9 10�7 and 10�6 mol/L T3, for 24 h.
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Select rexinoids show distinct lipid profiles
from bexarotene (1)

Bexarotene (1) treatment increases plasma triglycerides

and cholesterol in patients (e.g., S�anchez-Juan et al.

2007). To evaluate our rexinoids for potential differences

in side effects, we treated male Sprague–Dawley rats with

a single dose of 100 mg/kg bexarotene or analog and

assessed cholesterol, LDL, HDL, and triglycerides at

several time points.

Treatment of rats with 1 mimics published studies in

mice, and several analogs have similar side effect profiles.

In rats treated with 1, total cholesterol actually goes down

over a 24 h period (Table 3). This is reminiscent of mice

treated with 1, where the drop in total cholesterol is pos-

tulated to be due to inhibition of absorption of dietary

cholesterol (de Vries-van der Weij et al. 2009). Only ana-

log 14 has statistically significantly different (higher) cho-

lesterol than bexarotene at 9 and 24 h. Treating rats with

rexinoids generally did not affect the HDL (Table 4), and

decreases the LDL (Table 5), similar to studies performed

in mice (de Vries-van der Weij et al. 2009).

Only the triglyceride profiles of rats treated with 1 or

any of the analogs differed significantly over the time

course (Table 6). Triglycerides increase in patients treated

with 1 (S�anchez-Juan et al. 2007) and this clinically is the

most troublesome side effect in the lipid metabolism

pathway, due to the predisposition to atherosclerosis and

cardiovascular disease (Talayero and Sacks 2011). After

24 h, analog 14 induced significantly higher triglycerides

(1589 � 820.9 ng/dL vs. 279 � 67.1 ng/dL with 1 treated

animals), and rats treated with analogs 4 (109 � 16.4 ng/

dL) and 9 (158 � 46.5 ng/dL) had lower triglycerides

than rats treated with bexarotene. Thus, we have devel-

oped a series of rexinoids that can modulate lipid chemis-

try differently, although these analogs all bind and

activate RXR in a similar manner (Wagner et al. 2009;

Furmick et al. 2012; Jurutka et al. 2013).

Pharmacokinetic profiles of bexarotene and
select rexinoids in rats

We were interested in determining the pharmacokinetic

profiles of bexarotene and several analogs in order to
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Figure 5. Select rexinoids potentiate SREBP promoter activation in the presence of T0901317. HCT-116 cells were transfected with LXRa, RXRa,

and the SREBP promoter driving luciferase, and luciferase activity was plotted as percentage of T0901317 response (crosshatched bar), which was

normalized to 100%. Cells were treated with 1 9 10�7 mol/L analog with or without 1 9 10�7 mol/L T0901317 for 24 h. LXR, liver X receptor;

RXR, rexinoid X receptor; SREBP, sterol regulatory element-binding protein.

Table 2. GreenScreenTM (Cyprotex) analysis of rexinoids for cytotoxicity

and mutagenicity.

Without S9 activation With S9 activation

Cytotoxicity

(lg/mL) Genotoxicity

Cytotoxicity

(lg/mL) Genotoxicity

1 1.12 None 18 None

2 0.74 None 47.3 None

4 1.33 None 21.3 None

7 6.64 None 213 None

9 8.57 None None None

14 1.06 None 33.9 33.9 lg/mL

Rexinoids were added to TK6 cells to assess cytotoxicity and mutage-

nicity, as assayed by cell viability (cytotoxicity) and GFP expression

(mutagenicity). Shown is the lowest effective concentration (LEC) for

a positive result.
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Figure 6. TSH levels in rats treated with rexinoids. TSH decreases in rats treated with bexarotene (1) or analogs. Male rats were treated with

30 mg/kg compound and blood was drawn predose, at 6, 12, and 24 h. TSH was quantitated by ELISA and represented as percentage of

predose levels. TSH, thyroid-stimulating hormone.

Table 3. Blood cholesterol concentration after treatment of 100 mg/kg compound or vehicle control.

