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Abstract 

 

The reinforcers that maintain target instrumental responses also reinforce other responses that 

compete with them for expression. This competition, and its imbalance at points of transition 

between different schedules of reinforcement, causes behavioral contrast. The imbalance is 

caused by differences in the rates at which different responses come under the control of 

component stimuli. A model for this theory of behavioral contrast is constructed by expanding 

the coupling coefficient of MPR (Killeen, 1994). The coupling coefficient gives the degree of 

association of a reinforcer with the target response relative to other competing responses. 

Competing responses, often identified as interim or adjunctive or superstitious behavior, are 

intrinsic to reinforcement schedules, especially interval schedules.  In addition to that base-rate 

of competition, additional competing responses may spill over from the prior component, 

causing initial contrast; and they may be modulated by conditioned reinforcement or punishment 

from stimuli associated with subsequent component change, causing terminal contrast. A 

formalization of these hypotheses employed (a) a hysteresis model of off-target responses giving 

rise to initial contrast, and (b) a competing traces model of the suppression or enhancement of 

ongoing competitive responses by signals of following-schedule transition. The theory was 

applied to transient contrast, the following schedule effect, and the component duration effect. 

 

Keywords: Behavioral contrast, competing responses, MPR
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A Theory of Behavioral Contrast 

 

Action at a distance is a bête noire for many scientists who spend their careers seeking 

mechanisms to mediate events that are disjoint in space or time. The young Newton disavowed 

recourse to unobservable hypothetical constructs (Westfall, 1971). But gravity epitomizes such a 

construct. In response to critics who noted the absence of mechanism in Principia, he simply 

asserted that he did not make hypotheses [about the mechanism]. He retreated, not from the 

construct, but from the demand to reify it. General relativity eventually provided a mechanism in 

the warping of space around massive bodies. Physicists discarded the luminiferous ether, but 

installed electromagnetic fields in its place. Feynman labored to rid physics of fields as anything 

other than book-keeping formulations (Mehra, 1994), but in the end he failed. The experimental 

validation of the Higgs field was recently greeted with universal applause. Nature, apparently, 

abhors a vacuum. 

Action at a distance is also a problem for behavioral psychologists. A modern cottage 

industry in our discipline is the study of delay discounting. Exactly how unexperienced slices of 

the future control present behavior—a question of mechanism—is seldom discussed. Instead 

equations are cast, much as Newton’s were; hyperbolae are analyzed while hypotheses are 

avoided. A similar issue arises in control by the past—how is a “history of reinforcement” 

embodied? Answers to these questions have been hypostatized; as have assertions that the 

questions are irrelevant (Baum, 2005, 2012; Rachlin, 1978, 1988; Staddon, 1973; Tonneau, 2013).  

Behavioral contrast provides a striking example of strong effects on behavior caused by 

events situated at other times. It occurs when one context of reinforcement—say a variable 

interval (VI) schedule in which at random intervals reinforcers follow responses—alternates with 
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another context of reinforcement. The typical case is a multiple schedule in which two or more 

different contexts signaled by discriminative stimuli alternate. If reinforcement frequency is 

decreased in one schedule, response rates increase in the other, focal, schedule, the one of interest 

(positive contrast). Conversely, if reinforcement frequency is increased in the alternate (ALT) 

component, response rates decrease in the focal component (negative contrast). Over 400 articles 

containing the phrase behavioral contrast have appeared in this journal since Reynolds (1961) 

introduced the term, identifying many of the variables that affect the phenomenon. It soon became 

clear that the effect in the focal component depends on the frequency of reinforcement in the 

alternate component, and not on the behavior that those control (Bloomfield, 1967; Halliday & 

Boakes, 1971; Williams, 1980). Inevitably, mathematical models of the effect were developed 

(Dougan, McSweeney, & Farmer-Dougan, 1986; Herrnstein, 1970; McLean & White, 1983; 

Williams & Wixted, 1986). These models generally included free constants that were sometimes 

identified with hypothetical variables, such as alternate reinforcers, but little attention has been 

paid to measuring stimuli or responses associated with those constructs, or how they might bridge 

the temporal gap between alternating components. An exception is Hinson and Staddon (1978; 

1981), who did report observations of competing behavior that they held to underlie contrast. In 

this paper their hypothetical mechanism is combined with some of the models of the above 

authors for a new theory of contrast and its mechanisms. 

 

Reinforcement Inhibition as a Cause of Contrast 

McSweeney (1987) argued that multiple-schedule behavioral contrast occurs because 

delayed reinforcement suppresses behavior. In particular, reinforcers strengthen behavior that 

they follow immediately, and suppress behavior that they follow at a delay. Any reinforcers in the 

subsequent component follow the behavior in the focal component at a delay, and thus they 

suppress it. If they occur at a higher rate than those in the focal component, they produce negative 
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contrast in the focal component; if they occur at a lower rate, the suppression is decreased (from 

that indigenous to the focal component), and positive contrast is seen. Catania (1973) has also 

made the case for the inhibitory effects of reinforcement, whereas Donahoe and Palmer (1988) 

questioned the necessity of the concept of inhibition beyond shorthand for the effects of 

competition.  

McSweeney (1987) arrayed a large variety of evidence that supported suppression by 

reinforcement as the cause of contrast. She noted that the mechanism of suppression was not 

resolved, but one candidate was behavioral competition. At that point, over 25 years ago, 

quantitative predictions from her model were not available. The model proposed here is 

essentially a vindication of McSweeney’s hypothesis, an argument for response competition as 

the mechanism, and a first pass at quantitative detail. 

 

Behavioral Competition as the Mechanism of Contrast 

Hinson and Staddon (1978) argued that interim (adjunctive) behavior competed with the 

target response (lever-pressing or key-pecking) and thereby decreased its rate of emission. When 

the focal component alternated with extinction, the interim behaviors had an opportunity for 

expression in the extinction component without competing with the target response. This moved 

them out of the focal component, releasing the target responses from competition. Their 

hypothesis relies on there being a motivational state driving the competing behavior that, being 

relieved (or exacerbated) during the alternate component, has the inverse effects on competition 

in the focal component. It is in that sense a hydraulic model. The motivational hypothesis is 

consistent with Staddon’s conception of interim behaviors voiced elsewhere (e.g., Staddon, 

1977b). But there are problems with this hydraulic model, such as the failure to see a change in 

contrast when the alternate component is switched from VI to signaled VI, the latter leaving 

ample time for the proposed interim activity to occur, thus reducing the need for it in the focal 
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component. This reduction in competing responses should have reduced contrast, but it did not 

(Williams, 1980; reported in Williams, 1983). There is, however, a different explanation for 

adjunctive/interim behaviors that forms the basis of the present theory. 

Ricardo Pellón and colleagues (Killeen & Pellón, 2013; López-Crespo, Rodríguez, Pellón, 

& Flores, 2004; Pellón & Pérez-Padilla, 2013) have made a strong case that adjunctive (interim) 

responses are maintained by reinforcement—that they are operants. They are part of the repertoire 

of conditioned responses induced by sign learning, and are then enhanced by their regular relation 

to subsequent reinforcers. They may appear earlier in the behavior stream than target operants 

such as key pecking because they have shallower, longer delay of reinforcement gradients. 

Because the gradients are shallower, they are out-competed by the target instrumental response 

near the time of reinforcement. Because they are longer, they out-compete the target response 

earlier in the interval. If this is true, then the interim responses that Hinson and Staddon (1978) 

invoked as the mediator of contrast need not be conceived as induced through a new motivational 

state. Clearly the most important reinforcer for hungry organisms in an experimental enclosure is 

food. Interval schedules, most commonly used in studies of contrast, reinforce any sequence of 

responses that ends in a target response. Killeen (1994) called such off-target responding 

interbehavior, and crafted a coupling coefficient to predict how much of the reinforcing strength 

of an incentive went to the measured target response on various schedules, as opposed to such 

interim responses. On periodic reinforcement schedules those responses may appear as a 

conspicuous adjunctive behavior, such as the wheel-running with which Hinson and Staddon 

manipulated the level of contrast for target responses, or as “mediating” (Laties, Weiss, & Weiss, 

1969) or “timing” (Fetterman, Killeen, & Hall, 1998) responses. On aperiodic schedules, they will 

be interwoven with the stream of target responses. 

In the case of pigeons pecking colored keys, the discriminative stimulus is in their focus 

whenever a response is made. But other responses—the hypothesized off-target responses—may 
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involve movement about the cage, preening, wall-pecking, and so on, and thus be under poorer 

stimulus control. Furthermore, as grosser movements, many of them may be more memorable—

intrinsically better marked (Lieberman, Davidson, & Thomas, 1985)—and thus able to sustain 

longer delay of reinforcement gradients (Patterson & Boakes, 2012; Williams, 1991). The 

competition between target responses and competing responses, and the different speeds with 

which those behaviors come under the control of discriminative stimuli, is the mechanism for the 

first type of contrast discussed below. The interaction of target and competing responses with 

each other and with the conditioned reinforcers or punishers of stimuli signaling component 

change is the mechanism of the second type of contrast discussed below. 

 

 

The Types of Contrast 

Behavioral contrast is the change in the rate of responding of an unchanged, focal 

component of a multiple schedule that occurs as the result of a change in the conditions in an 

alternate component. The change is typically in the opposite direction of the change in the altered 

component. Thus, changing a schedule from a multiple variable-interval 3-minute variable 

interval 3-minute (MULT (VI 3, VI 3))i to a MULT (VI 3,VI 1) will typically cause an increase in 

response rates in the alternate VI 1 component (no surprise there), and a contrasting decrease in 

response rates in the focal VI 3 component. This latter is negative contrast. Conversely, a change 

to MULT (VI 3, VI 6) will typically cause a decrease in response rates in the changed component, 

and a contrasting increase in rates in the focal VI 3 component. This is positive behavioral 

contrast. If changes in the two components are in the same direction, the effect is called induction, 

not contrast. Two types of contrast are of concern in this paper: Type 1: Variously named 

transient, local, or transitory contrast. It is argued that these are all manifestations of the same 

effect, here called initial contrast. It occurs early in training or under conditions of poor 
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discriminability. It is greatest at the start of a component, and is most affected by the nature of the 

prior component.  Type 2: Anticipatory contrast, here called terminal contrast. It occurs later in 

training and under conditions of good discriminability. It is greatest at the end of a component, 

and is most affected by the nature of the following component. Molar contrast, derived from rates 

averaged over the whole component, may result from either or both initial and terminal contrast. 

