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Abstract

Activity of GFR/PI3K/AKT pathway inhibitors in glioblastoma clinical trials has not been robust. We hypothesized variations
in the pathway between tumors contribute to poor response. We clustered GBM based on AKT pathway genes and
discovered new subtypes then characterized their clinical and molecular features. There are at least 5 GBM AKT subtypes
having distinct DNA copy number alterations, enrichment in oncogenes and tumor suppressor genes and patterns of
expression for PI3K/AKT/mTOR signaling components. Gene Ontology terms indicate a different cell of origin or dominant
phenotype for each subgroup. Evidence suggests one subtype is very sensitive to BCNU or CCNU (median survival 5.8 vs. 1.5
years; BCNU/CCNU vs other treatments; respectively). AKT subtyping advances previous approaches by revealing additional
subgroups with unique clinical and molecular features. Evidence indicates it is a predictive marker for response to BCNU or
CCNU and PI3K/AKT/mTOR pathway inhibitors. We anticipate Akt subtyping may help stratify patients for clinical trials and
augment discovery of class-specific therapeutic targets.
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Introduction

WHO grade IV astrocytoma or glioblastoma (GBM) are the

most common primary brain tumors and, unfortunately, the most

aggressive. Median survival of patients harboring these tumors is

approximately 14 months. Despite a committed effort to

investigate new chemotherapies, molecularly targeted therapies,

immunotherapies, surgical and radiological approaches, there has

been little improvement over the last 30 years. Inadequate

classification of GBM may have contributed to the difficulty of

developing new therapies by decreasing power of clinical trials and

underestimating benefit of class-specific drugs. It may also have

confounded discovery of class-specific pathways and drug targets.

We know GBM diagnosed by histopathology is a collection of

molecular and clinical subtypes. For example, there are two classes

of GBM based on clinical presentation [1,2]. Primary GBM arise

de novo in older patients and are associated with poorer prognosis.

Secondary GBM are rare (,5-10% of total GBM), progress from

lower grade tumors, occur more frequently in younger patients

with better prognosis and have a different molecular profile.

Studies using gene expression, DNA copy number, miRNA, and

DNA methylation show these molecular characteristics can divide

GBM into subclasses, some with different clinical characteristics

[3,4,5,6,7,8,9]. Three subtypes emerged in early studies of WHO

grade IV GBM (studies that combine histological subtypes or

grades of glioma and use molecular classification to distinguish

them are excluded from this discussion). These were called

proneural (PN), Proliferative (PROLIF) and mesenchymal (MES)

and each had characteristic clinical and molecular features [4].

Later approaches find 3–5 GBM subtypes including the PN, MES

and Classical (CLAS) subgroups [8,9,10,11]. DNA methylation

identifies a subset of PN tumors with glioma CpG island

methylator phenotype (GCIMP) that are younger, longer surviving

and tightly associated with IDH1 mutations [8].

However, molecular classification of GBM is still in its infancy.

There is no consensus on the number of subtypes and which

classifiers best identify them. In addition, there is considerable

reassignment of tumors to different classes depending on classifier

used. We also have little information on which oncogenic

pathways are active in subtypes and how subtypes respond to

standard and experimental therapeutics. These questions need to
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be addressed before molecular classification can be reliably

incorporated into clinical trials and patient treatment.

Alterations in the growth factor receptor/phosphatidylinositol

3-kinase/AKT (GFR/PI3K/AKT) pathway occur in most human

cancers including at least 85% of GBM [10]. Pharmacological

inhibition of the GFR/PI3K/AKT pathway is a promising

strategy for anti-cancer therapy [12,13]. However, while sporadic

responses have been reported, clinical trials of pathway inhibitors

in GBM have been largely disappointing [14]. Analyzing

differences in pathway signaling among GBM subclasses may

clarify and improve development and testing of these agents.

The GFR/PI3K/AKT pathway is complex and nonlinear

having many inputs from other pathways [15,16,17], multiple sites

of feedback regulation [18,19], and a large number of downstream

effectors [20]. Signaling within a pathway may depend upon cell

state, history and environment. AKT is a key node in the pathway.

We hypothesized that AKT pathway variation between tumors

contributes to poor activity of inhibitors in clinical trials. We

developed a list of genes associated with the pathway and asked

whether their expression is sufficient to group GBM cases. Our

data show AKT based subtyping gives at least five GBM

subgroups with distinct molecular features and clinical courses.

The evidence indicates AKT subtyping predicts response to a

chemotherapy agent and GFR/PI3K/AKT pathway inhibitors.