Predose 1 h 2 h 3 h 6 h 9 h 12 h 24 h

Vehicle 110 � 12.5 104 � 12.1 94 � 11.2 93 � 8.4 101 � 9 103 � 13.4* 94 � 8.7* 82 � 2.1*

Bexarotene 105 � 7.2 108 � 14.4 93 � 15.3 91 � 9.6 89 � 15.6 73 � 10.7^ 61 � 13.8^ 52 � 6.6^

2 100 � 21.2 122 � 17.2 78 � 6.2 95 � 16.5 71 � 12.8^ 80 � 14 65 � 13^ 47 � 8^

4 106 � 1 100 � 16.1 87 � 4.9 81 � 14.8 83 � 7.5^ 66 � 15.1^ 66 � 10.6^ 50 � 11^

7 108 � 12 107 � 20.1 92 � 17.5 85 � 12.9 89 � 16 73 � 10.7^ 62 � 4.7^ 47 � 7.5^

9 91 � 8.1 99 � 7.5 81 � 6.5 80 � 10.8 75 � 4.7^ 68 � 9.9^ 50 � 4.5^ 49 � 5.7^

14 111 � 13.7 124 � 6.7 98 � 9.0 102 � 12.5 97 � 10.4 93 � 12.5* 72 � 11.9^ 100 � 21*

Male Sprague–Dawley rats were treated with 100 mg/kg compound in sesame oil or sesame oil alone (vehicle control). Blood was taken at the

indicated time points and analyzed for cholesterol composition in mg/dL. Statistical analysis was performed using a one-tailed Mann–Whitney test.

Statistically significantly different than: *bexarotene treatment P ≤ 0.05; ^vehicle control P ≤ 0.05.

Table 4. Plasma high-density lipoprotein concentration after treatment of 100 mg/kg compound or vehicle control.

Predose 1 h 2 h 3 h 6 h 9 h 12 h 24 h

Vehicle 86 � 14 85 � 12.6 73 � 11.9 67 � 10.8 55 � 4.0 65 � 7.5 55 � 6.4* 68 � 4.5*

Bexarotene 83 � 2.9 82 � 15.2 63 � 8.0 57 � 9.0 47 � 7.0 55 � 7.0 34 � 3.2^ 37 � 7.6^

2 82 � 16.4 109 � 11.8*^ 67 � 3.5 84 � 13.6* 52 � 10.8 61 � 3.8 46 � 12.1 30 � 4.4^

4 81 � 2.0 79 � 13.2 66 � 6.1^ 57 � 10.0 50 � 4.0 56 � 11.6 39 � 5.0^ 43 � 9.5^

7 81 � 10.8 74 � 4.0 65 � 13.1 54 � 6.4 52 � 12.3 48 � 20.0 30 � 10.8^ 37 � 3.1^

9 71 � 6.9* 81 � 3.6 65 � 7.0 59 � 4.2 47 � 6.0 51 � 3.2^ 33 � 4.9^ 41 � 3.6^

14 89 � 7.2 99 � 7.0*^ 80 � 7.5* 76 � 12.8 58 � 11.0 59 � 7.0 39 � 3.2^ 61 � 23.4

Male Sprague–Dawley rats were treated with 100 mg/kg compound in sesame oil or sesame oil alone (vehicle control). Blood was taken at the

indicated time points and analyzed for HDL composition in mg/dL. Statistical analysis was performed using a one-tailed Mann–Whitney test.

*indicates statistically significantly different than bexarotene treatment P ≤ 0.05; ^indicates statistically significantly different than vehicle control

P ≤ 0.05.
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determine if any rexinoid would show promise for addi-

tional research. As can be seen in Table 7 and Figure 7,

the PK profiles of the RXR ligands varied markedly.