There are other types of contrast. Dimensional contrast occurs when stimulus control is varied 

over a dimension, and is manifest by inflections in response rates along that dimension. It may be 

a manifestation of initial or terminal contrast, depending on the training protocol. Incentive 

contrast (Flaherty, 1999, also called anticipatory contrast) may be an instance of terminal contrast. 

In all cases, the proposed mechanism is competition with the target response by other, 

incidentally reinforced competing behaviors. These latter types will be addressed in subsequent 

papers. 

 

1. Initial Contrast 

Initial contrast is also called transient contrast because it is most prominent early in 

training with exposure to altered rates of reinforcement, is most noticeable at the start of each 

component (thus local), and may disappear after extended training (and thus transitory). An 

example is shown in the top panel of Figure 1.   

The Competing Responses Hypothesis and the Hysteresis Model 

The thesis of this paper is that the competing interim responses are slower to come under 

the stimulus control of the different components than are the target response. There are several 

reasons for such slower acquisition. The target response is typically oriented toward the 

discriminative stimulus signaling component change, and reinforcement for the target response is 

typically immediate. The other competing responses are not necessarily oriented toward the 
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discriminative stimulus, and reinforcement of them occurs with some delay. Discriminations are 

acquired more slowly under delayed reinforcement (see, e.g., Mackintosh, 1974, pp. 155 ff.), just 

as are simple operant and adjunctive responses (see, e.g., Figure 1 of Killeen & Pellón, 2013). 

If competing responses are differentiated more slowly than target responses, they will wax 

and wane under the control of the reinforcer density, and possibly under control of the target 

responding as an Sd, and only slowly come under control of the visual or auditory stimuli 

signaling component change. This is called the hysteresis model. Hysteresis is “the dependence of 

the output of a system not only on its current input, but also on its history of past inputs. The 

dependence arises because the history affects the value of an internal state. To predict its future 

outputs, either its internal state or its history must be known.” (see, e.g., Hysteresis). Different 

mechanisms that might underlie the hysteresis are discussed in Appendix A, which sends back the 

following equation, an elaboration of Blough’s (1975) model of dimensional contrast: 

 

 AC t( ) = e−t /τAC,Prior + 1− e−t /τ( )aCrCurrent      (1a) 

where AC(t) is the strength of competing responses at time t, AC, Prior is their strength just before 

the change-point, aCrCurrent is its current asymptotic value, and τ (tau) is the time constant of 

adjustment. The coefficients a have units of s/reinforcer, and convert rate of reinforcement (r 

measured in reinforcers/s) into response strength. Elapsed time t is set to 0 at component 

transitions. Because the target behavior typically comes under stimulus control quickly (that is, its 

time constant is negligibly small), an analogous equation for it quickly goes from initial to 

asymptotic values of AT(t) = aTrCurrent. We do not expect this always to be the case, but reserve the 

more complicated and parameter-laden case of slower acquisition of target response than 

competing behavior for a subsequent paper. (Such uphill conditioning is at the heart of the 

“misbehaviors”, “instinctive drift” (Breland & Breland, 1961; Timberlake, Wahl, & King, 1982) 
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and “contra-preparedness” (Seligman, 1970) of the last century’s constraints on conditioning 

literature (Domjan, 1983; Garcia, McGowan, & Green, 1972; Shettleworth, 1972).) The history of 

past reinforcement affects “the value of an internal state” that we identify as the response strength 

at time t, A(t). Equation 1 is simply how we write down that history as a function of the density of 

reinforcement r, how its nature and quality interact with the organism (a), and how that history 

fades with the passage of time f(t/τ). Although Equation 1 derives from a behavioral theory of 

contrast (Blough, 1975), it may be treated from a more a-theoretical formal stance as the unit 

response of a first-order control system (see, e.g., McFarland, 1971).  

Equation 1a may be rearranged as: 

AC t( ) = AC,Prior −aCrCurrent"# $%e−t /τ +aCrCurrent  .    (1b) 

This form emphasizes that there will be no contrast if the strengths in the prior and current 

components are the same [the bracketed term equals 0], that the strength of competing responses 

in the focal component will be decreased if their strength in the prior component was less than 

that in the current [the bracketed term goes negative], releasing the target response from 

competition and thus causing positive contrast in the target response. Conversely, if that term is 

positive, competing responses occur at a higher rate in the prior component, and some of those 

will slip over into the current focal component, increasing the prevalence of competing responses 

there, and causing negative contrast in the focal component. Finally, all of these effects will wash 

out as an exponential function of time, leaving the background competing response strength that 

is intrinsic to the focal component. 

We might have written aCrPrior in place of AC, Prior, except that for short component 

durations it is unlikely that the process would have reached asymptote of aCrPrior before 

components changed anew. Thus the process unfolds from the status quo ante, not from the 

theoretical extremes. It unfolds toward the theoretical extremes given by aCrCurrent even though it 
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may not attain those at short component durations. When components change, then the whole 

right side of Equation 1 becomes the new AC, Prior. This is the hysteresis model.  

The Response Competition Model 

The rate of target responses in the face of competition from other responses may be 

derived from the theory of reinforcement schedules sketched in Killeen (1994). From that we 

have the probability of a target response (the first parenthetical in Equation 2), and the probability 

that it will not be blocked by a competing [the coupling coefficient, inside the brackets]. Multiply 

the whole by the maximum response rate (k) to derive the key model, Equation 2. The term in 

brackets is a model of coupling: The degree to which the effects of reinforcement are focused on 

the target response. The steps to Equation 2 are taken in Appendix B. In the absence of 

competition (AC = 0), or when it is constant over manipulated variables, Equation 2 reduces to the 

traditional hyperbolic rate equation (see that appendix). In this paper where stimulus control of 

the target response is good, the strength attributed to the target response is proportional to the rate 

of reinforcement in the focal component, AT = aTrCurrent. 
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The top panel of Figure 1 displays the data from Nevin and Shettleworth (1966) who 

studied alternating 3-min components of VI 2 min and VI 6 min schedules in a classic multiple 

schedule arrangement. The bottom panel of Figure 1 shows the imputed changes in AC as a 

function of time through the components, for the average τ = 22 s. This graph of the dynamic 

change in A closely resembles Figure 4 in Staddon (1982, also reproduced as Figure 9 in 

Williams, 1983). Although the rendering of them is almost identical, the meaning given to them is 
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quite different--for Staddon it concerned satiation and deprivation of the motivation for the 

competing responses. The curves for the individual subjects were derived using the parameters 

shown in Table 1. In this analysis the average rate through a bin or component is estimated as the 

rate at the midpoint of that epoch (see Appendix C for more detail on curve-fitting). The main 

difference between subjects in Figure 1 is a larger value of aT for Pigeon 17 (circles). 

 

 

 
Figure 1. The top panel shows the response rates of two pigeons reported by Nevin and 
Shettleworth (1966) pecking keys for reinforcement available randomly in time every six min (VI 
6; filled symbols) or every two min (VI 2; unfilled symbols). The depression in rates at the onset 
of the VI 6 component and the elevation of rates at the start of the VI 2 component exemplify 
behavioral contrast, called local (because most noticeable at the start of the component change) or 
transient (because it will typically decrease with extended training). The bottom panel shows the 
hypothetical waxing and waning of the strength of the competing behaviors given by Equation 1 
(extrapolated at the left and right ends of the graph). The curves through the data in the top panel 
are the predicted course of the target response, key-pecking, under immediate stimulus control of 
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the key colors, competing against other behavior under lagging control of changes in 
reinforcement rate, as portrayed in the bottom panel.  
 

 

Reinforcement is profligate, making contact not only with the target response intended by 

the experimenter, but also with other responses that may have preceded it or co-occurred with it. 

The driving force is the scheduled reinforcer, gated efficiently by the signals of component 

change for the target responses, and laggardly by those signals for the competing responses. If an 

experimenter intentionally programs reinforcers that are only loosely coupled with the target 

response, Equations 1 and 2 (and the verbal arguments that motivate them) must predict even 

more substantial effects. Rachlin (1973) performed that experiment, alternating a VI 2 schedule 

with a VI 2 schedule having superimposed freely delivered reinforcers at the rate of 4 per minute 

(a variable time (VT) 15 s schedule). These free reinforcers, only loosely coupled to the target 

response, will here act to strengthen the competing responses, with which they may occur closer 

in time than the target response of key pecking. Figure 2 shows the results of this experiment, 

along with curves from Equations 1 and 2. Rachlin explained the contrast as following from a 

Pavlovian “biological principle that a transition from a stimulus signaling a period of low 

reinforcement value to a stimulus signaling a period of high reinforcement value excites certain 

[target or competing] responses… . The excited responses are most frequent immediately after the 

point of transition… . Symmetrically, a transition from high to low reinforcement value inhibits 

those same responses.” (p. 232).  
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Figure 2. The response rates of the two pigeons reported by Rachlin (1973) pecking keys for food 
available on a VI 2 schedule (filled symbols) or on a VI 2 schedule with additional non-
contingent reinforcers available randomly in time at the rate of 4 per minute (unfilled symbols). 
Note the very high initial rates on the latter schedule, falling to or below the level of the VI 2 
schedule by 90 s into the component, and the complementary changes on the VI 2 schedule. 
These patterns are the signatures of local, or initial contrast. Equations 1 and 2 draw the curves 
using the parameters in Table 1.  
 

 

Although the larger magnitude of effect in Figure 2 than in Figure 1 could be due to many 

factors, it is consistent with our argument that the cause of contrast is competition, and when extra 
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reinforcement is dispensed in ways that differentially benefit the competing responses, contrast 

will be enhanced. Whereas these first two figures illustrate the transient local nature of initial 

contrast, the next will focus on a different aspect of contrast, the effect of component duration. 

