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SUMMARY 23 
 24 
1. Transition areas between biomes are particularly sensitive to environmental changes. Our 25 

understanding of the impacts of ongoing climate change on terrestrial ecosystems has 26 

significantly increased during the last years. However, it is largely unknown how climatic 27 

change will affect transitions among major vegetation types.  28 

2. We modeled the distribution of three alternative states (forest, savanna and treeless areas) in 29 

the tropical and subtropical Americas by means of climate-niche modeling. We studied how such 30 

distribution will change by the year 2070 by using 17 downscaled and calibrated global-climate 31 

models from the Coupled Model Intercomparison Project Phase 5 and the latest scenarios 32 

provided by the 5
th

 Assessment Report of the IPCC.  33 

3. Our results support the savannization of the tropical and subtropical Americas because of 34 

climate change, with an increase of savannas mainly at the expense of forests.  35 

4.  Our models predict an important geographical shift in the current distribution of transition 36 

areas between forest and savannas, which is much less pronounced in the case of those between 37 

savannas and treeless areas. Largest shifts, up to 600 km northward, are predicted in the forest-38 

savanna transitions located in the eastern Amazon. 39 

5. Our findings indicate that climate change will promote a shift towards more unstable states: 40 

the extent of the transition areas will notably increase, and largely stable forest areas are 41 

predicted to shrink dramatically.  42 

6. Synthesis. Our work explores dimensions of the impact of climate change on biomes that have 43 

received little attention so far. Our results indicate that climate change will not only affect the 44 

extent of savanna, forest and treeless areas in the tropical and subtropical Americas, but also 45 

will: i) promote a significant geographical shift and an increase of the extent of transition areas 46 

between biomes, and ii) decrease the stability of the equilibrium between forest, savanna and 47 

treeless areas, yielding a more unpredictable system.  48 

 49 

  50 
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INTRODUCTION 51 

The Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 52 

provides unequivocal evidence of ongoing climate change, which is characterized by an increase 53 

in temperature globally and important modifications in rainfall patterns (IPCC, 2013). Climate 54 

change will have major impacts on the structure and functioning of terrestrial ecosystems 55 

(Peñuelas et al., 2013), and is already promoting important changes in the spatial extent and 56 

distribution of vegetation types worldwide (Gang et al., 2013). Our understanding of the impacts 57 

of ongoing climate change on terrestrial ecosystems has significantly increased in recent years 58 

(see Parmesan (2006); Parmesan & Yohe (2003); Paruelo et al. (1995); Walther (2010) and 59 

Peñuelas et al. (2013) for reviews). In tropical areas, forests might retreat yielding more open 60 

savanna-like systems, a pattern particularly well identified for the Amazonian region (Franchito, 61 

Rao & Fernandez, 2012; Salazar, Nobre & Oyama, 2007; Zelazowski et al., 2011).  62 

Climate-induced changes in vegetation types will have direct effects on the provisioning of 63 

ecosystem services for humans (MEA, 2003). Shifts from grasslands into woodlands results in a 64 

significant reduction in livestock production (Anadón et al., 2014), which can be offset by an 65 

increase in carbon sequestration (Havstad et al., 2007) and soil fertility (Eldridge et al., 2011). 66 

The shift from forest to grassland can also have impacts on ecosystem services other than the 67 

provisioning of timber or food, such as a decrease in carbon sequestration and regulation of 68 

climate (MEA, 2003).  69 

 Biome transitions are areas of high socio-ecological interest for many reasons. These 70 

areas have a unique and high biological diversity at multiple levels (from genes to communities; 71 

see Kark & Van Rensburg (2006) for a review), and are areas of high conservation interest 72 

(Smith et al., 2001; Smith et al., 1997). These areas are also particularly sensitive to human 73 
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activities such as grazing (Hudak, 1999), and to important components of climate change such as 74 

the increase in precipitation intensity and rainfall variability predicted for many terrestrial 75 

ecosystems worldwide (IPCC, 2013; Meehl, Arblaster & Tebaldi, 2005). In this direction, rapid 76 

vegetation shifts in responses to recent changes in climatic conditions are already being detected 77 

in areas such as the Arctic tundra (Sturm, Racine & Tape, 2001), the Alps (Gehrig‐Fasel, Guisan 78 

& Zimmermann, 2007) and the drylands of the Southwestern U.S. (Van Auken, 2009). Recent 79 

studies have highlighted how climate change drivers, such as an intensification of the rainfall 80 

regime, may favor the recruitment and expansion of woody plants in savannah ecosystems 81 

(Holmgren et al., 2013; Kulmatiski & Beard, 2013), a vegetation transition with major ecological 82 

effects on biodiversity, nutrient cycling and carbon sequestration in drylands worldwide 83 

(Eldridge et al., 2011). As such, forecasting how vegetation in transitional areas will respond to 84 

climate change is an urgent ecological question that has been poorly studied to date. 85 

 Understanding how climatic variables such as rainfall and temperature determine woody 86 

vegetation cover in grassland-woodland transition areas has been an area of active research in the 87 

last decades (Hirota et al., 2011; Sankaran et al., 2005; Staver, Archibald & Levin, 2011; 88 

Williams et al., 1996). Continental-scale analyses of tree cover in African savannas have found 89 

that mean annual precipitation largely limits the maximum cover of woody species, and that 90 

disturbance dynamics control savanna structure below this maximum (Sankaran et al., 2005). 91 

More recent analyses have reported the presence of three alternative stable states (forest, 92 

savanna, and treeless) in the world´s savannas (Hirota et al., 2011). These authors found that the 93 

tree cover values characterizing savannas (~20%) and forests (~80%) were found over multiple 94 

rainfall conditions, suggesting that woody cover is not controlled by gradual increases in 95 

precipitation, and that there is a shifting probability of being in either of the three stable states 96 
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identified. The reverse side of this multiple stable state equilibrium is the existence of highly 97 

unstable tree cover values (~5% and ~60%) that can be then identified as transition areas 98 

between biomes. A key property of the findings reported by Hirota et al. (2011) is that any given 99 

locality will have a probability of being forest, savanna and desert according to their climatic 100 

characteristics, and thus they allow us to quantify how likely transitions between vegetation 101 

types are likely to occur. For example, in a locality with very high probability of being forest and 102 

low of being savanna or treeless, the probability of transition between vegetation states in very 103 

low. As a consequence, the uncertainty of the locality is very low since it is highly probable that 104 

it will be a forest. On the contrary, the uncertainty of a locality with similar and high 105 

probabilities of being forest and savanna (and low probability of being treeless) is very high, 106 

since it is very difficult to predict whether this locality will be a forest or a savanna. In localities 107 

of high uncertainty, small changes in tree cover due to human activities (e.g. fires, selective 108 

logging) might have a large effect on the system and promote the transition from one state to 109 

another. On the contrary, localities with low uncertainty are likely to be more resilient to human-110 

induced changes to tree cover (Hirota et al., 2011). 111 

While research conducted over the last decades has provided key insights to advance our 112 

understanding of the mechanisms driving grass/woody vegetation coexistence in savanna 113 

systems, and has improve our ability to predict their responses to climate change, no previous 114 

studies so far have explicitly evaluated how forest-savanna-treeless transitions will change under 115 

future climatic conditions at regional to continental scales (but see Hutyra et al. (2005); Salazar, 116 