Although each rat received the same 100 mg/kg dose,

Cmax (peak plasma concentration) varied greatly, from a

low of 4913 ng/mL in analog 4 to a high of 44,000 ng/

mL for analog 7. All of the analogs have short Tmax, of

between 1 and 2 h. Although, interestingly, AUC

does not always correlate with Cmax, as some of the

compounds may have a very long half-life (Fig. 7). For

example, although the peak plasma concentration of bex-

arotene (1) is 8,523 ng/mL, the AUC is 51,531 ng/mL,

more similar to 9. Compound 14 appears to be cleared

least effectively (Fig. 7) and 4 is at the lowest concentra-

tion in the plasma after 24 h.

Solubility and calculated pKa of rexinoids
studied in rats

The compounds demonstrated such different Cmax and

AUC values, as well as PK profiles (Fig. 7), we hypothe-

sized that these properties of the compounds were

affected by the physiochemical properties of the com-

pounds. To explore this possibility, we performed water

solubility determinations and calculated the pKa values

for 1 and analogs 2, 4, 7, 9, and 14.

Water solubilities, as well as UV-vis absorptivity con-

stants in pure ethanol and 10% ethanol/water (v/v), for 1

and analogs 2, 4, 7, 9, and 14 were determined at 20°C
and summarized in Table 8.

As might be expected, the difluoro-bexarotene analog

(2) was more soluble (58 lmol/L) than 1 (0.28 lmol/L),

Table 5. Plasma low-density lipoprotein concentration after treatment of 100 mg/kg compound or vehicle control.

Predose 1 h 2 h 3 h 6 h 9 h 12 h 24 h

Vehicle 31 � 6.1 25 � 5.0 22 � 4.0 22 � 3.1 29 � 3.8* 30 � 9.5* 25 � 6.4* 20 � 1.5*

Bexarotene 30 � 4.0 27 � 8.0 19 � 5.0 16 � 3.8 6 � 2.6^ 7 � 1.2^ 5 � 4.0^ 3 � 0^

2 26 � 7.6 27 � 6.1 14 � 6.1^ 13 � 3.6^ 7 � 1.5^ 6 � 1.2^ 7 � 2.0^ 3 � 0^

4 28 � 2.1 27 � 8.0 15 � 8.0^ 14 � 7.5 7 � 3.5^ 8 � 3.0^ 5 � 1.5^ 7 � 0*^

7 33 � 1.7 36 � 11.1 19 � 11.1 19 � 8.1 13 � 1.5*^ 11 � 7.0^ 6 � 2.5^ 4 � 1.0^

9 25 � 4.2 27 � 3.5 16 � 3.5 15 � 4.5 9 � 5.5^ 7 � 2.1^ 5 � 1.5^ 4 � 1.2^

14 33 � 5.3 35 � 2.6^ 19 � 2.6 18 � 2.5 9 � 3.6^ 5 � 2.5^ 4 � 1.0^ 3 � 0^

Male Sprague–Dawley rats were treated with 100 mg/kg compound in sesame oil or sesame oil alone (vehicle control). Blood was taken at the

indicated time points and analyzed for LDL composition in mg/dL. Statistical analysis was performed using a one-tailed Mann–Whitney test.

*indicates statistically significantly different than bexarotene treatment P ≤ 0.05; ^indicates statistically significantly different than vehicle control

P ≤ 0.05.

Table 6. Blood triglyceride concentration after treatment of 100 mg/kg compound or vehicle control.

Predose 1 h 2 h 3 h 6 h 9 h 12 h 24 h

Vehicle 41 � 8.4 75 � 11.8 84 � 11 114 � 33.3 144 � 86.7* 123 � 49.8 115 � 47.1 48 � 12.1*

Bexarotene 35 � 13.1 85 � 21.4 98 � 18.5 157 � 79 444 � 220.7^ 160 � 65.4 233 � 138.9 279 � 67.1^

2 35 � 8.0 50 � 19.1 53 � 14.5*^ 123 � 38.9 191 � 56.7 221 � 99.6 181 � 12.2^ 436 � 226.8^

4 50 � 8.1 68 � 5.9 118 � 21.6^ 146 � 36.9 357 � 306.9 123 � 27 269 � 101.5^ 109 � 16.4*^