 

Table 1: 

Study:	   Nevin	  &	  Shettleworth	   Rachlin	  	   Wilton	  &	  Clements	  

Subject:	   15	   17	   67	   154	   3	   24	  

Parameter1	  

k  (min-1) 300 300 300 300 300 300 

aT (s) 84 154 23 43 500 500 

aC (s) 188 194 61 113 230 162 

τ (s) 25 19 14 29 79 86 

1 Parameters were chosen to minimize the RMS deviation between data and model, but with 
k fixed at a plausible maximum value. See Appendix C for more details. 

 

Wilton and Clements (1971) trained pigeons on a schedule in which a 2 min component of 

VI 1 was followed by an extinction component (EXT) lasting for different amounts of time from 

10 s to 120 minutes. After EXT a final component lasting 20 min offered reinforcement on a VI 1 

schedule. The stimuli for the 3 components were red key, horizontal white line, and vertical white 

line. The duration of the EXT was changed every day.  

The model was applied by letting AC accrue through the first 2 minutes of the first VI, 

deplete for the duration of the EXT and re-accrue through the final VI 1 component from which 
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these data were taken. Figure 3 gives a blow-up of the process, using the parameters and 

predictions for the data averaged over both of Wilton and Clements’s subjects (circles). The 

bottom left panel shows how the response strength of competing behavior decreases as a function 

of time into the EXT component. It has not declined much after 10 s, the first experimental 

condition. The arrow up from that point shows how it sets the competition level at the start of the 

final VI component. From that level the strength of competing behavior is quickly recovered to 

the status quo ante extinction, the same level that is maintained in the following VI. The brief 

period of recovery gives a transient advantage to the target response, manifest as a small surge in 

target responding soon back to its original level. That surge is the initial contrast. The average 

level in the component is shown by the double bar. It may be computed by averaging the 

predictions of Equations 1 and 2 systematically through the process. That average is called molar 

contrast, and the dashed line pointing down to the last panel shows that it constitutes the model’s 

prediction for the first experimental point, shown as the circle. When EXT has lasted for 120 s, 

the strength of competing responses had subsided substantially, as shown by the second arrow up 

from the first panel. Target responding in the following VI sees much weaker competition, which 

takes several minutes to return to its status quo. The top right panel shows the larger initial 

contrast, which elevates the average molar contrast as shown in the last panel. 
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Figure 3. The processes posited to underlie initial contrast, illustrated with the experimental 
conditions and data of Wilton and Clements (1971), where the strength of competing responses 
was elevated by a 2 min exposure to VI 1 at the start of each session to AC,Prior ≈ aCrPrior = 2.5. 
This corresponds to a probability of about 70% that the bird would be engaged in a response 
incompatible with pecking at the start of EXT. It is the intercept of the curve in the bottom left 
panel. AC then waned as a function of time into EXT, as shown in that panel. When the final 
period of VI commenced, the probability of competing responses was set by the level of AC(t) at 
that time, as shown by the two arrows issuing from the bottom left panel. Competition recovered 
from there toward the base rate maintained by the following VI (AC = aCrCurrent), as shown by the 
bottom two curves of the top panels. Upon start of the following VI, target responses--under good 
stimulus control--immediately recovered their base strength; but the slower recovery of 

competing responses (τ ≈ 80 s) unleashed target responses, causing the initial positive contrast. 

The average level of target responses maintained by the first 3 min of the following schedule is 
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shown by the double lines, and constitutes the predictions of the model, dropped into the last 
panel by the dashed arrow lines.   

 

Figure 4 shows the data obtained for both pigeons over the much larger range of EXT 

durations studied by these authors. It is a greatly compressed version of the bottom right panel of 

Figure 3, extending far to the right of those data. The process unfolds over a slower time-course 

than shown in Figures 1 and 2. This may be due to the more difficult horizontal-vertical 

discrimination (Thomas et al., 1985) used in this study. In any case, the hysteresis model gives a 

principled explanation for this component duration effect, in both qualitative and quantitative 

terms: The longer the EXT period, the weaker the strength of competing behaviors on entering the 

final VI component.  

 

Figure 4. The response rates of two pigeons reported by Wilton and Clements (1971) given a VI 
1 schedule followed by a signaled component of no reinforcement (EXT) for the duration noted 
on the x-axis above. The filled symbols come from the first 3 min of a signaled VI 1 schedule that 
always followed the EXT component. Increasing the duration of EXT had an increasingly 
liberating effect on response rates in the following component. The curves are given by the model 
under the assumption that the strength of competing behavior increases through the first VI 
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component, decreases as a function of the duration of the extinction component, and recovers in 
the final VI component, from which the above data are taken. The filled symbols are an average 
over the first three minutes of the following VI during which the contrast effect was (presumably) 
decreasing, as shown in in the top panels of Figure 3. This assumption is reinforced by the open 
symbols that come from the second 3 min, by which time the contrast effect has largely washed 
out. The curves are from the hysteresis model with parameters shown in Table 1. 
 

During the second 3 minutes of the final VI the rates showed a very shallow rise, from an 

average of 63 to 73 responses per min as a function of the duration of EXT. This is because AC 

was approaching asymptote by the end of those first three minutes (exponential processes are 

95% complete at 3τ; 99% complete at 5τ), and being back closer to full strength, those competing 

responses held target responding at the lower rates seen in the open symbols of Figure 4. The 

curves in Figure 4 were computed by evaluating Equations 1 and 2 at 15, 45, 75 … seconds 

through the following schedule, and averaging their values over the first 3 min, and over the 

second 3 min. Wilton and Clements also reported data from minutes 6-10 of the following 

schedule. By then the contrast would have run its course and rates subsided to steady state levels. 

Those curves were in fact flat, with an average value of 62 responses per min. Using the average 

values for the two birds from Table 2, k = 300, AT = 500/60, AC = 196/60, Equation 2 predicts that 

the rate will be 62.8 responses per minute. 

Component Duration. Figures 3 and 4 provide an excellent picture of one face of the 

duration effect: The change in the magnitude of contrast as a function of component duration. In 

those figures it is manifest how lengthening the duration of a preceding component can maximize 

its effect on the contrast in the terminal link. This is equally the case if it fosters positive contrast, 

as in those cases, or fosters negative contrast, as would occur when the preceding schedule had a 
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richer rate of reinforcement. It is also clear from the top two panels of Figure 3 that because the 

major amount of contrast occurs in the earliest moments of the focal schedule, lengthening the 

duration of the focal component will diminish the molar contrast averaged over that extent. Thus 

there are actually two duration effects: The enhancement of initial contrast as the duration of the 

preceding component lengthens, and the decrease in average contrast as the duration of the focal 

component increases. Conversely, if the duration of the following target schedule in the top right 

panel of Figure 3 were restricted to 30 s, the average response rate during it would have increased 

from 91 to about 120 responses per minute. 

Duration effects have been often noted (e.g., McSweeney, 1982), typically with the 

durations of both components simultaneously varied. Figures 1 - 3 show that the major effect of 

hysteresis occurs in the earliest part of the focal component, and so the average effect will 

decrease as that component lengthens. Even while shortening component durations selects from 

the most ‘contrasty’ part of the focal component, shortening the ALT component decreases that 

effect by not letting competing responses come near their asymptotic values--be those low, as the 

case for low reinforcement rates in the ALT and the ensuing positive contrast (see Figures 3 and 

4), or high, as the case for high rates of reinforcement in the ALT component and the ensuing 

negative contrast. For nonlinear phenomena such as these it is difficult to intuit which effect 

should dominate when both component lengths are varied together—it depends on the particulars 

and the parameter values. Therefore the hysteresis model was applied to two additional of the 

early studies of the duration effect, and to a later one. 

In the first systematic study of component duration in multiple schedules, Shimp and 

Wheatley (1971) exposed 3 pigeons to a variety of VI schedules and durations, enforcing a 1-s 
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change-over delay (COD) before possible reinforcement in the alternate component. The majority 

of conditions involved an approximate 4:1 ratio of obtained reinforcement rates in the 

components, with one component always VI 1 and the other varying from VI 3.3 to VI 5.  

Average relative response rates of three birds are are taken from their Figure 1 and 

displayed as diamonds in Figure 5. It is clear that at short component durations response 

proportions approached the 4:1 ratio of reinforcement rates, and they decreased with increases in 

component duration. In a similar experiment published the next year, Todarov (1972) studied 3 

pigeons on a range of component durations, utilizing VI 30 s and VI 90 s schedules with no COD 

in force. The circles in Figure 5 show that, like Shimp and Wheatley, Todorov found a systematic 

decrease in response proportions as duration increased. At short durations his data did not quite 

attain the matching proportion of 0.75, and showed a small downturn at 5-s components, due 

perhaps to the absence of a COD.  

Charman  and Davison (1982) failed in their first 3 experimental conditions to find a 

duration effect. Finally in their last experiment, they conducted a relatively close replication of 

the Todarov procedure, in particular keeping the rich (VI 30 s) and lean (VI 90 s) components 

associated with the same key colors while varying component duration. Figure 5 shows that they 

were finally successful in finding the effect, down to a small downturn at the very shortest 

duration (they did not report using a COD).  
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Figure 5. The duration effect as reported by Shimp and Wheatley (1971, diamonds) by Todorov 
(1972, circles), and by Charman  and Davison (1982, discs). The curves are drawn by hysteresis 
model using the parameters in Table 2. 
 