Nobre & Oyama (2007); Salazar & Nobre (2010) for forest-savanna transitions). We aimed to 117 

assess forest-savanna-treeless transitions under climate change for the tropical and subtropical 118 

Americas; a region that is crucial for preserving global biodiversity (Myers et al., 2000), 119 
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regulating the Earth´s climate (Gedney & Valdes, 2000), and that directly supports the livelihood 120 

of more than 700 million people. Our objectives were to: i) assess the climatic determinants of 121 

the occurrence of treeless vegetation, savannas and forest in the tropical and subtropical 122 

Americas, ii) predict the future extent and distribution under climate change scenarios of treeless 123 

vegetation, savannas and forest in that region, iii) evaluate how climate change will affect the 124 

distribution of the transition areas among them, and iv) assess how climate change will affect the 125 

uncertainty of the occurrence of different vegetation types. To achieve these objectives, we 126 

modeled the spatial distribution of grasslands and woodlands and their transition areas in the 127 

studied region using the alternative stable state framework provided by Hirota et al. (2011) and 128 

large-scale remote sensing and climate data, and employed the latest climate change scenarios 129 

provided by the 5
th

 Assessment Report of the IPCC (Taylor, Stouffer & Meehl, 2012) to forecast 130 

how such distribution will change by the year 2070.  131 

 132 

MATERIALS AND METHODS 133 

Modeling the distribution of forest, savanna and treeless areas 134 

Our study area comprises the tropical and subtropical Americas, here defined as those areas 135 

between latitude 35°N and 35°S. Hirota et al. (2011) suggested that the different vegetation types 136 

in tropical areas, as described by tree cover, are actually alternative states, exhibiting sharp 137 

transitions between them at so-called tipping points. These authors identified three alternative 138 

states in the tropical areas of the Americas (forest, savanna and treeless areas) that were defined 139 

by the cutting levels of 5 and 60% of tree cover (i.e., treeless=0-5%, savanna=5-60%, forest=60-140 

100%).  141 
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We modeled the distribution of the three states (forest, savanna or treeless) according to climatic 142 

variables by means of generalized linear models with a binomial distribution of errors, with the 143 

presence/absence of the state as independent variables, and with climatic descriptors (Mean 144 

annual temperature [T], Mean annual precipitation [P], T + P, P/T ratio and Aridity index 145 

[P/Potential evapotranspiration]) as independent variables. Our models rely on the understanding 146 

that climate governs the broadest outlines of distributions of species and biomes. This statement 147 

is well supported by current knowledge (see Araújo & Peterson (2012) for a review). In this 148 

sense, our models capture the main controls of biome distribution at a continental scale (i.e., 149 

climate), as shown by the high values of explained deviance obtained (see Results section). 150 

Models were fitted to a random sample of 3000 2.5’ x 2.5’ (aprox. 4.5 x 4.5 km) cells from the 151 

study area. Tree cover percentage was assessed from the MOD44B Collection 3 product from 152 

MODIS (Hansen et al., 2003) originally at a 500 m resolution. 2.5 arc-minute resolution values 153 

were obtained by averaging the 500 m side cells within each 2.5 arc-minute side cell. Average 154 

tree-cover values were then transformed to a categorical map describing the three alternative 155 

states in the present time, using the 5% and 60% cutting levels described above. Mean annual 156 

precipitation, temperature and evapotranspiration were also assessed for each 2.5 arc-minute side 157 

cell. Precipitation and temperature were obtained from Worldclim database 158 

(www.worldclim.org; Hijmans et al. 2005). Evapotranspiration was obtained from the Global 159 

Potential Evapo-Transpiration (Global-PET) dataset (http://www.cgiar-csi.org/). Both databases 160 

describe climatic average values of the period 1950-2000 and are available at a 2.5 arc-minute 161 

resolution.  162 

Eleven candidate models were fitted to the MOD44B data, including linear and quadratic 163 

responses to the different climatic descriptors (Table 1). Models for each state were ranked 164 

http://www.worldclim.org/
http://www.cgiar-csi.org/
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according to the Akaike Information criterion (Burnham & Anderson, 2002). In accordance with 165 

previous works showing that tree cover and climate relationships at the continental scale are 166 

insensitive to the spatial resolution (Staver, Archibald & Levin, 2011), our results at 2.5 arc-167 

minutes resolution were very similar to those obtained using a 30 second (aprox. 1 km) 168 

resolution (data not shown).  We used the Global Land Cover 2000 (GLC2000) map to filter out 169 

areas undergoing human activities (categories 16-18 and 22; (Bartholome & Belward, 2005) 170 

from our analyses. These areas cover 5.1 x 10
6
 km

2
, comprising 23% of our study area (Fig. S1). 171 

By only using natural areas, we maximize the decoupling of climate and land-use controls on the 172 

dynamics of biomes and their transitions areas. As such, our predictions are based solely on 173 

climatic controls and are largely independent of land-use change.  174 

As it will be detailed in the Results section, a global model (i.e. including all the study 175 

area) for forest and treeless states presented high explanatory power (D
2
>40%; Table 1). For the 176 

savanna state, however, the best global model according to the Akaike Information criterion 177 

performed poorly (D
2
=12%; Table 1), suggesting spatial non-stationarity (i.e. the response of the 178 

savanna state to climatic condition changes within our study area). To obtain a more robust 179 

model, and starting from the best global model (P
2
+T

2
; Table 1), we developed models with a 180 

spatial factor describing different subareas within our study area. This factor was included as an 181 

interaction term in the models. Because of the latitudinal organization of macroclimatic control 182 

and major biomes on the Earth (Bailey & Ropes, 1998), this factor divided our study area 183 

latitudinally in two or three areas. Since we did not know which areas were a priori responsible 184 

for the presence of non-stationarity in our data, we fitted models with different spatial factors 185 

describing all possible two and three latitudinal subareas within our study area. To make the 186 

number of latitudinal subareas tractable, the minimum latitudinal width of the subareas were 5° 187 
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(for example from 15°N to 20°N, see Table S1 in Supporting Information for examples of factors 188 

including different latitudinal subareas). In total we fitted 91 models, each one including the best 189 

global model and a spatial factor. As detailed in the Results section below, a large number of 190 

models had a very similar explanatory power (Table S1, Supplementary Information). Hence, the 191 

model for the savanna state was built using a weighted average consensus approach (Marmion et 192 

al., 2009). For doing so, we first selected a subset of models with the highest accuracy, and then 193 

calculated a weighted average according to a model performance metric (Hartley, Harris & 194 