7 38 � 7.2 71 � 29.6 130 � 50.8 164 � 122.3 217 � 60.1* 290 � 313.3 352 � 355.3* 193 � 77.3^

9 40 � 15.6 36 � 6.4*^ 82 � 16.5 118 � 8.9 229 � 93.0 177 � 121.0 136 � 22.2* 158 � 46.5*^

14 37 � 6.4 33 � 1.7 *^ 98 � 18.2 113 � 7.8 268 � 58 340 � 181.7^ 286 � 73.7^ 1589 � 820.9*^

Male Sprague–Dawley rats were treated with 100 mg/kg compound in sesame oil or sesame oil alone (vehicle control). Blood was taken at the

indicated time points and analyzed for triglyceride composition in mg/dL. Statistical analysis was performed using a one-tailed Mann–Whitney test.

*indicates statistically significantly different than bexarotene treatment P ≤ 0.05; ^indicates statistically significantly different than vehicle control

P ≤ 0.05.

Table 7. Pharmacokinetic profiles of 1 and analogs 2, 4, 7, 9, and 14

in male Sprague–Dawley rats that were treated with 100 mg/kg

compound in sesame oil.

Compound

Cmax

(ng/mL) Tmax (h)

AUC0–t

(h 9 ng/mL)

AUC0–inf

(h 9 ng/mL)

Bexarotene 8,523.33 2 51,531.67 54,329.87

2 2,406.67 1 20,539.37 ND

4 4,913.33 2 24,650.67 24,735.07

7 44,000.00 1 83,343.87 83,984.92

9 25,400.00 1 50,444.23 51,483.03

14 18,633.33 1 152,955.83 ND

Rats were treated with compound and blood samples were taken to

determine pharmacokinetic profiles by liquid chromatography and

tandem mass spectrometry. ND, not determined; AUC, area under

the curve.
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whereas the acrylic acid analog (4) possessed a water sol-

ubility (7.6 lmol/L) more similar to 1. The two analogs

possessing a pyrimidine ring, 7 and 9, also possessed

fairly high solubilities at 49 and 67 lmol/L, respectively.

The mono-fluoro-unsaturated bexarotene analog (14) had

an observed solubility of 15 lmol/L. While the analog

solubilities were not proportional to Cmax in all cases, and

an analog’s absorption and distribution may depend on

several factors such as pKa and lipophilicity, it is interest-

ing to note that the analogs with two of the three highest

measured water solubilities (7 and 9) possessed the two

highest measured values for Cmax.

We were also interested in assessing whether the pKa

of the analog could impact its absorption. Hence, we cal-

culated each of the tested compound’s pKa values

(Table 8 and Fig. 8). All analogs are weak acids, with the

exception of 2 whose pKa was fairly low at �0.4. It is

generally known that the unionized form of compounds

is more easily absorbed in the stomach. When disregard-

ing 2, the calculated pKa values showed strong anticorre-

lation between Cmax, AUC0–t, and AUC0–inf, with

regression coefficients of �0.68, �0.79, and �0.72,

respectively (Fig. 8). In addition, the compound possess-

ing the lowest pKa (2) also possessed the lowest

measured Cmax.

Expression comparison of compounds and
vehicle demonstrate differential expression
of genes after treatment of RXR ligands

Because the in vitro data hinted the analogs might have

differential effects, and due to the fact that the PK profiles

Table 8. Solubilities and calculated pKa for compounds analyzed in rats.