We may apply the model to these data. Because the changing component duration would 

make the midpoint analysis used in the first three figures sysematically biased, Equation 1 was 

integrated to provide the average response strength through the interval (Equation C1). At short 

durations there is fairly substantial carry-over of competing responses, enhancing or diminishing 

rates as a function of the value of the preceeding component. This effect wanes as component 

durations increase. The curves are derived by taking the relative values of BT for each of the 

components from Equation 2. Figure 5 shows the account given by the model, with the values of 

activation for competing and target responses (aC, and aT) and time constant tau (τ) given in Table 

2. The scale factor k cancels out of this relative measure. The curve for Shimp and Wheatley 

(1971) lies above the others because they used a more extreme ratio of reinforcement rates in the 

components.  
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Table 2 

Study:	   Shimp	  &	  
Wheatley	  

Todorov	  	  
	  

Charman	  
&	  Davison	  

Williams	   Avg1.	  

aT (s) 10	   24	   56	   160	   72	  

aC (s) 97	   40	   30	   66	   79	  

τ (s) 6	   30	   24	   19	   23	  

1Weighted (by number of subjects) trimmed (20%) mean of all parameters in Tables 1 and 2. 

 

The hysteresis model suggests why Charman and Davison’s (1982) first three attempts 

failed. Despite a wide variety of procedures, one thing in common was their reassignment of key-

colors from rich to lean schedules between each condition change. This continual switching may 

have kept the competing behaviors from ever differentiating through the course of the various 

components. One simple way of simulating that hypothesis is to set τ at an arbitrarily large value. 

This extends the competing responses uniformly both within and between components, and has 

the effect of moving proportions to a uniform and insensitive value. For Charman and Davison’s 

conditions and the parameters in Table 2, this levels all relative rates to 0.63. If competing 

responses were quickly brought to equilibrium, simulated by setting τ to a value of 0.1, 

proportions would again be flattened, this time to a lower value of sensitivity 0.53. Another way 

to bring competing responses closer to equilibrium is by letting time lapse after the offset of one 

component before the onset of the next. In their Experiment 3, Charman and Davison found 

substantially reduced sensitivities when they inserted blackouts between components.  

By shortening the duration of both components together, both the weakening (or 

enhancement) of competing behavior in the ALT component and the contrasting effects in the 
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focal component are being truncated or extended together (Williams, 1989). The nonlinear 

tradeoffs, along with the interaction between the value of τ and the component duration, blinker 

intuitions about response rates, so let us turn to the model for predictions. The response rates 

predicted for a VI 3 schedule alternating with either EXT or VI 1 at various component durations 

are shown in Figure 6, using the parameters from the last column of Table 2 (dashed lines). They 

predict a convergence of response rates at longer component durations. Also shown are data from 

Williams (1980), who conducted the experiment. Shortening durations increases contrast, as seen 

in Figure 6, and will pari passu increase sensitivity (approach to matching) in ratios of the rates. It 

is notable that the components of concurrent schedules are typically of very short duration, and 

thus approach matching. 

 

 

 

Figure 6. The dashed lines show the predictions of the model using the parameters in the last 
column of Table 2 and k = 300, for a VI 3 schedule alternating with another (EXT, top curve, VI 1 
and signaled VI 1, bottom curve). The symbols represent data reported by Williams (1980). 
Squares are for when the alternate was extinction, circles when it was a standard VI 1 min 
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schedule, and disks when it was a signalled VI 1 schedule. The continuous curves are the fit of the 
model with parameters tuned to those data (see Table 2).   

 

 

Summarizing these contrary effects: If the focal component is held constant and the ALT 

component duration is increased, contrast should increase, as the competitive responses will have 

more time to approach their max (or min), the effect seen in Figures 3 and 4. If the ALT 

component is held constant and the focal component duration is increased, contrast should 

decrease, because most of the contrast occurs in the first τ s of the component. Increasing focal 

component duration therefore washes out the average effect. The data support these predictions 

(Williams, 1989). If both components are varied together, then, for representative parameters 

(dashed lines of Figure 6) contrast will decrease with increases in the component durations. The 

magnitude of these effects will covary with the value of τ. To the extent that τis shorter than the 

shortest component duration, average effects of manipulating that duration will be small. 

In noting the effects of varying the duration of the EXT component on positive contrast 

and its eventual disappearance, Hinson and Staddon suggested that “local contrast effects 

represent a temporary disequilibrium between competing activities and the instrumental response” 

(1981, p. 275). That is the thesis of this paper, with the caveat that the disequilibrium is due to the 

differential rates of bringing instrumental and competing responses under stimulus control, driven 

by the same reinforcers, not “other” reinforcers, and not induced motivational states. 

This last point is brought home by the round data points in Figure 6. It was rate of 

reinforcement in the ALT component (here, VI 1), not rate of responding, that matter for contrast 

and the duration effect. The presence of vigorous pecking (filled circles) or absence of it (open 

circles) had no effect on contrast or the duration effect. Although a similar dependence on 
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reinforcement rates, not response rates, had been shown before numerous times starting with 

Reynolds (1961), Williams’s experiment challenges Hinson and Staddon’s (1981) account of a 

squeezing of competing adjunctive responses out of the richer ALT component (by target 

responding) into the focal component, thus causing negative contrast. The signaled VI schedule 

gave ample time for adjunctive responses—no squeezing—, but that made no difference in the 

amount of contrast. The present account, rather than be discomfited by Williams’s results, is 

encouraged by them, as it predicts the rate of reinforcement in the ALT schedule to be the engine 

driving the response strength of competing behavior, whether or not that engine is coupled to 

measured responses in the ALT component.  

Non-standard target responses will sometimes give non-standard results. Bernheim and D. 

R. Williams (1967) demonstrated transient initial positive and negative contrast, a duration effect, 

and possibly terminal contrast using wheel-running as the target response. McSweeney (1982) 

studied the duration effect in pigeons with both key-pecking and treadle-pressing responses. She 

found the standard duration effect for key pecking, but a reversed effect with treadle pressing. She 

and other investigators have found a variety of effects using treadle pressing as the target 

response, including some difficulty in demonstrating contrast (Dougan, et al., 1986; Hemmes, 

1973; McSweeney, 1983; McSweeney, Dougan, Higa, & Farmer, 1986). Rather than delve into 

this rich and confusing literature, it should be noted that the specific activation aT for treadle 

pressing as a target response is apt to be less than that for key pecking, and its time constant likely 

to be greater. That is because a competing response such as pecking the wall near the stimulus 

may be under better control of the component stimuli than is a treadle-pressing target response. 

Under those conditions, baseline rates for treadle pressing can drift, and that drift may bring it 

into greater or less contact with reinforcement (Killeen & Pellón, 2013), and thereby cause 

substantial order-effects (e.g., King & McSweeney, 1987), and a reversed duration effect.  
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2. Terminal Contrast 

The lag in component stimuli acquiring discriminative control over competing responses 

may be due to many factors in addition to the difficulty of the discrimination. Reinforcement of 

competing behavior typically occurs at a delay, whereas that for the target response occurs 

immediately. Delays impede learning for adjunctive responses, just as they do for instrumental 

responses (Killeen & Pellón, 2013). All of these effects can make initial contrast endure for many 

sessions before the competing responses come under stimulus control and initial contrast 

disappears. Difficult discriminations may never be learned, and then contrast will be maintained. 

The continuum of easy-to difficult discriminative stimuli, and the differential contrast that they 

sustain, may be one of the causes of dimensional contrast. But if the competing behavior does 

come under stimulus control, then as initial contrast fades a new type of contrast may appear—

terminal contrast, described now. 

Buck and associates (Buck, Rothstein, & Williams, 1975) provided early data tracing the 

course of the following schedule effect—here called terminal contrast. These investigators 

alternated VI and EXT schedules for four pigeons in a multiple arrangement with 90 s 

components. They found that positive contrast occurred toward the end of the component, and 

increased with training (not decreased, as does initial contrast). After 26 sessions the subjects 

were re-exposed to a MULT (VI 2, VI 2) baseline, and then the whole procedure was replicated. 

Figure 7 shows the median response rates through the VI schedule averaged over original and 

replication. It is positive contrast, as rates are higher in the VI when it is alternated with extinction 

than with a comparable VI; but it is unlike all of the studies analyzed thus far, as the rates start 

low and increase through the component, rather than start high and then decrease. The authors 

noted that: “In a given procedure, either or both types of interaction [initial and terminal] may 
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occur; neither [by itself] provides a complete account of behavioral contrast” p. 291. (The pattern 

in Figure 7 might also be interpreted as induction of the depressed EXT rates into the VI 

component. This is unlikely given the clarity of the stimuli and length of training, given 

Williams’s follow up experiments, and in light of the analysis shown in Figure 8.) 

In numerous subsequent studies (e.g., 1980; 1981, 1983; for overview, see 2002), 

Williams independently varied the preceding and following schedules, and demonstrated the 

reliability of control by the following schedule independently from the control by the preceding 

schedule, and reviewed the effects of training, stimulus discriminability and within-component 

changes in rates on the following schedule effect.  

 

 

Figure 7. Median response rates of four pigeons (Buck, et al., 1975) demonstrating terminal 
contrast in 90 s components of VI 2 alternating with EXT. 

 

Williams (2002) noted the “paradox” of anticipatory contrast in that Pavlovian signals of 

forthcoming improved conditions are expected to be excitatory, signals of forthcoming 

impoverished conditions to be inhibitory. Terminal contrast works just the other way around, 
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discomfiting Pavlovian accounts. In our view it does so because the modus operandi of terminal 

contrast is on other responses more strongly than target responses, and by exciting or inhibiting 

them, has contrary effects on target responses. 

 

The Differential Consequation Hypothesis 

It is our hypothesis that the cause of terminal contrast is the sensitivity of interim and 

adjunctive responses to the stimulus signaling the following component. That stimulus can have 

strong conditioning (reinforcing or punishing) effects on the responses that preceded it (Royalty, 

Williams, & Fantino, 1987). Those effects are more likely to impact the competing behavior, as 

component change occurs independently of the brief instrumental response, and is more likely to 

be contiguous with non-target responses. When stimulus control of competing behavior is poor, 

then initial contrast may occur, and will decrease as the discriminative control of the components 

is established. With such extended training the component stimuli may assume conditioned 

reinforcing or punishing strength along with their discriminative functions. These predictions are 

sustained: 

 

with more similar stimuli, the maximum degree of interaction occurred at the 

beginning of the components and then decreased [our initial contrast]; with less 

similar stimuli, the degree of interaction increased throughout the components and 

was at its maximum near their end [our terminal contrast]. (Williams, 1988, p. 