Lester, 2006; Marmion et al., 2009). In our case, and given the differences in the explanatory 195 

power of the models, we selected the 20% best models according to their explained variance (n = 196 

18 models, range of explained variance of these models = 27.6-33.6%). Models were weighted 197 

according also to their explained deviance (Araujo et al. 2007). We did not use the Akaike 198 

weights (Burnham & Anderson, 2002) for model averaging because this approach led us to the 199 

selection of only one best model (i.e. weight of the first ranked model = 0.996). 200 

Our distribution models for forest, savanna and treeless areas were projected to the study 201 

area using present conditions (1950-2000) and climate change scenarios. For the scenarios, we 202 

used 17 downscaled and calibrated global climate models from the Coupled Model 203 

Intercomparison Project Phase 5 (CMIP5) (Taylor, Stouffer & Meehl, 2012) (See Table S2, 204 

Supplementary Information). We selected for our projections the Representative Concentration 205 

Pathway 8.5 (RCP8.5) for the year 2070. Within the Fifth IPCC Assessment Report, RCP8.5 206 

represents the scenario with the highest concentration of greenhouse gases, and with a predictive 207 

radiative forcing of + 8.5W/m
2
 (IPCC, 2013). Our rationale behind the selection of the worst (but 208 

possible) scenario is that we are more interested in capturing the overall directions of the changes 209 

than in quantifying exactly the extent of the changes. To describe the extent of forest, savanna 210 
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and treeless areas in the present time and for the year 2070, each cell was assigned to the state 211 

with largest probability of occurrence.  212 

 213 

Modeling transitions 214 

Our study system is comprised by three states (forest, savanna and treeless areas) and two 215 

possible transitions (forest-savanna and savanna-treeless). To model these two transitions, we 216 

first divided our study area in the forest-savanna and savanna-treeless systems. These two 217 

subareas are mutually exclusive. The forest-savanna system is defined as those areas where the 218 

probability in the present time of being savanna or forest is larger than the probability of being 219 

treeless. Conversely, the savanna-treeless system is defined as those areas where the probability 220 

of being savanna or treeless in the present time is larger than the probability of being forest (Figs. 221 

2 and 3).  Starting from the distribution maps of the three alternative states for the present time 222 

and the climate-change scenario of the 17 CMIP5 global climate models, we calculated transition 223 

maps between forest and savanna, and between savanna and treeless areas for these two periods. 224 

In the transition maps, we calculated for each cell a transition index (TransAB) calculated as 225 

TransAB= p(A) – P(B), where P(A) and P(B) are the probability of being in state A and B, as 226 

described by the distribution maps. The transition index ranges between 1 and -1, with 1 being 227 

those cells with the largest probability of being in state A and least probability of being in state 228 

B, and -1 the other way around (maximum probability of being in state B and least of being in 229 

state A). Values close to 0 indicate high uncertainty, being difficult to predict whether the cell 230 

will be in state A or B, and cells with TransAB=0 are those that have exactly the same probability 231 

of being in state A or B, according to their climatic conditions. From the transition maps we 232 

identified transition areas, i.e. areas with the highest uncertainty, which were defined as those 233 
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with TransAB absolute values below 0.2. In the same vein, we defined the core areas of the 234 

biomes, i.e. areas with the lowest uncertainity, as those with TransAB absolute values above 0.5. 235 

The modeling approach described above was performed for each one of the 17 CMIP5 global 236 

climate models. Final projection maps for biome distribution, transition areas and their changes 237 

were built from the ensemble mean of the projections provided by the 17 models (Araújo & 238 

New, 2007).  239 

 240 

RESULTS 241 

For the three states considered, the models with the largest values of explained deviance were 242 

those including temperature and precipitation (Table 1). The best models for forests and 243 

savannas included both variables with their quadratic terms, whereas for treeless areas the best 244 

model included the linear term of precipitation and the quadratic term of temperature. For forest 245 

and treeless states, a global model (i.e. including all the study area) presented high explanatory 246 

power (D
2
=45 and 60% for forest and treeless areas, respectively). As noted in the Methods, the 247 

global model performed poorly for savanna (D
2
=12%). Models considering a spatial factor with 248 

multiple subareas had larger explanatory power for this area (D
2
 values ranging from 15.4% to 249 

33.7%; Table S1). The consensus model for this state resulting from the ensemble modeling 250 

presented an averaged explained deviance of 30.3% (Table 1). 251 

Our results indicate that forests will decrease in area in favor of savannas by the year 252 

2070 under the RCP8.5 climate change scenario (Table 2 and Fig. 1). Forest areas are predicted 253 

to lose 1.5±0.9 x10
6
 km

2
. This biome is expected to cover 22 ± 4% of our study area in year 254 

2070, which means a 24% (range 9-39%) reduction in comparison to its current distribution. 255 

Results from the 16 out of 17 CMIP5 global climate models indicated a reduction of forest area 256 
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(Table S3). The general agreement shown by the projections of each one of the 17 CMIP5 global 257 

climate models in relation to changes in forest area indicates that our predictions are robust 258 

regarding uncertainties of the global climate models (Table 2). Changes in extent of treeless 259 

areas are predicted to be of small extent (-24 ±178 x 10
3
 km

2
). Results from 8 CMIP5 climate 260 

models predicted a reduction, whereas 9 models show an increase in treeless areas. This limited 261 

change actually means that the percentage of the tropical and subtropical Americas covered by 262 

treeless areas might not vary significantly due to climate change. As it will be discussed below, 263 

this result does not mean that treeless areas might remain stable, but that the extension of some 264 

treeless areas might be compensated by the contraction of others. 265 

For the forest-savanna system, the largest transition area is located in the southern portion 266 

of the Amazonian rainforest (Figure 2). Comparatively, minor transition areas are located north 267 

of the Amazonian forest and along Central America. Within the savanna-treeless system, main 268 

transition areas are located in the southern border of the North American deserts and along 269 