Compound kmax EtOH (nm) eEtOH ([mol/L]�1�cm�1)

kmax 10%

EtOH/Water (nm)

e10% EtOH/Water

([mol/L]�1�cm�1)

Water solubility

at 20°C (lmol/L) pKa
[1] Calc’d

1 260 17,000 260 14,000 0.28 � 0.02 3.5

2 246 17,000 243 15,000 58 � 1 �0.4

4 284 24,000 283 18,000 7.6 � 0.1 3.9

7 252 20,000 243 19,000 49 � 1 1.8

9 221 (sh) 19,000 220 25,000 67 � 1 1.7

14 252 17,000 244 17,000 15 � 1 1.1

A 2.0 mmol/L stock solution in ethanol of each compound was made from which e was determined from a Beer’s law plot of dilutions. A

10 lmol/L solution in 10% ethanol/water of each compound was also made by dissolving 0.020 mmol of each compound in 200 mL of ethanol

and then diluting to 2 L with water. Dilutions of the 10 lmol/L solution in 10% ethanol/water were made to determine an equation for the

Beer’s law plot by linear regression. The water solubility of each compound was estimated by solving the linear regression equation from the

Beer’s law plot for the 10% ethanol/water solutions with the observed absorbance of saturated aqueous solutions of each compound. Water solu-

bility estimates from measured absorbances are shown as the mean � standard deviation or the last significant digit, whichever is greater.
1Calculated pKa values, performed in Gaussian 9.0, using the thermodynamic cycle in Figure 1.
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and the chemical properties of the RXR ligands were so

different, we further hypothesized that each analog could

be inducing diverse cellular effects. In order to demon-

strate that each analog was novel in its cellular and

molecular effects, we analyzed the expression profiles

induced in the rats after analog administration. The

brains of the rats were snap frozen 24 h after the treat-

ment and then RNA was extracted and subjected to

sequencing analysis to compare expression between treat-

ments. Our analysis demonstrated that each analog

induced and repressed a different suite of genes (Fig. 9

and Table 9). For example, in Figure 9, rats treated with

7 demonstrated the most upregulation of genes (yellow

and orange) compared to bexarotene-treated rats; and rats

treated with 9 demonstrated the most disparate gene

expression to rats treated with bexarotene. In Table 9, we

see specific genes that are differentially regulated when

rats are dosed with RXR ligands. For example, the gene

Stra6 is upregulated in the brains of rats treated with 9

and highly upregulated when treated with 2, but slightly

repressed in the brains of rats treated with bexarotene or

7. Mir346, a small RNA implicated in inflammation, is

downregulated in bexarotene-treated rats but upregulated

in rats treated with 4, 7, and 9. Table 9 outlines differen-

tial regulation of a wide variety of genes, demonstrating

that these RXR ligands, although somewhat similar in

structure, are varied in their induction of molecular

events. Thus, these RXR ligands demonstrate differential

effects at the molecular and cellular levels, as demon-

strated by their expression profiles.

Discussion

We wished to explore not only the effects in vivo of ana-

logs bearing a close resemblance to bexarotene–as with 2,

7, and 14–but also analogs of other reported potent RXR

agonists. While all three analogs of bexarotene, 2, 7, and

14, possess electron withdrawing groups on the ring bear-

ing the carboxylic acid, 7 relies on two nitrogen atoms of

a pyrimidine ring, whereas both 2 and 14 possess fluorine

atom(s) proximal to the carboxylic acid group. We exam-

ined not only the effects in vivo of the potent difluorinat-

ed 2 but we were also interested to see how effects might

differ in comparison to 14 that places a single fluorine

proximal to the carboxylic acid group of 1 and possesses

one additional degree of unsaturation in the aliphatic

ring of 1. As for the other two chemical motifs from

which we selected analogs to test in vivo, LGD100268 (8)

differs from bexarotene by substituting a pyridine ring

for the phenyl ring of bexarotene that bears the carbox-

ylic acid group, and 8 also possesses a cyclopropyl ring

bridging the two aromatic rings. In addition to a report

showing 8 to be more potent than bexarotene in COS-1

cells by one order of magnitude (Boehm et al. 1995),

there are numerous reports of 8 serving as an effective

RXR agonist both in vitro (Boehm et al. 1995; Mu et al.