206). 

 

By comparing the results of following schedules of either VI and EXT that were 

distinctively signaled or not (i.e., they were mixed schedules with respect to one another, but 

distinctive from what preceded and followed them), Williams (1979, p. 392) was able to conclude 
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that “conditioned reinforcement plays a major role in such suppression” of target responses in the 

case of negative contrast. We infer that that is due to the reinforcement of competing responses. 

Equally, we would add, that conditioned punishment (when a signal of EXT or lower 

reinforcement rate follows) plays a major role in suppression of competing responses, and thus 

liberation of instrumental responses toward the end of that component—terminal positive 

contrast. 

Both instrumental (Cowie, Elliffe, & Davison, 2013; Williams & Royalty, 1990) and 

competing responses come to be organized with respect to time through the component. As 

imminence of reinforcement in the alternate schedule increases, the distribution of competing 

interim responses in the target component changes systematically with it (Haight & Killeen, 

1991), as does the amount of contrast shown by the instrumental response (Williams, 1976). The 

following section provides a candidate model for these effects. 

The Competing Traces Model of Terminal Contrast 

How does a reinforcer connect to a prior response? Some vestige of it, in action or in 

memory, must be affected by the reinforcer. These hypothetical vestiges are called traces, and are 

pictured in Figure 8. Killeen and Pellón (2013) argued that adjunctive responses may be more 

memorable than target responses such as a key-peck, and persist in memory longer because of 

that. They developed a logistic model of trace competition to explain some of the variance in the 

presence and temporal location of adjunctive responding. In the present situation it is not primary 

reinforcement, but rather the conditioned reinforcement (or punishment) of competing responses 

that--we propose--causes terminal contrast. The arguments are similar—the effects of 

reinforcement on responses with different sensitivities, which compete with each other for 

expression. Killeen and Pellón’s work focused on the competing adjunctive responses, whereas 

this paper focuses on the effects of those response on the measured target response. 
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Figure 8. Target responses such as key pecking and their traces are depicted by the taller curves. 
Interim responses and their traces are depicted by the shorter curves. Stimuli signaling component 
change from Focal to ALT may punish or reinforce responses in memory at that time depending 
on the reinforcement differential that they signal. In addition, when components change from 
Focal to Alt, any of the responses with tails to the right of the vertical bar are available for 
primary reinforcement, or for extinction if the ALT component is EXT.  
 

 

We posit a modification of Equation 1 to accommodate the support for adjunctive 

behaviors intrinsic in the focal component, and the suppression or enhancement of them by the 

stimuli associated with component change. The support is proportional to the rate of 

reinforcement in the focal component. The change in rate going into the following component 

adds additional conditioned reinforcement or punishment: 

 

AC = aC rCurrent +wT rFollowing − rCurrent"# $% f (t)( )      (4) 
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The strength of competing behaviors (AC) is proportional (aC) to the rate of reinforcement 

in the focal component (rCurrent) plus the conditioned reinforcement or punishment due to the 

change signaled by the following component stimuli, ΔT = wT[rFollowing – rCurrent]. Note that if the 

following component has a lower rate of reinforcement than the current focal component, delta 

(Δ) is negative, indicating a punishing effect of component change on competing behavior. If the 

following schedule stimuli signal an increased rate of reinforcement, delta is positive and adds 

further support for competing behavior in the focal component. If there is no change in 

reinforcement rate, delta is zero and there is no conditioned effect; there is instead the base-rate 

support aC rCurrent, unmodulated by time through component. The parameter wT indicates the 

importance of the following schedule effect. Early in training it will equal zero, and will increase 

with training. 

On components with fixed durations the strength of the conditioned effects will increase 

with proximity to the end of the component, near the locus of the component change, as some 

function of time, f(t). Ensembles of interim responses arise on schedules (see, e.g., Haight & 

Killeen, 1991; Innis, Simmelhag-Grant, & Staddon, 1983; Pear, 1985; Reid, Bachá, & Morán, 

1993; Roper, 1978), any of which can compete with the target response. A number of simple 

timing models were assayed for f(t) (e.g., Rayleigh (Reid & Allen, 1998), Weibull (Killeen, Hall, 

Reilly, & Kettle, 2002), and normal (Gibbon, 1977)). The cumulative exponential distribution, f(t) 

= 1 – e-t/τ, was the best simple model. It is the simplest instance of the extreme value distribution, 

which gives the time of onset of the first of any one of a set of random processes; and of the first 

stage of a set of gamma-distributed processes, which has also been used to capture the temporal 

distributions of interim activities (Killeen, 1975; Osborne & Killeen, 1977). With that 

instantiation of f(t), placing AC in the right-hand side of Equation 2 provides the model of terminal 

contrast. Together they draw the curve through the data in Figure 8 using parameters of k = 240 
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min-1; τ = 18 s, and specific activations aT = 74 s and aC = 66 s. Because the following schedule 

was EXT in that experiment, rFollowing = 0. The weight of terminal contrast wT was set to 1, as the 

data were collected after an extended regimen of training. 

One way to test the conditioned consequation hypothesis is to ask whether the putative 

reinforcing strength of the component stimuli changes appropriately under manipulation of 

variables known to affect conditioned reinforcement. One powerful manipulation known to affect 

conditioned reinforcement strength is delay of reinforcement, (e.g., Royalty, et al., 1987). By 

making the component change into the following schedule signal fixed delays to food, it should 

be possible to change the rate of competing responses, and thus inversely the target response rate. 

If it signaled a short delay, the change would constitute positive conditioned reinforcement, 

enhance competing responses, and generate negative contrast. If it signaled a long delay, it would 

signal a decrease in the local reinforcement rate, punish competing behavior, and thus generate 

positive contrast. 

Williams (1976) performed the experiment with 6 pigeons working under a MULT (VI 90 

s, FI x) schedule. The components were of 90 s duration, and the values for the FI were 5 s, 45 s, 

and 80 s, experienced in a counter-balanced order. Williams reported the data for each bird at 

each fifth of the VI schedule. I have averaged the data and present them in Figure 9. Note that 

with reinforcement immanent in the ALT component (viz. FI 5 s), rates in the focal VI schedule 

showed strong negative contrast (filled circles), as predicted. In the remaining conditions, with 

reinforcement in the ALT remote there was no hint of negative contrast, and even a suspicion of 

positive contrast. Equations 2 and 4 drew the curves with parameters given in the figure caption. 

The value of rFollowing was set at 1/x, where x is the value of the FI schedule, and rCurrent at 1/(90 s), 

the rate of reinforcement on the VI schedule. The weight of terminal contrast wT was set to 1. 
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Figure 9. Response rate in the unchanged VI 90 s component in an experiment by Williams 
(1976), who varied the location of reinforcement in the ALT component by scheduling it on Fixed 
Interval (FI) schedules with periods of 5, 45, or 80 s. The curves are from the response traces 
model of terminal contrast, with parameters of k = 240/min aT = 48 s, aC = 5 s, and τ = 180 s. 
 
 

Problems with the Competing Traces Model  

There are apparent problems with the idea that the signal for the following schedule can 

punish behavior. Williams and Dunn (1991) found a punishing effect on choice when pecking 

responses on concurrent chain schedules led to a probabilistic time-out, but the effect was small. 

More pertinently, in the same study that Williams (1980) analyzed the duration effect shown in 

Figure 6 above, he ran a condition of signaled reinforcement in the alternative component, and 

found data (the open circles in Figure 6) virtually identical to that from the same, but unsignalled, 

VI (the disks in Figure 6). But the component stimulus change was effectively signaled EXT 

(until the S+ occurred just before reinforcement). Why should the data not have looked more like 

the squares, associated with EXT? Frankly I do not know. My hypothesis is that, with a VI 
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schedule, some instances of reinforcement will occur soon after component transition, and they 

will do more than their share in strengthening alternate responses in the focal component (Killeen, 

1968). Furthermore, the signaled extinction condition is not very different from the 3-link chain 

schedule studied by Bell and Williams (2013) in which the middle link, when predictive of a 

delayed reinforcer at the end of the third link, was demonstrated to have “potent conditioned 

reinforcement properties” (p. 179). Thus, although the pigeons learned that they need not respond 

during the EXT/delay stimulus, that stimulus signaled the same distribution of delays as did the 

VI stimulus, and its onset may have been equally reinforcing or punishing as that stimulus. 

According to the present theory it is the signaling of the following schedule reinforcement 

distribution that gives potency to the component stimuli, not the behaviors that they govern. That 

potency may have been equal in these conditions. If this hypothesis is correct, then in schedules 

with fixed delays to reinforcers there should be a regular transition from negative to positive 

terminal contrast with increases in that delay (even though all signal a period of EXT until that 

interval elapses). As reflected in Figure 9, Williams (1976) found the predicted negative contrast 

and its attenuation in five of six pigeons he studied when the FI in the following component was 

lengthened, and found some evidence for positive contrast at the longer FIs in four of those birds. 

These latter results support the competing traces model. 

In a more relevant experiment Williams (1988) compared the following-schedule effect 

when transitions between the focal component and the following component were peck-

contingent, and when they were not. He achieved appreciable terminal contrast but found 

absolutely no differences in the amount of contrast between dependent-transition conditions and 

non-contingent conditions. The reinforcement or punishment of competing behavior by schedule 

transition is a key aspect of the consequation hypothesis. What does this lack of effect for 

transition contingencies on the target response do to that hypothesis? One could suppose that his 
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contrast effect was primarily initial contrast—but his experimental conditions ruled this out. One 

could suppose that the schedule transitions were not conditioned reinforcers or punishers—but 

Williams’s own work makes this unlikely (Bell & Williams, 2013; Williams, 1994). In any case, 

if the schedule transitions were not functional conditioned reinforcers or punishers, that alone 

would undermine the machinery necessary for the present theory. Our hypothesis is that because 

these subjects had been in similar experiments for years, pecking had come under fairly strong 

control of consequation by grain reinforcers, and was not sensitive to the contingent change in 

components. Highly conditioned behavior can become habitual, less sensitive to consequences 

(Dickinson & Balleine, 2002). If it were sensitive, we would expect to see some enhancement or 

diminution in pecking due to contingent conditioned reinforcement or punishment. There was 

none. Had Williams been able to identify the key competing behaviors and consequate them, then 

the theory would be tested.   