Pacific coast in South America (Fig. 3). Our predictions indicate that, within the forest-savanna 270 

system, changes in the multistate equilibrium toward savanna occur mainly in the East Amazonia 271 

and North Matto Grosso regions (Fig. 4). Within the savanna-treeless transition realm, changes 272 

towards savanna occur in the Peruvian and Bolivian slopes of the Andes facing west, north of the 273 

Atacama Desert. Despite the overall reduction of the total forest area, our models predict an 274 

increase in the probability of forest in the southern Atlantic Forest region. Shifts towards treeless 275 

areas are of much lesser extent and intensity (i.e. amount of change in the transition index) than 276 

those towards forest or savanna. Main areas where our models predict a shift towards treeless 277 

areas are Northeastern Brazil and part of the Chaco, between Paraguay and Bolivia.  278 
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Our models predict an important geographical shift in the current distribution of the 279 

forest–savanna transition, which is less pronounced in the case of the savanna-treeless transition 280 

(Fig. 5). The largest move in forest–savanna transitions (up to 600 km westward) occurs in the 281 

eastern part of the Amazon, affecting the contact areas of the Amazon with three different 282 

savanna systems present in the region (Llanos, Roraima and Cerrado). Lesser shifts (up to 100 283 

km northward) occur in the southern limit of the Amazonia. Regarding the savanna-treeless 284 

transition line, our models predict minor shifts (up to 50 km westward) in the arid and semiarid 285 

areas of West South America (i.e., Atacama, Chaco, Monte Desert). Our models suggest that the 286 

shift in the transition line in this area increases towards the South, being maximal in the 287 

Argentinean Monte Desert. Transition areas located in the North American deserts (i.e. Mojave, 288 

Sonoran, Chihuahuan) are not expected to shift (Fig. 5).  289 

Changes in the extent and geographical location of the transition areas occur 290 

simultaneously with an increase of the uncertainty of the system state (Fig. 6). In the forest-291 

savanna system, the reduction of forest areas is at the expense of those areas with current lowest 292 

uncertainty of being forest. A large fraction (58%) of these areas, which can be considered the 293 

core of the forest biome, shift towards areas with higher uncertainty levels (Fig. 6). As a result, 294 

core forest areas, which nowadays occupy 3.1 x10
6
 km

2
, are projected to cover 1.3 x10

6 
km

2
 295 

(range: 0.3 – 2.4 x10
6 

km
2
, Table S4). The different projections resulting from the 17 CMIP 296 

global climate models show consistent patterns in the changes in uncertainty of the forest-297 

savanna system, as shown by the reduced standard deviation of the predictions (Fig. 6). All 17 298 

CIMP5 climate models predict a reduction in the areas of low uncertainty of being forest (Table 299 

S4). Forest-savanna transition areas (i.e. those where the difference in the probability of being 300 

forest and savanna is <0.2) increased on average by 32%, from 2 x10
6 

km
2 
to 2.7 x10

6 
km

2
 301 
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(range= 2.2 – 3.6 x10
6 

km
2
, Table S4). A similar pattern, but much less pronounced, occurs in the 302 

savanna-treeless system, with a decrease in areas with high certainty of being treeless that shift 303 

towards areas of higher uncertainty (Fig. 6 and Table S5). The largest increases in uncertainty of 304 

the system state, projected to occur on the forest-savanna system, are located around two areas: 305 

the Amazon forest, particularly in the west, and the southern portion of the Atlantic Forest, 306 

because of their shifts towards savanna and forest, respectively (Fig. 7). The largest decreases in 307 

uncertainty are located in those savanna areas on the West of South America (Llanos, Roraima, 308 

Northern Cerrado), which are clearly expected to shift towards savanna.  309 

  310 

DISCUSSION 311 

Transitions between forests, savannas and treeless are of utmost importance for understanding 312 

major environmental issues such as desertification (Maestre et al., 2009; Schlesinger et al., 1990) 313 

and the global carbon cycle (Pacala et al., 2001), and have important socio-economical and 314 

management implications at large scales (Gifford & Howden, 2001; Hudak, 1999; Van Auken, 315 

2009). Despite the importance of this topic, no previous study has evaluated how climate change 316 

will affect these transitions areas at regional to continental scales. Our results indicate that 317 

climate change according to the RCP8.5 scenario of the IPCC will promote the savannization of 318 

the tropical and subtropical Americas, with an increase of savannas mostly at the expense of 319 

forests. Such change will also increase the extent of transition areas between savannas and 320 

forests, and will promote a dramatic reduction of stable forest areas. According to current 321 

knowledge, the shifts predicted in the distribution and stability of transitions areas are expected 322 

to bring important changes to the biota and the provision of ecosystem services such as C 323 

sequestration, climate regulation and food production in one of the most important regions 324 

worldwide for biodiversity and human wellbeing (MEA, 2005).  325 
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Our modeling approach, which relies on niche modeling theory and focuses exclusively 326 

on the climatic controls of transitions, does not take into account other factors that have been 327 

identified as interacting with climate drivers, such as feedbacks between tree cover and climate, 328 

particularly in the rainforest (Coe et al., 2013; Malhi et al., 2008), sea surface temperature 329 

(Pereira, Costa & Malhado, 2013), CO2 fertilization (Lapola, Oyama & Nobre, 2009) and land 330 

uses (Nepstad et al., 2008). In the same vein, our models use average annual values, and do not 331 

consider intra- and inter-annual variability in rainfall and temperature, which have been 332 

described to have significant effects in driving tree cover (Holmgren et al., 2013; Malhi et al., 333 

2008). Notwithstanding, the overall agreement (discussed below) between our projections and 334 

those obtained by previous studies using more complex models regarding the direction, spatial 335 

location and order of magnitude of the vegetation changes observed at a regional scale  makes us 336 

confident on the results reported here. Furthermore, the relatively reduced variability of the 337 

projections obtained from each one of the 17 CMIP5 global climate models used also indicates 338 

that our predictions are robust regarding the uncertainty of the models using the Representative 339 

Concentration Pathway 8.5 for the year 2070.    340 

 341 

CLIMATE-CHANGE IMPACTS ON THE EXTENT OF SAVANNA, FOREST AND 342 

TREELESS AREAS 343 

Our models predict that climate change will increase the extent of savannas in the Americas by 344 