2000) and in vivo (Liu et al. 2002). In compound 9, we

devised an analog of 8 that possesses one additional

nitrogen atom by substituting a pyrimidine ring for the

pyridine ring of 8. We were encouraged that cytotoxicity

experiments (GreenScreen, Cyprotex, Watertown, MA)

identified 9 to be the least toxic of all compounds evalu-

ated prior to in vivo work, and we were eager to evaluate

this compound’s in vivo effects in comparison to 1.

Finally, we wished to assess a potent RXR agonist analog

of CD3254 (3) that substituted a methyl group (4) for

the hydroxyl group of 3 to determine if this type of

biphenyl framework for a potent RXR agonist had similar

or markedly different effects than 1.

The analysis of the SREBP promoter transactivation

data in cultured human cells, as compared with the rat in

vivo lipid data, yields remarkable similarities. The most

striking differences in the lipid profile in the rat model

were seen in the triglyceride concentrations. For the rats

treated with compound 4, between 1 and 12 h results

were similar to those treated with bexarotene. This is

comparable to Figure 5, in which we can see that cells

treated with compound 4 (with or without T0) show sim-

ilar activation of the SREBP promoter when compared to

Figure 8. Plots of Cmax, AUC0–t, and AUC0–inf versus calculated pKa

for 1, 2, 4, 7, 9, and 14. AUC, area under the curve.
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bexarotene. For the rats treated with compound 7, lipid

profiles are statistically identical to the rats treated with

bexarotene, and the same relationship is seen in the cells

treated either with or without T0. Finally, and most strik-

ingly, cells treated with compound 14, either with or

without T0 had the highest transcriptional response in

human cell culture; in rats, the triglyceride concentrations

at 24 h were incredibly high (1589 � 820.9 mg/dL), simi-

lar to the cells treated with this compound.

There are differences between the TRE activation pro-

files of the analogs at the two different concentrations

(Fig. 3A and B). In general, the cells treated with

1 9 10�7 mol/L rexinoid seem to generate slightly more

active TRE-based transcription. We speculate that at the

high dose of 5 9 10�7 mol/L the rexinoids may be

depleting the limiting pool of TR coactivators, perhaps

including SRC1, SRC2, SRC3 (Stashi et al. 2014),

TRAP100, and TRAP220 (Ito and Roeder 2001). Since

there is endogenous RXR in the cells, some of those RXRs

become active RXR-RXR homodimers, which then inter-

act with these coactivators and more RXR-RXR homodi-

mers complexed with coactivators will be formed at the

higher dose. That pool of RXR-RXR homodimers will not

bind the TRE, but still could influence TRE activity

because they titrate away the limiting pool of coactivators

that are in the cell, and those same coactivators are

needed for the TRE-driven transcription (by the RXR-TR

still bound to the TRE). This is because our assay system

Table 9. Differential expression of genes in rat brain after 24 h treatment with RXR ligand.

Gene Protein 1 2 4 7 9 14

Inmt Indolethylamine N-methyltransferase �0.23 1.93 �0.41 �0.82 �0.36 �0.13

Ccl6 Chemokine (C-C motif) ligand 6 0.054 0.66 �0.91 �1.46 �1.39 �1.68

Mta2 Metastasis-associated 1 family, member 2 0.97 1.88 �0.10 �1.36 �0.34 �1.45

Cyp26b1 Cytochrome P450 family 26, subfamily B, polypeptide 1 �0.020 1.94 0.15 �0.28 �0.07 �0.090

Stra6 Retinol-binding protein receptor 0.05 1.58 0.23 �0.05 0.13 0.22

Angpt14 Angiopoietin-related protein 4 0.18 0.28 �0.31 �1.11 �0.64 �1.43

Pdk4 mt pyruvate dehydrogenase lipoamide kinase isozyme 4 0.77 0.87 �0.04 �0.44 �0.07 �0.61

Nmb Neuromedin B 0.166 1.28 0.33 �0.38 0.20 �1.00

Epha3 EPH receptor A3 �0.34 �0.89 �0.27 0.34 0.007 �0.49

Lyve1 Lymphatic vessel endothelial hyaluronan receptor 1 0.093 0.79 �0.13 �0.049 �0.097 �0.052