Nevin, Smith and Roberts (1987) found contrast effects when pigeons transitioned from a 

VI 180 schedule to EXT, but the degree of contrast was not affected by whether the transition was 

peck-contingent or not. Transition to a higher rate of reinforcement in the ALT component 

generated negative contrast (with respect to the above conditions), but rates in the peck-

contingent change were higher than those in the non-contingent change. From this we may infer 

that signals of decreased rate of reinforcement are less effective punishers of pecking than signals 

of increased rates of reinforcement are reinforcers (also shown in  Killeen, Sanabria, & Dolgov, 

2009). If this is also the case for competing responses—that reinforcement has more impact on 

behavior than does non-reinforcement—it would suggest that positive terminal contrast would be 

more difficult to demonstrate (apart from ceiling effects) than negative terminal contrast. 
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3. A General Model of Contrast 

Equation 2 was formulated as the product of the probabilities of engaging in the target 

response BT and not engaging in competing responses BC, Initial that are carried over from (or 

extinguished in) the prior component. Equation 4 performed a similar service for terminal 

contrast. We may unify those models by recognizing that competing behavior in the focal 

component has the possibility of being modulated both by carry-over effects from the prior 

component and by conditioned effects from the following component. Then Equations 1 and 4 

become Equation 6: 

 

AC = aC ΔInitiale
−t /τ I + rCurrent +ΔTerminal 1− e

−t /τ T( )( )    (6) 

where 

ΔInitial =wInitial rPrior − rCurrent[ ]       (6P) 

and 

ΔTerminal =wTerminal rFollowing − rCurrent#$ %&  .     (6F) 

 

Upon evaluation, Equation 6 is inserted into Equation 2. 

It is the thesis of the competition hypothesis that competing responses from a prior richer 

component spill over to cause initial negative contrast; and the dearth of them when the prior 

component is EXT continues into the focal component to cause initial positive contrast. They will 

decrease through the component (the first exponential term in Equation 6) as the animal comes to 

its senses. These effects are represented in Equation 6P, and weighted by wI, which will at first 

increase with training as the BC become conditioned, and then decrease with training as they 
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come under the control of the component stimuli (if that happens) in a manner figured by the 

circles in the top panel of Figure 10.  

The middle term in Equation 6 shows that there is always some level of competing 

responses maintained by the reinforcement schedule. This might also receive a weight, as such 

competition will be more common in interval schedules than ratio schedules, but that has not been 

necessary for the present analysis. Equation 6F represents the reinforcing or punishing effects of 

the following schedule as the product of the difference it signals from the current schedule with 

its weight. We expect that weight to increase with training, as shown by the disks in the top panel 

of Figure 10. In Equation 6 this term is also weighted by its proximity to the end of the interval, 

the point where its force is concentrated. They are combined with a simpler equation for the target 

response strength (here assumed to be under strong stimulus control: AT = aTrCurrent) in the basic 

rate equation, 2. 

The same Buck, Rothstein and Williams (1975), who provided the data in Figure 7 also 

reported the data from one pigeon throughout all stages of training. Those are shown in the 

bottom panel of Figure 10, with the curves from Equation 6. The values of the weights w on 

interim and terminal contrast were let free to vary across blocks to minimize rms error, and took 

the values shown in the top panel of Figure 13. The probability of a target response was held 

constant at 0.27 throughout by aT = 45 s. 
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 Figure 10. The bottom panel shows one pigeon’s response rates (from Buck, Rothstein and 

Williams, 1975) in 5 session blocks. Within each block rates are shown for successive tenths of 

the 90 s components of a VI 2 that alternated with EXT. The curves are given by Equations 2 and 

6, with k = 240 min-1, and aT = 45 s. The time constants for initial and terminal contrast were 7 s 

and 2.5 s. The top panel traces the evolution of initial contrast (circles) and terminal contrast 

(disks).  

 

 

When terminal contrast has not developed, the competing responses susceptible to it, BC, 

continue toward strength aCrCurrent without further modulation by time through component. When 
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components are long enough so that APrior ≈ aCrPrior, Equation 6 (with wI  = 1 and wT = 0) reduces 

to the earlier treatment of interim contrast (Equation 1). Thus, many of the analyses in Section 1 

could be accomplished with the general model (Equation 6).  

 

There are many simplifications in this development. Each of the sources of competition in 

Equation 6 may involve the same or different types of competing behavior, each with their own 

specific activation a (see Haight & Killeen, 1991, for examples), each competing with each other 

as well as with the target response. Alternate models of response competition that respect such 

dynamic interactions may better generalize this theory of contrast. The instantiation of the model 

in this paper assumes that stimulus control of the target response is essentially immediate. When 

it is not, it will come under slower stimulus control that may parallel or even lag that of the 

competing behavior. This can happen when the stimuli are not proximal to the target response in 

space or in time, or the target response has lower specific activation (a) than some of the 

competing responses. In this case, no contrast, or non-monotonic contrast effects, or the 

appearance of induction, may occur (Schwartz, 1974). When stimuli are less than optimal, as may 

be the case for rats with colored lights over levers, initial contrast but terminal induction 

(generalization from the following schedule) may occur (Williams, 1990). When the S+ is remote, 

various effects can occur (e.g., Schwartz, 1975). When stimuli are ineffective, we expect only 

induction, at least until the ensemble of responses comes under direct control by reinforcement 

frequency (Weatherly, Arthur, & Lang, 2003). Some of these experimental niceties may be 

accommodated with changes in specific activations or time constants with the present models; 

others will require more general models. 
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Discussion 

 

The present is one among many theories of contrast. One of the earlier is Herrnstein’s 

(1970). He formulated a general treatment of responding on the central premise that all behavior 

reflected choices among actions supported by scheduled and unscheduled reinforcers. His 

fundamental equation (#13) is: 

      (7)  

Where k is a free parameter giving the asymptotic response rate at high rates of 

reinforcement for the target response, and RO is “aggregate reinforcement” from other sources— 

“unscheduled, extraneous reinforcement”. The responses supported by RO are “interwoven” with 

the target response. Divide the numerator and denominator of Equation 7 by RO to see the formal 

identity with Equation 2 when AC is constant (see Equation B6). The ratio of Equation 7 for two 

different rates of scheduled reinforcement is a robust model of performance on concurrent 

schedules (Equation B7). But the Equations 2 and 7 diverge when it comes to interpretation of 

parameters, and the treatment of multiple schedules. Herrnstein (1970) generalized the above for 

multiple schedules as: 

       

where m is a constant representing the “degree of interaction across components”. For concurrent 

schedules, m ≈ 1, for single-key studies m = 0, and for multiple schedules, 0 < m < 1. Herrnstein 

footnoted that RO might be expanded as RO1 + mRO2. In some ways the present theory has been an 

expansion of that footnote. Herrnstein’s hypothetical other reinforcement that supports other 

behaviors BC is identified in the present theory as the reinforcement for target responses (not 

exogenous reinforcement). Although key-pecking may be targeted, reinforcement is less a bullet 

P = kR
R+ Ro

P1 =
kR1

R1 +mR2 + Ro
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than buckshot, as it also reinforces other responses, some competing, some variants of the 

nominal target (styles of responding), some irrelevant. His RO2 is reinforcement in the ALT 

components; that in the preceding component can spill over (or, if that is a lower rate component, 

“chill” over) into the focal component causing initial contrast. RO2 in the following component 

can reinforce (or reduce reinforcement of) competing responses in the focal component, causing 

terminal contrast. Herrnstein’s RO1, hypothetical reinforcement for other behavior in the focal 

component, is in the present theory the very reinforcers that support the target response in that 

component.  

There are problems with Herrnstein’s account (Edmon, 1978; McSweeney, 1980; 

Williams & Wixted, 1986), but his invocation of reinforcers for competing behavior, either in the 

focal component, or in that and the alternate components, is a part of numerous theories of 

contrast, including the current one. What is different about the present account is that the RO are 

identified not as alternate sources of reinforcement, but as the most powerful ones in the box—the 

ones that support the target response. That such reinforcers may support more than one class of 

behavior at the same time is well known (Catania, 1971; Davison & Nevin, 1999; Fu & Anderson, 

2008; Johansen, Killeen, & Sagvolden, 2007; Killeen, 1969; Staddon & Zhang, 1991), as has their 

role in instigating and shaping adjunctive responses that might compete with the target response 

Killeen & Pellón, 2013). It has also been known for some time that the stimuli associated with 

component change can reinforce or depress both operant and other responses (e.g., Terrace, 

1972). The current paper is simply a Baconian exercise of adding together these facts.  

This theory of behavioral contrast is a mechanistic one, as it hypostasizes a mechanism in 

occurent, typically unmeasured responses as the cause of contrast. These unwatched responses are 

the dark matter of our field. This perspective stands in contradistinction to molar theories that 

simply posit the induction of responses by molar correlations. Those are simpler, and by invoking 
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action at a distance, need make no hypotheses concerning mechanism. Both are valuable 

approaches to this and other behavioral phenomena. They are complementary approaches, in the 

sense of Bohr’s concept of complementarity (see, e,g,. Baum, 2012; French & Kennedy, 1985; 

Killeen, 2001b)—in that they constitute different tradeoffs between parsimony and precision.  

In analyzing phenomena it is useful to consider various classes of explanations, ones first 

suggested by Aristotle (see, e.g., Killeen, 2001a; Killeen, 2013): efficient causes, functions, 

mechanisms, and formal causes (maps onto forms of representation). It is the thesis of this paper 

that the efficient cause of behavioral contrast is signaled transition between contexts of differing 

reinforcement density. That transition is a necessary but not sufficient cause. It may cause target 

responses near the start of the focal component to suffer more or less competition from other 

responses that have been strengthened or weakened by the prior alternate component (initial 

contrast), and which persist for a while into the new component. These may disappear if and 

when the competing responses are gotten under control by stimuli signaling the focal component. 