12% (range=5-19%, average increase=1.5 x10
6 

km
2
) at the expense mostly of forests, which will 345 

decrease by 24% (range= 9-38%, average decrease= 1.5 x10
6 
km

2
) and in much less extent of 346 

treeless areas. Overall this result matches the process of savannization predicted for the area for 347 

the 21
st
 century because of climate change (Franchito, Rao & Fernandez, 2012; Hutyra et al., 348 
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2005; Cook & Vizy, 2008; Salazar & Nobre, 2010). In agreement with previous results (Cook, 349 

Zeng & Yoon, 2012; Franchito, Rao & Fernandez, 2012; Hutyra et al., 2005; Salazar & Nobre, 350 

2010), our projections indicate that major increases of savanna will occur at the expense of the 351 

Amazon rainforest, particularly at its south and southeastern portions. The amount of predicted 352 

reduction of forest, ranging from 9% to 38%, falls within the range predicted by other authors for 353 

South America (Cook & Vizy, 2008; Hutyra et al., 2005; Salazar, Nobre & Oyama, 2007; 354 

Zelazowski et al., 2011). Previous studies have indicated that a larger stability of the forest in the 355 

Mata Atlantica in comparison with the Amazon under a climate-change scenario (Cook, Zeng & 356 

Yoon, 2012). Our results go one step further and predict a strong increase of the probability of 357 

being forest in this area. The forest of the Mata Atlantica is strongly fragmented, and only around 358 

10% of its original area actually remains (Saatchi et al., 2001). Our findings indicate that in this 359 

region management actions designed to increase tree cover could take advantage of this positive 360 

inertia towards the forest.  361 

In comparison with the transitions between forest and savanna, our prediction of 362 

transitions between savanna and treeless areas are overall small in extent, with a decrease of <1% 363 

of the treeless areas (2.4 x10
4 

km
2
). The impacts of climate change on the extent of drylands have 364 

been much less explored than those on forests, particularly in the Amazon region. Existing work 365 

indicates an overall increase in aridity and the extent of drylands in most the arid areas of 366 

tropical and subtropical Americas (Feng & Fu, 2013; Seager et al., 2007). Our results partially 367 

match these patterns, since they predict a general increase in the extent of the Caatinga (NE 368 

Brazil) and Chaco Seco (Argentina and Paraguay), and a patchy increase in the extent in North 369 

American deserts. However, against current knowledge (Feng & Fu, 2013), our models predict a 370 
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savannization of the Atacama Desert and particularly, of the Sechura Desert, along the Peruvian 371 

Pacific coast. 372 

Changes in vegetation type from forest into savanna and treeless groups are expected to 373 

have major effects on climate (Oyama & Nobre, 2003; Shukla, Nobre & Sellers, 1990). 374 

Vegetation changes affect climate directly via changes in albedo and transpiration, the later 375 

mediated through changes in rooting depth. Vegetation changes also affect climate indirectly 376 

through changes in carbon cycling. Albedo increases along the gradient from forest, savanna to 377 

treeless vegetation therefore increasing the amount of radiation reflected back to the atmosphere 378 

and reducing surface temperature (Balling Jr, 1988). Rooting depth decreases from forest to 379 

treeless vegetation, reducing the depth of the soil explored by roots and functionally reducing the 380 

soil water-holding capacity (Jackson et al., 1996). A reduced soil-water capacity may decrease 381 

the latent heat therefore reducing the cooling capacity of the ecosystem. Finally, carbon storage 382 

is much larger in forest than in savannas and treeless vegetation in tropical areas (Saatchi et al., 383 

2011), so the transition from forest into savanna may results in a net carbon emission into the 384 

atmosphere that will enhance climate warming. 385 

 386 

CLIMATE CHANGE EFFECTS ON TRANSITION AREAS AND THE STABILITY OF THE 387 

SYSTEM 388 

Using the framework of alternative stable states provided by Hirota et al. (2011), we were able to 389 

project how the transition areas between biomes and the stability of the system are expected to 390 

change under climate change. These two related aspects have been much less explored than the 391 

changes in the extent of the biomes themselves. As with the projected changes in the extent of 392 
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biomes, shifts in the transitions between forests and savannas were much more pronounced than 393 

those between savannas and treeless areas.  394 

Our models predict that climate change will promote a shift towards more unstable states, 395 

yielding more uncertainty in system state. Two aspects of this result deserve particular attention. 396 

On the one hand, the extent of the transition areas will increase by 32% on average (range=10-397 

80%), and forest-savanna transition areas, now restricted to a thin belt between both biomes 398 

might become the dominant biome in large areas, particularly in the South and Eastern part of 399 

Brazil. On the contrary, large stable forest areas are predicted to decrease by 58% on average 400 

(range=23-90%). The climate control of vegetation types is strongest in the core (i.e. ecological 401 

optimum) of their distribution and weakens towards the edges (Sala, Lauenroth & Golluscio, 402 

1997). It is in the edges of the distribution of vegetation types where other factors such as 403 

grazing intensity, fire, and logging become more important. The increase in uncertainty of large 404 

areas of the Amazon rainforest means that these areas will likely be less resilient to 405 

perturbations, and thus that they might be more sensitive to human management (Hirota et al., 406 

2011). In these areas of high uncertainty, positive feedbacks might make that small changes in 407 

tree cover might induce a self-propagating shift to the alternative state (i.e. from forest to 408 

savanna or from savanna to forest). In this way, fragmented landscapes with a patchy distribution 409 

of forest and savanna might be more likely to turn into solely savanna landscapes, due to, for 410 

example, an increase in fire frequency and extent (Malhi et al., 2008). Interestingly, and as 411 

pointed out for the Mata Atlantica above, these feedbacks can also work in the opposite direction 412 

and, in areas of high uncertainty, tree cover increases due to habitat management are more likely 413 

to trigger the conversion of savanna to forest. Land-use changes are at present the main driver of 414 

the transition between states in the study area, particularly the conversion of forest to savanna 415 
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and treeless areas due to deforestation (Malhi et al., 2008). Overall, our results indicate that 416 

climate change will increase the importance of land use in shaping the extent of biomes during 417 

the next century.  418 

 419 

PREDICTED IMPACTS OF CLIMATE CHANGE ON BIODIVERSITY AND ECOSYSTEM 420 

SERVICES 421 

The Amazon rainforest is a major component of the Earth’s system, regulating Earth’s climate 422 

(Malhi et al., 2008), and hosts up to a quarter of the world’s terrestrial species (Barthlott & 423 