LOC689600 Uncharacterized and highly conserved �0.52 �0.99 �0.43 0.53 �0.037 �0.55

Vom2r8 Vomeronasal 2 receptor, 8 �0.21 �0.27 �0.62 0.074 �0.85 �0.51

Mir346 microRNA 346 �0.12 0.002 0.81 0.17 0.52 0.30

Acot1 Acyl-CoA thioesterase 1 �0.31 �0.02 0.41 �0.93 �0.65 �1.14

Mir3556b microRNA mir-3556b �1.13 �0.95 �0.23 �0.38 �0.14 0.11

Cyp26a1 Cytochrome P450 26A1 0.46 1.00 0.061 �0.088 0.002 0.15

Abca1 ATP-binding cassette transporter ABCA1 �0.025 0.17 0.19 �2.06 �1.04 �1.78

Aurkb Aurora kinase B 0.11 0.90 0.43 0.34 0.25 0.40

Ust5r Integral membrane transport protein �0.94 �1.68 �0.14 0.054 0.089 0.28

Upp1 Uridine phosphorylase 1 0.38 0.78 0.20 �0.700 0.055 �0.33

LOC500594 Ribosomal protein �0.20 0.63 0.78 0.20 0.55 0.48

Rbp1 Retinol-binding protein 1 �0.48 0.62 �0.19 �0.58 �0.36 �0.63

Sycp2 Synaptonemal complex protein �0.18 �0.25 0.24 0.048 0.69 �0.28

Alb Albumin �0.17 �2.90 �2.67 �0.46 �2.52 �2.54

Ifit3 Interferon-induced protein with tetratricopeptide repeats 3 �0.82 �0.88 0.50 �0.88 �0.083 �0.37

Arl11 ADP-ribosylation factor-like 11 0.072 �0.22 �0.017 �0.65 �0.13 �0.76

Scd1 Stearoyl-CoA desaturase-1 �0.54 �0.30 �0.007 �1.35 �1.20 �1.95

Mpeg1 Macrophage expressed gene 1 0.0023 �0.54 �0.94 0.44 0.17 �0.40

Lrrc4c Leucine rich repeat containing �0.19 �0.44 �0.50 0.71 0.11 �0.35

Sfrp5 Secreted frizzled-related protein 5 0.37 �0.27 �0.30 �0.20 0.51 0.60

Cav1 Caveolin �0.39 0.18 0.62 0.75 �0.07 0.63

Emr4 Member of the EGF-TM7 family 0.14 �0.10 0.25 0.64 0.45 0.70

Dlx2 Distal-less homeobox 2 �0.052 0.92 1.18 0.39 0.62 0.48

Nmu Neuromedin U 0.074 0.44 �0.062 �0.50 �0.41 �0.24

Cga Choriogonadotropin alpha 2.91 2.91 3.20 2.71 4.22 2.22

RNA sequencing was used to probe expression differences in brains in rats after 24 h of a single dose of analog. Expression data were analyzed

using a general linear model to generate differential expression profiles utilizing a likelihood ratio test of significance of all coefficients. RXR, reti-

noid X receptor.
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measures the active RXR-TR bound to the TRE that then

stimulates transcription of the luciferase reporter gene,

but the induction of luciferase is also influenced by the

available pool of coactivators. In support of this hypothe-

sis, we overexpressed the SRC-1 coactivator and observed

that the repressive effects of high-dose rexinoid treatment

were reversed (data not shown).