Transition from the focal component to a following component is typically signaled by stimuli 

that may acquire conditioned reinforcing or punishing functions. These may differentially affect 

different classes of responses, in particular target and competing responses. This conditional 

effect will take longer to develop than initial contrast; if and when it does (Williams, 1990), it is 

called “the following schedule effect”—here terminal contrast. 

The function of contrast is unclear. Control by context of reinforcement can be argued to 

have survival value, in that adequate contexts should be approached or avoided to the extent that 

alternate contexts are yet poorer or richer in resources. Alternatively, the contrast studied here 

may be a simple by-product of different classes of responses having differential associability with 

reinforcement, and differential ability to be brought under control by the types of stimuli used in 

these studies. In the “constraints on conditioning” debates of the last century, such differential 
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associability was argued to be of significant evolutionary value, as also has the resulting 

phenomenon of peak shift (Lynn, Cnaani, & Papaj, 2005). 

The mechanisms of contrast are, at one level, the alternative responses that are 

hypothesized to compete with the target response for expression. At a deeper level, they are the 

fundamental processes of conditioning that are encoded in the nervous system. The formal causes 

of contrast are given by the various equations in this paper. Those equations are not to be seen as 

the final encapsulation of the theory: They are at best approximations, and at worst, ill posed. 

They evolved from many prior versions, and may continue to evolve. One earlier attempt 

involved subtractive competition rather than multiplicative competition. The present approach is 

arguably simpler and more transparent, and provides a marginally better fit to most of the data. 

But there is evidence for a subtractive process in response competition (Killeen & Bizo, 1998; 

Reid & Dale, 1983). It may be the case that a general treatment of other types of contrast will 

eventually require such a subtractive model. 

Equations merely provide a mechanism to bring the richness of data to bear on the 

formulation of a theory, and the subsequent reformulation of its models as data permit or require. 

The logic of Equation 6 entails a dynamic process involving the stochastic emission of interim 

and target responses and the positive feedback of reinforcement on their interaction. Because of 

that, the emergence, dominance and subsidence of various responses will resemble a horse race, 

with different contenders trading places and eventually settling into a meta-stable pattern in the 

home stretch (Reid, et al., 1993). The adjunctive behaviors themselves may show initial contrast 

(Porter & Allen, 1977). There are candidate models for such processes (Ferrell, 2012; Myerson & 

Miezin, 1980; Reid & Dale, 1983; Staddon, 1977a, 1982), and data to feed them (Innis, et al., 

1983; Reid & Dale, 1983; Reid, Vazquez, & Rico, 1985). The relation to momentum theory (e.g., 

Nevin, 1992; Nevin, 1994) remains to be explored, as does the relation to Zentall and associates’ 
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demonstrations of what may be a novel contrast effect (e.g., Stagner & Zentall, 2010; Zentall, 

2007, 2010). Given the large number of trials necessary to establish it (Zentall & Singer, 2007), it 

is consistent with a reading as terminal positive contrast. Equation 6—the general model for 

contrast—may fit some data sets about equally well under the assumption of primarily initial 

contrast or primarily terminal contrast, with only experimental analysis able to resolve the source 

of the contrast. Such refinements or replacements will be a worthwhile hobby for those so 

inclined; the Mathematical Principles of Reinforcement provides one useful erector set: It 

provides models for the coupling of reinforcers to target or other responses, and all of the early 

work for this paper was grounded on it. Some investigators have been constructing useful 

refinements to it (e.g., Bittar, Del-Claro, Bittar, & da Silva, 2012) and extensions of it (e.g., 

Bradshaw & Killeen, 2012). But the most convincing test of the present theory will not be a more 

capacious model, but tests of the purported mechanisms at a qualitative level. 

A fundamental aspect of the theory is that contrast arises from response competition. 

Interval reinforcement schedules are particularly susceptible to generating such inter-responses, 

because they reinforce any responses that occur before the final target response. It follows that 

variable ratio schedules, whose coupling of reinforcement to the target response is greater than for 

interval schedules, will not show as much contrast. At most, some spillover from a prior 

component may generate initial contrast, but that will decrease with training. Indeed, the higher 

rate of responding on ratio schedules occurs just because they support fewer competing responses 

than interval schedules (Killeen, 1969), so in some sense they emulate responding on VI 

schedules with strong positive contrast—contingencies and contrast being two different ways of 

reducing competition. It is a different case for fixed-ratio schedules, where temporal control 

provides periods of non-reinforcement that can serve as low local densities of reinforcement 

(Norborg, Osborne, & Fantino, 1983). Contrast will, however, depend importantly on the 
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topography of the target response, as that may have greater or less intrinsic associability with the 

particular reinforcer then do competing responses. Environments that restrict the opportunity for 

competing responses will show reduced contrast effects, just as they enhance the speed of 

learning the target response (Locurto, Travers, Terrace, & Gibbon, 1980). Enriched environments 

will enhance contrast. Prior ratio schedules will generate less initial contrast than prior interval 

schedules, but the contingencies in the following schedule will have no effect on terminal 

contrast, as long as the distribution of reinforcers in the following schedule is comparable. 

(Wilkie (1971) reported positive contrast caused by delayed reinforcement in the alternate 

component, inconsistent with the present hypothesis—but Richards (1972) did not replicate that 

effect.) 

The theory also predicts that initial and terminal contrast can be separately manipulated by 

clever fading in or out of discriminative stimuli (e.g., Terrace, 1972) before or after the focal 

component. “Errorless discrimination” (see, e.g, Arantes & Machado, 2011) is sometimes 

associated with absence of contrast because, we argue, of the procedure’s ability to obtain 

stimulus control over the competing behavior along with the target behavior, avoiding initial 

contrast, and then ending conditions before terminal contrast manifests. That narrow window is 

sometimes missed (Kodera & Rilling, 1976). Of course, the nature and location of those stimuli 

will affect their differential associabilities with target versus competing responses. The amount of 

initial contrast in the focal component will depend on the strength of the coupling between 

reinforcement and target responses in both the focal and the prior component—well-coupled 

target responses such as those maintained by ratio schedules will leave little opportunity for the 

conditioning of much competing behavior. The presence or absence of a target response in the 

following schedule will have little effect on terminal contrast, as that depends on the reinforcing 

or punishing strength of the schedule transition, driven by differences in reinforcer density or 
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quality. Similarly, the depression or elevation of target responding by contrast manipulations will 

not in itself change the incentive value of stimuli signaling that component (Williams, 1992). 

Preference for a target stimulus will depend on the rate of reinforcement that it signals, primarily 

within that component, but also in the following schedule, if that is not too greatly removed 

(Killeen, 1982). By interposition of neutral stimuli, Williams and McDevitt (2001) were able to 

manipulate contrast without undermining the preference relations in complex multiple schedules.  

Component transition is not restricted to multiple schedules. Inserting time-outs between 

components of VI 1 schedules produces substantial positive contrast in rats, which was reported 

as the effects of spaced vs. massed conditioning (Mackintosh, Little, & Lord, 1972). The 

conditions for this experiment suggest that it was initial contrast that was occurring. The same 

one-minute time-outs, when inserted between VI 1 and EXT sufficiently separated them that no 

contrast was found—that is, no further elevation in response rates—whereas rates for the closely 

spaced components showed positive contrast (also see Wilton & Clements, 1972).  

A whole session constitutes one long component, for which both initial and terminal 

contrast are predicted. The former warm-up effects are well documented (e.g., Killeen & Bizo, 

1998). The post-session feeding effect (Bacotti, 1976; Smethells, Fox, Andrews, & Reilly, 2012; 

Timberlake, Gawley, & Lucas, 1987), and incentive contrast (Ettinger, McSweeney, & Norman, 

1981; Flaherty, 1999) may be manifestations of terminal contrast. In sum, it is possible that we 

are reaching the limit of what can be understood about an operant response by studying only the 

target response, and must begin the more difficult task of studying it in the context of other 

responses that are instigated by reinforcement (Bernstein & Ebbesen, 1978; Findley, 1962; 

Herrnstein, 1977). It is time to study the dark matter—to un-tape the window on the Skinner box 

and watch our subjects behave—and to enlarge the number of terms in the three-term contingency 

to include other responses engaged by reinforcement as they abet or thwart the target response.  
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Appendices 

Appendix A: Response strength—Just skip ahead to A3 and the paragraphs that follow it. 

Stimuli associated with changes in reinforcement density do not necessarily move the 

animal as a whole from one coherent behavioral state to another, but rather control the emission 

of responses. They modulate operant classes. Some responses such as the target response of key-

pecking may be under good control by component changes signaled by lights on the keys, lever-

pressing signaled by colored lights less so, and some responses, such as changes in orientation, 

pecking at the floor, grooming, pacing, turning, off-key pecking, and adjunctive and interim 

responses in general, may be under poor or negligible control by key colors. They may 

nonetheless come under the control of changes in rates of reinforcement in those components, or 

even of the context that involves changes in the target response. What formal models can describe 

this process? 

A1. Biological. One mechanism for sensitivity to reinforcement density is general changes 

in arousal level. Arousal theory has been applied to reinforcement schedules (Killeen, 1979; 

Killeen, Hanson, & Osborne, 1978), and forms one of the three principles of the Mathematical 

Principles of Reinforcement (MPR) (Killeen, 1998; Killeen & Sitomer, 2003). Although the 

formal model for accumulation and decumulation of arousal applies (with continuing refinement, 

such as that by Bittar, et al., 2012), and directly yields a version of Equation 1 in the text, its time 

constants are generally too long to mediate the changes seen in initial contrast. 