Winiger, 1998). Rapid transition from one vegetation type to another will certainly result in 424 

major biodiversity losses (Sala et al., 2005). Our models predict a shift of the forest-savanna 425 

transition area of up to 600 km in the eastern Amazon for year 2070. Given the magnitude and 426 

speed of this change, a pertinent question here is to what extent species will be able to keep pace 427 

with climatic changes to reach the equilibrium (Loarie et al., 2009). Although our understanding 428 

of colonization processes under climate change is still limited, current models indicate that 429 

species will lag behind projected climate shifts (Nathan et al., 2011; Prasad et al., 2013). The 430 

mismatch between climatic change velocity and colonization rates is expected to be exacerbated 431 

in flat reliefs (Loarie et al., 2009), which are dominant in the Amazonian Basin. In this area, our 432 

models predict the largest shifts from forest to savanna suggesting a high risk for species 433 

extinctions. However, as it has been described for tree species colonization after the ice caps 434 

retreated during the Holocene, isolated habitat patches outside the core distribution range of the 435 

biome could play key role in tracking climate change (Anderson et al., 2006; McLachlan, Clark 436 

& Manos, 2005; Parducci et al., 2012). In our case, for example, small savanna patches currently 437 
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embedded in a forest matrix, could serve as colonizing source for the surrounding landscape 438 

when climate potentially in the area change from forest to savanna. 439 

 The portfolio of ecosystem services provided by forest, savannas and treeless vegetation 440 

types are drastically different. For example,  savanna and grasslands in tropical and subtropical 441 

America constitute one of the main providers of food, particularly protein, of the world (FAO, 442 

2007). As the reverse side of the ecosystem services linked to rainforest, predicted changes might 443 

have a positive impact on the provisioning of food (MEA, 2005). We predicted an increase in the 444 

extent of transition areas and in the uncertainty of the system. This means that alternative states 445 

(i.e. forest, savanna, treeless) are likely to be more evenly distributed at a small scale (i.e. a finer 446 

grain distribution) and that localities are expected to tip from one state to another more easily. As 447 

a result, ecosystem services provided at a local scale are likely to be more diversified but also 448 

more unpredictable, since larger portions of our study area might contain a combination of 449 

different biomes that will change more frequently. Food, timber, climate amelioration, clean 450 

water, recreation and conservation are ecosystem services that will affected by vegetation 451 

transitions. These changes in the portfolio of ecosystem services resulting from vegetation 452 

transitions will affect different groups of stakeholders because they value ecosystem services 453 

differently.  454 
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Figure Legends  643 

 644 

Fig 1. Spatial projection of the three alternative states (forest, savanna and treeless areas) for the 645 

present time (1950-2000) and for the year 2070 under the RCP8.5 scenario in the tropical and 646 

subtropical Americas. 647 

 648 

Fig 2. Transition map for the forest-savanna system for the present time (1950-2000) and for the 649 

year 2070 under the RCP8.5 scenario in the tropical and subtropical Americas. For the year 650 

2070, the mean value of the 17 transition maps resulting from the 17 CMIP5 global climate 651 

models is shown. A histogram with the total amount of area of each class can be found in Fig. 6 652 

(Top). The total area of each class for each one of the 17 transition maps resulting from the 17 653 

CMIP5 global climate models can be found in Table S4. 654 

 655 

Fig 3. Transition map for savanna-treeless system for the present time (1950-2000) and for the 656 

year 2070 under the RCP8.5 scenario in the tropical and subtropical Americas. For the year 657 

2070, the mean value of the 17 transition maps resulting from the 17 CMIP5 global climate 658 

models is shown. A histogram with the total amount of area of each class can be found in Fig. 6 659 

(Bottom). Rest of legend as in Fig. 2. 660 

 661 

Fig 4. Projected shift towards forest, savanna or treeless states for the year 2070 under the 662 

RCP8.5 scenario in the tropical and subtropical Americas. Shifts are estimated as the difference 663 

between the transition index in the present time and the year 2070 for the forest-savanna and the 664 

savanna-treeless systems. The mean value of the projected shifts for the 17 transition maps 665 

resulting from the 17 CMIP5 global climate models is shown. Beige area indicates those cells 666 
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where the change in the probability transition is below 0.1. Darker tones of green, red and blue 667 

indicate stronger shifts toward forest, savanna and treeless areas respectively.   668 

 669 

Fig 5. Transition areas for the forest-savanna (left) and the savanna-treeless systems (right) in the 670 

present time and the year 2070 under the RCP8.5 scenario. For a given transition (i.e. forest-671 

savanna), transition areas are defined as those cells in which the difference between the two 672 

alternative systems is less than 0.2. The mean value of the 17 transition maps for the year 2070 673 

resulting from the 17 CMIP5 global climate models was used as base transition map. 674 

 675 

Fig 6. Projected area under different classes of the transition index for the present (1950-2000) 676 

and under the RCP8.5 scenario for the year 2070 for the forest-savanna (Top) and the savanna-677 

treeless transitions (Bottom). Forest-savanna transition index is calculated as p(forest) – 678 

p(savanna). Savanna transition index is calculated as p(savanna) – p(treeles). Values closer to 1 679 

and -1 indicates lower uncertainty whereas values closer to 0 indicates higher uncertainty. Mean 680 

values and standard deviation of the 17 CMIP5 global climate models are shown. Results for 681 

each CMIP5 global climate model are shown in Figs. S4 and S5.  Area in 10
3
 km

2
. Note that the 682 

total area of savanna is the sum of the savanna areas in both transition systems. The spatial 683 

representation of this histogram can be found in Figs. 2 and 3. 684 

 685 

Fig 7. Changes in the uncertainty of the forest-savanna transition between the present (1950-686 

2000) and the RCP8.5 scenario (2070) in the tropical and subtropical Americas. The change in 687 

uncertainty is calculated as the change in the transition index between the two projections (i.e. 688 

1950-2000 and 2070). The mean value resulting from analysis of the 17 CMIP5 global climate 689 
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models is shown. Positive values of uncertainty indicate areas where the probability of tipping 690 

between forest and savanna will increase due to climate change.  691 

  692 
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Table 1. Candidate climatic models fitted to the distribution of forest, savanna and treeless areas 693 

in the tropical and subtropical Americas. For each model, the explained deviance (D
2
) and 694 