All of the analogs inhibit TSH synthesis to the same

extent in our rat model (Fig. 7), as opposed to the ana-

logs that inhibit TRE-mediated transcription differentially

in cell culture. TSH is synthesized in the pituitary gland,

and its promoter contains several regulatory regions,

including a negative regulatory element, suppressed by T3

binding to TR as well as RXR repression, shown to be

mediated by ligand (Haugen et al. 1997). This repression

in the pituitary is intriguingly regulated by RXRc (Hau-

gen et al. 1997), indicating perhaps that each analog can

bind RXRc with similar affinity. In contrast, HCT-116

cells contain endogenous RXRa and to a lesser extent

RXRb (van der Leede et al. 1993) and lack RXRc; Fig-

ure 4 hints that an RXRa/TR heterodimer is differentially

inhibited by different rexinoids, which have EC50s ranging

from 13 to 109 nmol/L (Table 1) (Wagner et al. 2009;

Furmick et al. 2012; Jurutka et al. 2013). Thus, we have

demonstrated that RXR ligands with different structures

can potentially mitigate some of the hypothyroid side

effects, at least in T3-TRE-responsive tissues.

Conclusion

Because of the wide-ranging applications of bexarotene

(1), not only in treating several human cancers but also

impacting pathways implicated in neurological disorders,

and the concomitant side effects of hypothyroidism and

raised triglycerides, we undertook an in vitro and in vivo

evaluation of five potent RXR-selective agonists (rexi-

noids) we reported recently (2, 4, 7, 9, and 14). Prior to

in vivo experiments, we tested all compounds, and bex-

arotene (1), for toxicity and mutagenicity in the Cyprotex

GreenScreen assay, whose results indicated that the com-

Figure 9. Differential expression analysis of rat brains after treatment with RXR agonists. RNA was isolated and expression determined using RNA

sequencing from rat brains after 24 h of a one time treatment with vehicle or compound. A likelihood ratio test of significance of all coefficients

demonstrated 200 genes that were detected to be differentially expressed at P < 1.0 9 10�3, fdr < 0.3 utilizing a general linear model of

expression comparison. RXR, retinoid X receptor.
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pounds were not expected to be more toxic than 1.

Indeed, this toxicity screen indicated that 9 was the least

toxic of all compounds. We had also screened several of

the novel rexinoids (Fig. 2) in cell-based TRE and SREBP

assays whose results suggested that many of the novel

rexinoids (Figs. 3–5) might show markedly different TSH

and lipid profiles in vivo. A rigorous examination of the

PK, TSH, cholesterol, HDL, LDL, and triglyceride profiles

in Sprague–Dawley rats for the five potent rexinoids (2,

4, 7, 9, and 14) in comparison to bexarotene (1) demon-

strates that while some features are similar among the

rexinoids and 1–such as the TSH profiles–other features,

such as the PK and triglyceride profiles, are significantly

different. In fact, compounds 4 and 9 had statistically

lower triglyceride levels at 24 h than 1, and 14 had a sta-

tistically much higher triglyceride level at 24 h than 1.

Additionally, we observed that compounds 7 and 9 had a

significantly higher Cmax than 1, whereas compound 2

had a much lower Cmax than 1. This difference in PK

profile compelled us to investigate factors that might

explain the difference between these compounds. Thus,

we examined the water solubility of the five rexinoids (2,

4, 7, 9, and 14) and 1 and we also modeled them to

arrive at calculated pKa values. The water solubility exper-

iments showed that the pyrimidine-ring containing com-

pounds (7 and 9) possessed two of the three highest

measured water solubilities, which might reasonably con-

tribute to their high observed Cmax values. Furthermore,

even though 2 possessed the second highest measured

water solubility, the pKa calculations suggested that 2 was

the most acidic which might also reasonably contribute to

its low observed Cmax value, despite its relatively good

solubility. Additionally, we extracted and sequenced RNA

from the brains of rats treated with bexarotene, novel

rexinoids (2, 4, 7, 9, and 14), and vehicle, and data from

these experiments indicated significant differences in

upregulation and repression of various genes between

analogs. Of particular note, compound 7 displayed the

greatest upregulation of genes across the table, and com-

pound 9 showed the greatest difference in upregulation

and repression of genes in comparison to bexarotene.

Taken together, these results suggest that several of the

five novel rexinoids–particularly, 4, 7, and 9–possess PK

and triglyceride profiles, as well as physical characteristics

that in comparison to 1 make them compelling candi-

dates for further preclinical studies.
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