A2. Logical. How would a smart rat or pigeon, one equipped with all of the computational 

ability of those studied by Gallistel, be responsive to a change in reinforcement density absent 

control by visual or auditory stimuli? Change-point detection in the density of random processes, 

such as those approximated by VI schedules, can be a subtle issue (Basseville & Nikiforov, 

1993). Let us take a simple approach, and ask what is the likelihood that an inter-reinforcement 
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interval t came from a component with mean interval µ1 (mu-sub-one, essentially the VI value) or 

another with mean interval µ2? Random-interval (RI) schedules, the idealization of VI schedules, 

are constant probability distributions in which the probability of an inter-food interval (IFI) of 

length t is e-t/µ/τ where τ is the mean of the RI schedule. It follows that the relative likelihood—

the ratio of the two likelihoods for RI schedules S1 and S2 with means µ1 and µ2—is

l S1 / S2( ) = e−t /µ1 / e−t /µ2( ) µ2 /µ1( ) . For reasons of symmetry, it is the log-likelihood that is typically 

used, and the log-likelihood of these two schedules is the natural logarithm of the right-hand side:

t 1/µ2 −1/µ1( )+ ln µ2 /µ1( ) . Thus the log-likelihood of schedule S1 relative to S2 is a linear 

function of the length of the IFI t. The diagnosticity of the IFI is proportional to the difference in 

the rates of reinforcement between the two end states. Thus our dumb bird can act smart simply 

by paying attention to the IFI, which it presumably has been doing all along in any case. But the 

IFI is as random as a Poisson process can be, and it is not generally in the bird’s interest to be 

randomly oscillating between two different behavioral patterns. Furthermore, the first IFI in the 

changed component will be a mixture of the two densities. The bird should collect more data 

before changing behavior. The easiest way to do that is to consider more than one interval, 

perhaps with the biologically simplest of averaging schemes, the exponentially-weighted moving 

average (Killeen, 1981). This will amplify the diagnosticity while slowing responsivity. But if the 

animal waits for two IFIs to evaluate where it is, in extinction the second will never come, and its 

evaluation will be stuck forever at the last IFI pair. A few absurd proposals to that effect exist 

(e.g., Killeen, 1998; Killeen, et al., 2009), not worth further countenance here. These complexities 

counsel weighing the next assay before further mining this vein. 

A3. Dynamics. Working in the decade that the above models of Staddon, and Myerson and 

Miezin appeared, Don Blough (1975) published a model of dimensional contrast based on the 

familiar linear approach-to-asymptote (“error correction”) model: 
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Δvi = γSiβ λ − vSi( )      (A1) 

On the left is the change in associative strength of stimulus element i, the γ (gammas) are 

generalization factors for stimulus elements Si, β (beta) is a learning rate parameter, λ (lambda) 

the equilibrium level that would be maintained by reinforcement conditions, and vSi  the strength 

of element Si at the start of the trial. Although construed in terms of trials, learning and 

associative strength, the same equation provides a model of the adjustment of strength through a 

trial, with lambda being the equilibrium strength that would be sustained for that 

stimulus/response/reinforcement triplet. 

Rewriting A1 as a differential function of time, not trial, and integrating gives: 

     (A2) 

for target and other responses. Equations A9 are exponentially weighted moving averages 

that update vT, the association of the target response with the signaled reinforcement schedule. λT 

is the asymptotic level of association, and v’T is the association at the start of the component. In 

most of the cases studied in this paper we are not concerned with acquisition or generalization, so 

the rate constants γSiβ are replaced with their reciprocal, the time constant τ (tau), tagged for 

target and other responses. The discriminative stimuli for the target response are typically 

distinctive, so we further assume that vT has closely approached its asymptote λT, noting in the 

text where that may not be the case.  

Blough’s associative values v correspond to the inverse of Davison and Nevin’s (1999) 

parameter dr which represents the indiscriminability of the relation between reinforcement and 

behavior. We interpret them as measures of response strength, and put their asymptotic value 

vT = λT − λT − #vT( )e−t /τT

vO = λO − λO − #vO( )e−t /τO
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proportional to the rate of reinforcement that they signal λ = A = ar (see, for example, Killeen & 

Bizo, 1998, Equation 1). Rewriting Equation A2: 

A t( ) = e−t /τAPrior + 1− e−t /τ( )arCurrent     (A3) 

A(t) is the response strength at time t, APrior is the strength just before the change-point, 

arCurrent = ACurrent is its current asymptotic value, and τ is the time constant of adjustment. These 

accounts are kept separately for target and other responses. It is assumed, however, that the target 

response quickly comes to its asymptotic value under good stimulus control, so that AT(t) = 

aTrCurrent. Equation A3 is flagged for competing responses, slower to come to asymptote, and sent 

forward as Equation 1 in the body of the text. It constitutes a the central term in MPR’s (Killeen, 

1994; Killeen & Sitomer, 2003) coupling coefficient.  

Whereas linear operator models such as A3 are typically used in our literature as learning 

models, they are general tools that capture the step response of the simplest, first order control 

systems. In particular, Equation A3 is of the same form as Newton’s law of cooling. Even in the 

current use they may be understood as describing a kind of learning, but it is a short-term learning 

about and adjustment to a new reinforcement context. This less-than-immediate effect of the past 

on current behavior in the present exemplifies hysteresis. 

 

Appendix B: From strength to rate 

From MPR (e.g., Killeen, 1994, Equation B7; 1998, Equation 8), in the absence of 

competing responses, response rate is: 

B = A
δ 1+ A( ) .

      (B1) 
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Multiplying Equation B1 by δ gives the proportion of a unit time interval occupied in a 

response class, such as the measured target responses.  

 p BT( ) = AT
1+ AT

     (B2) 

This assumes the absence of competing responses. To account for competition, MPR 

introduced the coupling coefficient. If that can be computed a priori, as for some schedules, it is 

denoted ζ; otherwise, it is inferred post hoc and denoted C. The coupling coefficient gives the 

association between the target response and reinforcement. It is the complement of the probability 

that competing behaviors will occur and be reinforced, 1 – p(BC). The probability of being 

engaged in the target response and not engaged in effective competing responses is: 

⌢p BT( ) = p BT( ) 1− p BC( )( )       (B3) 

Adding the factor C to Equation B2and expanding it gives: 

 

⌢p BT( ) = AT
1+ AT

C  

 

⌢p BT( ) = AT
1+ AT

1− p BC( )( )  

 

⌢p BT( ) = AT
1+ AT

1− AC
1+ AC

"

#
$

%

&
'       (B4) 

We may then predict response rate by scaling the net probability to the maximum attainable rate:   

BT = k
AT
1+ AT

1− AC
1+ AC

"

#
$

%

&
'

  ,
      (B5)   
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where k = 1/δ is the maximum response rate that can be made by that subject on that interface. 

Equation B5 is sent back to the text as Equation 2, where AC is expanded with the hysteresis 

model. 

Notice that if AC is constant the parenthetical of Equation B5 may be absorbed into k. Then 

rewrite Equation B4 as: 

BT = !k aT r
1+aT r  

      (B5) 

let ro = 1/aT, and Herrnstein’s hyperbola manifests: 

BT =
!k r

ro + r
 .
 

      (B6)  

A ratio of Equation B6 for two rates of reinforcement yields McLean and White’s (1983) 

key Equation 7 for multiple schedules: 

BA
BB

=
rA
rB
⋅
rB +1/ ro
rA +1/ ro

 .
 

     (B7)  

 

 

Appendix C: Fitting data 

All predictions were achieved by minimizing the sum of the squared deviation between 

model and data. Minimizing the sum of the absolute deviations is a more robust method that has 

much to recommend it, as none of the data were trimmed (Wilcox, 1998), but it was deemed 

prudent to use the more familiar cost function, the sum of errors squared. In Figures 1 and 2, the 

model was fitted to the time at the midpoints of the bins. In Figure 4, the bins were too large (3 
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min) to make that point representative, so predictions were made at 30 s intervals through the first 

3 min of the following schedule and averaged, and this was repeated for the second 3 min.  

A more powerful approach is to compute the average strength of competing responses to 

predict molar contrast. This is: 

AC = AC, Curr + AC, Prior − AC, Curr( ) tanh T
2τ
#

$
%

&

'
(
τ
T

     (C1) 

where ACurr = aCrCurrent, APrior = aCrPrior, tanh is the hyperbolic tangent function, and T is the 

duration of the components (Machado, 2014a). 

The average competing response strength may be used in place of the instantaneous strength 

AC in Equation 2 to predict molar response rate when both ALT and Focal components are of 

duration T. With this instantiation, Equation 2 gives the formal predictions for molar contrast, 

averaged over a whole interval, when that is due primarily to initial contrast. Note that for long 

components or fast time constants, the fraction τ/T becomes small, and the average strength of 

competing responses becomes approximately equal to the support for them in the current 

component, ACurr.  

The parameters k, aT, and aC are somewhat collinear: Increases in k will do some of the 

work of increases in aT, and increases in the latter may do some of the work of decreases in the 

last. Therefore the value of k was capped at its largest realistically possible value 300 responses 

per minute (sometimes at 240 per min if the former misrepresented the data), and aT at 500. The 

parameters in Tables 1 and 2 should therefore be understood as carrying substantial implicit error 

bars.  

To compute the strength of competing responses at the beginning of a component, one may 

simply iterate the model over 3 or 4 alterations of the components for Equation 1 to reach its 

stable values. Alternatively, when component durations are equal (Machado, 2014b): 
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AC(0)=waCrPrior + (1−w)aCrCurrent     (C2) 

with     w = 1+ e−T /τ( )−1  .     

At long component durations T (relative to the value of τ) w ! 1, and so competition is at 

its maximum (for prior rich components) or minimum (for prior lean components) value of 

AC(0) ≈ aCrPrior . 

At short component durations w ! 1/2, competition will reach an equilibrium equal to the 

average of that normally sustained by each component: the reinforcement rate sustaining 

competition is just a schmear of the two: AC(0) ≈ aC(rPrior + rCurrent ) / 2 . Concurrent schedules 

typically have short component durations, making AC approximately equal for each, so that the 

competition term cancels out of a relative measure, and Equation B7 becomes this model’s 

prediction of relative response rates on concurrents. 

 

                                                

i In keeping with tradition the temporal unit for VI schedules is minutes unless otherwise noted. 