Materials and Methods

Patient Information
The discovery dataset (GBM195) consisted of 181 GBM (WHO

grade IV astrocytoma; (159 primary and 22 recurrent) from 3

datasets [3,4,21] and 14 non-neoplastic samples from 2 sources: (1)

six samples from patients undergoing temporal lobe epilepsy

surgery [3] and (2) eight samples from autopsy specimens of

cerebral cortex from donors with no history of neurological

disorders obtained from the National Neurological Research Brain

Bank (Los Angeles, CA) [4]. Two datasets are in GEO (GSE 4271,

GSE4412) and the third has been submitted. Table S1 lists GEO

ID’s and clinical information for GBM195 tumors. Tissue

collection and processing, pathological review, and microarray

analysis for the discovery dataset (GBM195) has been described

elsewhere [3,4,21]. The validation dataset consisted of 583

samples; 573 GBM (16 recurrent and 3 secondary) and 10 non-

neoplastic samples from The Cancer Genome Atlas (TCGA).

Samples were collected and processed as described [5]. IRB or

Committee on Human Research approval was obtained for

samples used in the discovery and validation datasets as described

[3,4,10,21].

Processing and analysis of microarray data
The PI3K/AKT pathway integrates information on cellular

environment, energy status, stress and developmental stage to

regulate apoptosis, autophagy, translation, metabolism, stem cell

function and cell cycle [20,22]. This involves multiple sites of

crosstalk with other pathways. To capture the full function we

generated a gene list that includes upstream and downstream gene

products that directly or indirectly regulate or are regulated by

AKT. This includes: (1) proteins or members of protein complexes

that bind to, modify or regulate activity or subcellular localization

of AKT (2) proteins or members of protein complexes phosphor-

ylated or regulated by AKT, (3) proteins known to regulate or be

regulated directly or indirectly by AKT (e.g. AKT through

MDM2 regulates levels of TP53 protein). These genes were taken

from: (1) a database of AKT interacting proteins (BOND [23]), (2)

a database of AKT substrates (http://kinasource.co.uk/Database/

substrateList.php) (3) evidence from Pubmed of phosphorylation

by AKT (search term AKT, January 2008), (4) evidence from

Pubmed that a gene regulates or is regulated by AKT either

directly or indirectly (search term AKT, January 2008). Eliminat-

ing the genes with low variability across tumors within the

discovery dataset left the 69 most variable genes used to classify

AKT subgroups in the discovery dataset (Table S2). Five probes

were not present in the validation dataset resulting in 64 of 69

AKT pathway genes applied during validation (Table S2).

We isolated patient subgroups in the discovery dataset using

RMA normalized and median centered data [24]. We applied

consensus k-means clustering with the Pearson’s correlation

coefficient as the similarity (1-distance) and complete linkage with

10,000 iterations using a sub-sampling ratio of 0.8. We then

plotted the consensus distribution function (CDF) to find the

optimal number of AKT subgroups [25]. Silhouette width values

were computed for each sample [26] and only samples with a

positive silhouette width were used in further analyses.

We isolated AKT subgroups in the TCGA validation dataset

using raw data preprocessed as described for the discovery dataset.

TCGA samples were mapped onto AKT subgroups in the

discovery dataset by adapting the k means clustering algorithm.

First, we found boundaries for each AKT subgroup in the

discovery set by calculating the pairwise correlation coefficients

between all samples within a subgroup. The minimum pairwise

correlation coefficient was used as the lower boundary for each

subgroup. TCGA samples were classified by computing the

correlation coefficient between each TCGA and GBM195 sample.

TCGA samples were assigned to an AKT subgroup if the average

pairwise correlation coefficient with members of the group was

greater than the lower boundary of that group. Ties were resolved

by selecting the closest cluster.

Analysis of GO terms
Conventional Gene Ontology (GO) enrichment analysis was

dominated by generic GBM biological processes; therefore we

used a single-sample approach analogous to the method used by

Verhaak and Barbie [10]. To identify GO biological processes

enriched within each individual sample we applied the hypergeo-

metric test with Benjamini and Hochberg’s correction on all

expressed genes (using a two-fold change threshold from the

median to determine up- and down-regulated genes). Neurode-

velopmental terms enriched in . 20% of tumors were considered

for analysis.

Analysis of aCGH data
The GISTIC algorithm [27] was applied to the 456 TCGA

samples with copy number information and results visualized using

the Integrated Genomic Viewer (IGV) [28] to find copy number

alterations (CNA) in the validation set. Broad copy number

alterations in the discovery dataset were found as described

previously [29] using a customized version of the Sanger CNV

database [http://www.sanger.ac.uk/research/areas/humangenetics/

cnv/]. For experiments that compare broad CNA in the discovery and

validation dataset we identified broad copy number alterations in the

validation dataset as follows. Briefly, we found the average q value

(generated from the GISTIC algorithm) for 15 genes spaced evenly

across the region of interest. If . 50% of genes had a q value less than

expected by chance after correcting for multiple testing (q , 0.25), that

region was called as a copy number alteration.