Akaike Information Criterion (AIC) value are shown. For each state, the selected model is in 695 

bold. For the Savanna, the best global model (i.e, that with D
2
 =12.29%) was not used and the 696 

value in brackets represents the explained deviance of the model finally employed. In this case, 697 

the D
2
 value represents weighted mean of the D

2
 values of the 20% best multi-zone models (see 698 

Methods and Table S1 in Supporting Information). P=Mean annual precipitation; T=Mean 699 

annual temperature, ARIDITY=Aridity index (P/Potential evapotranspiration) 700 

 701 

 702 

 Forest Savanna Treeless 

Model D
2
 AIC D

2
 AIC D

2
 AIC 

P 39.30 2230.60 1.69 4029.92 65.02 946.43 

P
2
 44.52 2041.20 10.35 3677.38 56.97 1165.07 

T 24.79 2762.85 0.01 4098.74 28.05 1942.20 

T
2
 24.81 2764.23 4.29 3925.37 29.37 1908.62 

P
2
+T 45.64 2002.16 10.35 3679.19 56.79 1172.06 

T
2
+P 41.76 2144.44 5.35 3884.16 66.84 901.23 

P
2
+T

2
 45.88 1995.36 12.29 (30.34) 3601.67 56.97 1169.33 

ARIDITY 32.38 2484.60 0.99 4058.49 58.97 1109.37 

ARIDITY
2
 38.65 2256.38 4.02 3936.52 59.50 1096.95 

P/T 15.30 3111.09 0.32 4086.00 27.80 1948.89 

(P/T)
2
 33.02 2462.86 0.43 4083.42 - - 

 703 

  704 
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Table 2. Projected representation of forest, savanna and treeless areas in our study area for the 705 

present time (1950-2000) and for 2070 under the RCP8.5 scenario. For the 1950-2000 period, 706 

real values (i.e. observed from the data, not modeled) are shown in brackets. Mean values and 707 

standard deviation from the 17 downscaled and calibrated CMIP5 global climate models are 708 

indicated. Results for each CMIP5 global climate model are shown in Fig. S3     709 

 710 

 711 

 1950-2000 2070 RCP8.5 Change 

 
Area 

(× 10
3 

km
2
) 

% 
Area (× 10

3 

km
2
) 

% 
Area (× 10

3 

km
2
) 

Change (%) 

Forest 6235 29 (31) 4760 ±896 22 ±4 -1474 ±896 -24 (-38 - -9) 

Savanna 12765 58 (52) 14263 ±921 65 ±4 1498 ±921  12 (5 - 19) 

Treeless 2847 13 (17) 2823 ±178 13 ±1 -24 ±178  -1 (-7 - 5) 

  712 
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Fig 1.  713 

 714 

 715 

 716 
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Fig 2 718 
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Fig 3.  725 

 726 
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Fig 4.  732 
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Fig 5.  736 

 737 

 738 

 739 

 740 

  741 



Grassland-woodland transitions Special Feature  

36 
 

Fig 6.  742 

743 

 744 
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 746 

Fig 7. 747 

 748 

 749 

 750 

 751 
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SUPPORTING INFORMATION 753 
 754 
Table S1. 20% best models fitted to the distribution of savanna. In all cases, the models include 755 

the same climatic variables (i.e. best global model P
2
+T

2
, see Table 1) plus a spatial factor. All 756 

best models included the spatial factor describing three subareas, defined by the latitudinal limits 757 

Lim1 and Lim2. Latitudinal limits for the entire study area are 35°N and -35N. The minimum 758 

latitudinal width of a subarea was 5°. For example, the model ranked first included a spatial 759 

factor with three subareas with limits: 35°N - 20°N, 20°N - -5°N and 5°N - -35°N 760 

Rank N subareas Lim1 Lim2 D2 AIC 

1 3 20° -5° 33.55 2751.08 

2 3 10° -5° 33.28 2762.37 

3 3 25° -5° 31.63 2830.00 

4 3 15° -5° 32.81 2781.58 

5 3 20° 0° 31.15 2849.34 

6 3 10° 0° 30.26 2885.90 

7 3 15° 0° 30.11 2891.87 

8 3 25 0° 29.56 2914.77 

9 3 5° -5° 32.40 2798.09 

10 3 20° -10° 30.58 2872.94 

11 3 30° -5° 27.97 2979.52 

12 3 25° -10° 28.83 2944.51 

13 3 20° -15° 29.19 2929.69 

14 3 5° 0° 28.99 2937.92 

15 3 30° 0° 26.50 3040.08 

16 3 15° -10° 29.65 2910.80 

17 3 10° -10° 29.89 2901.21 

18 3 25° -15° 27.63 2993.68 

 761 
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Table S2. List of the 17 Coupled Model Intercomparison Project Phase 5 (CMIP5) general 763 

circulation models used in this study 764 

 765 

 766 

Model Name Institution ID Modeling Center 

ACCESS1-0 CSIRO-BOM Commonwealth Scientific and Industrial Research Organization 

(CSIRO) and Bureau of Meteorology (BOM), Australia 

BCC-CSM1-1 BCC Beijing Climate Center, China Meteorological Administration 

CCSM4 NCAR National Center for Atmospheric Research 

CNRM-CM5 CNRM - CERFACS Centre National de Recherches Météorologiques / Centre Européen 

de Recherche et Formation Avancée en Calcul Scientifique 

GFDL-CM3 NOAA GFDL NOAA Geophysical Fluid Dynamics Laboratory 

GISS-E2-R NASA GISS NASA Goddard Institute for Space Studies 

HadGEM2-AO NIMR/KMA National Institute of Meteorological Research/Korea 

Meteorological Administration 

HadGEM2-CC MOHC (additional 

realizations by INPE) 

Met Office Hadley Centre (additional HadGEM2-ES realizations 

contributed by Instituto Nacional de Pesquisas Espaciais)  

HadGEM2-ES MOHC (additional 

realizations by INPE) 

Met Office Hadley Centre (additional HadGEM2-ES realizations 

contributed by Instituto Nacional de Pesquisas Espaciais)  

INM-CM4 INM Institute for Numerical Mathematics 

IPSL-CM5A-LR IPSL Institut Pierre-Simon Laplace 

MIROC-ESM-CHEM MIROC Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

MIROC-ESM MIROC Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

MIROC5 MIROC Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and Japan 

Agency for Marine-Earth Science and Technology  

MPI-ESM-LR MPI-M Max-Planck-Institut für Meteorologie (Max Planck Institute for 

Meteorology) 

MRI-CGCM3 MRI  Meteorological Research Institute 

NorESM1-M NCC Norwegian Climate Centre 

 767 
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Table S3. Predicted extent of forest, savanna and treeless areas in the tropical and subtropical 769 

Americas for 2070 under the RCP8.5 scenario for the 17 downscaled and calibrated CMIP5 770 

global climate models (GCM). Area in 10
3 

km
2
. See description of climatic models in Table S2 771 

 772 
 773 
GCM Forest % Forest Savanna %Savanna Treeless % Treeless 

ACCESS1-0 4562 21 14568 67 2717 12 

BCC-CSM1-1 4942 23 14108 65 2797 13 

CCSM4 4735 22 14343 66 2769 13 

CNRM-CM5 4886 22 14384 66 2577 12 

GFDL-CM3 3091 14 15707 72 3049 14 

GISS-E2-R 4544 21 14313 66 2990 14 

HadGEM2-AO 4011 18 15292 70 2543 12 

HadGEM2-CC 3882 18 15289 70 2676 12 

HadGEM2-ES 4127 19 14980 69 2740 13 

INM-CM4 6107 28 12848 59 2891 13 

IPSL-CM5A-LR 5668 26 13010 60 3168 15 

MIROC-ESM-CHEM 5493 25 13551 62 2803 13 

MIROC-ESM 6397 29 12632 58 2818 13 

MIROC5 5057 23 13949 64 2841 13 

MPI-ESM-LR 3355 15 15569 71 2923 13 

MRI-CGCM3 5306 24 13928 64 2613 12 

NorESM1-M 4767 22 14001 64 3079 14 

 774 
 775 
 776 
 777 
 778 
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Table S4. Predicted extent of the classes of the Forest-savanna transition index in the tropical 781 

and subtropical Americas for 2070 under the RCP8.5 scenario for the 17 downscaled and 782 

calibrated CMIP5 global climate models (GCM). This index is calculated as p(forest) – 783 

p(savanna). Values closer to 1 indicates cells with low uncertainty of being savanna, values 784 

closer to -1 indicates cells with low uncertainty of being forest and values closer to 0 indicates 785 

high uncertainty. Mean values are shown in Figure 6 (top). See description of climatic models in 786 

Table S2.  Area in 10
3 

km
2
 787 

 788 

 789 
GCM (.5,1] (.5,.4]  (.4,.3] (.3,.2] (.2,.1] (.1,-.1] (-.1,-

.2] 
(-.2,-

.3] 
(-.3,-

.4] 
(-.4,-

.5] 
(-.5,-1] 

ACCESS1-0 6965 993 876 690 650 1288 663 657 716 721 1146 

BCC-CSM1-1 6025 1000 962 840 678 1427 763 754 744 650 1286 

CCSM4 6285 849 800 721 637 1388 661 709 620 737 1307 

CNRM-CM5 6378 965 975 883 776 1598 773 681 643 797 1218 

GFDL-CM3 6992 893 835 936 935 1928 760 616 291 157 331 

GISS-E2-R 6890 883 854 729 635 1088 534 631 720 797 1347 

HadGEM2-AO 7555 982 648 540 577 1171 554 540 623 707 997 

HadGEM2-CC 7303 1099 795 653 666 1204 631 696 684 606 687 

HadGEM2-ES 7364 1064 831 668 559 1239 680 689 673 739 717 

INM-CM4 5940 771 651 538 488 1048 674 704 797 949 2440 

IPSL-CM5A-LR 6514 689 532 540 551 1331 872 689 834 1111 1467 

MIROC-ESM-CHEM 6252 933 766 629 609 1362 690 718 619 750 2014 

MIROC-ESM 5423 880 759 725 723 1400 850 945 1065 1075 1744 

MIROC5 6242 712 673 632 722 1401 821 822 744 697 1278 

MPI-ESM-LR 7536 1288 1022 748 650 1121 579 531 459 582 643 

MRI-CGCM3 6542 647 642 652 627 1366 807 906 816 726 1289 

NorESM1-M 6191 859 801 680 646 1211 600 597 665 622 1692 
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Table S5. Predicted extent of the classes of the Savanna-Treeless transition index in the tropical 791 

and subtropical Americas for 2070 under the RCP8.5 scenario for the 17 downscaled and 792 

calibrated CMIP5 global climate models (GCM). This index is calculated as p(savanna) – 793 

p(treeless).Values closer to 1 indicates cells with low uncertainty of being treeless, values closer 794 

to -1 indicates cells with low uncertainty of being savanna and values closer to 0 indicates high 795 

uncertainty. Mean values are shown in Figure 6 (bottom). See description of climatic models in 796 

Table S2.  Area in 10
3 

km
2
 797 

 798 
GCM (.5,1] (.5,.4]  (.4,.3] (.3,.2] (.2,.1] (.1,-

.1] 

(-.1,-

.2] 

(-.2,-

.3] 

(-.3,-

.4] 

(-.4,-

.5] 

(-.5,-

1] 

ACCESS1-0 1694 217 225 205 198 350 197 248 276 354 2573 

BCC-CSM1-1 1628 278 248 218 205 491 275 293 325 389 2440 

CCSM4 1537 257 226 234 262 539 273 291 348 444 2788 

CNRM-CM5 1483 268 230 218 203 362 206 255 292 347 2348 

GFDL-CM3 1746 309 235 250 240 587 349 354 374 419 2369 

GISS-E2-R 1856 254 207 207 226 497 233 230 276 333 2474 

HadGEM2-AO 1495 238 213 196 192 446 268 301 356 430 2878 

HadGEM2-CC 1547 269 240 240 203 381 242 278 345 405 2740 

HadGEM2-ES 1692 258 246 214 171 336 205 253 273 396 2648 

INM-CM4 1737 269 218 218 233 471 276 297 355 448 2373 

IPSL-CM5A-LR 1990 290 260 236 206 402 221 251 326 375 2223 

MIROC-ESM-

CHEM 

1791 245 220 206 184 357 223 248 300 348 2453 

MIROC-ESM 1777 256 219 205 185 378 227 254 317 381 2130 

MIROC5 1586 293 251 251 232 529 330 354 413 521 2404 

MPI-ESM-LR 1846 262 220 197 211 366 185 250 369 411 2445 

MRI-CGCM3 1475 211 222 255 235 468 289 356 407 531 2432 

NorESM1-M 1856 272 227 231 257 485 243 293 324 435 2738 
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Fig S1. Distribution of areas undergoing human activities (categories 16-18 and 22 in the Global 801 

Land Cover 2000 (GLC2000; Bartholome & Belward, 2005) in the Tropical and Subtropical 802 

Americas (dark grey). These areas were filtered out from our analyses. 803 
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