Reverse Phase Protein Arrays
Level 3 (median centered, normalized, Z transformed) reverse

phase protein array (RPPA) data was downloaded from the cBio
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Cancer Genomics Portal (http://www.cbioportal.org/public-

portal/). One hundred and eighty six of the 215 tumors with

RPPA data could be assigned to an AKT class and were used for

analysis. Correlation coefficients between two antibodies against

the same protein were high indicating adequate antibody

specificity and pre-processing of data (Pearson correlation

coefficient = 0.83–0.98 for antibody pairs (GSK3A/B pS9/21,

MAPK1, FOXO3, GATA3, S338 p-RAF1).

Statistics
Differences between one subgroup and the rest were assessed

using the F test for clinical variables and the likelihood ratio test for

categorical variables. The Bonferroni method [30] was applied to

correct for multiple hypotheses. We applied the Tukey HSD test to

find pairwise differences between groups and correct for multiple

comparisons [31]. Survival differences between subgroups were

assessed using the Chi-squared test. Age was added to build a

multivariate Cox model. For survival comparisons of BCNU/

CCNU treatment between subgroups there were not enough

observations to correct for age. After deleting all observations

younger than 45, survival was no longer related to age.

Significance was then determined using log rank. The Pearson

goodness-of-fit test was used to assess the null hypothesis that

proportions of G-CIMP tumors by subgroup and recurrent tumors

by subgroup are equal to the proportions for all tumors by

subgroup. P-values for these tests were calculated by Monte Carlo

simulation since the counts of tumors by subgroup were too small

to apply the large sample chi-square approximation. If the null

hypothesis was rejected, then standardized residuals were used to

determine which subgroups showed significant differences.

Figure 1. AKT pathway gene expression classifies GBM. (A) Consensus heat maps for k = 5 to 8 generated with AKT pathway genes in the
discovery dataset (GBM195). Red indicates total consensus (consensus index of 1) while white indicates no consensus (consensus index of 0). (B)
Silhouette scores for k = 5 to 8 were calculated as described [26]. Samples with negative silhouette scores were removed in all further analysis. (C)
Consensus CDF for k = 2 to 10. (D) Effect of k on survival differences between subgroups. Kaplan Meier curves of patient subgroups were generated for k
= 2 to 10. For each k, Bonferroni corrected log rank p values were generated by pairwise comparison of subtypes. The smallest pairwise p value for
each k is plotted.
doi:10.1371/journal.pone.0100827.g001
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Results

AKT pathway gene expression divides GBM into at least
six subgroups

We investigated AKT pathway variations in GBM by develop-

ing a list of AKT pathway genes (Table S2) then applying

consensus clustering for the number of clusters k = 2 to 10 (Figure

S1; figure 1A shows results for k = 5 to 8). We evaluated cluster

stability using the consensus cumulative distribution function

(CDF) plot of the consensus index (figure 1C) [25]. Cluster stability

increased for k = 2 to 6 but not appreciably for k . 6 (figure 1C);

suggesting six is the optimum number of GBM AKT subgroups.

Silhouette width values were computed for each sample [26]

(figure 1B) and samples with a positive silhouette width were

selected for further analyses.

We aim to have a classification system where clinical differences

are maximized. Here, we investigated how survival of patient

subgroups varies with k. Figure 1D plots the corrected p value

between the longest and shortest surviving subgroups for each k. p

values were low for k = 3 and 6; k = 6 was the lowest (figure 1D).

This supports the CDF results selecting 6 clusters. The 6 consensus

k-means subgroups were named cluster 1 (C1), proneural (PN),

mesenchymal (MES), classical (CLAS), secondary-like (SL) and

proliferative (PROLIF) based on their molecular and clinical

features and prior naming [4,32].

Validation of AKT subgroups in an independent dataset
We next validated AKT subgroups in an independent dataset of

non-overlapping samples. TCGA samples were mapped onto

discovery AKT subgroups by assigning a sample to the closest Akt

subtype, as described in the methods section. Only two samples

were assigned to AKT subgroup C1, therefore this subgroup was

dropped from all further analysis. Figure 2 compares AKT

pathway gene expression in the discovery (figure 2A) and

validation (figure 2B) sets. It shows the pattern of expression of

AKT pathway genes within subgroups is similar in both datasets.

Interestingly, the PN subgroup in both datasets contained all non-

neoplastic samples (not shown). We examined expression of AKT

pathway genes in subgroups (Figure S2). These data show AKT

classes arise from complex patterns of gene expression in

subgroups. It did not point to a role for a specific part of the

AKT pathway within any subgroup.

Figure 2. Validation of AKT subgroups in an independent dataset. AKT pathway genes in discovery (A) and validation (B) datasets have similar
patterns of expression in subgroups. Tumors in the discovery and validation set were first grouped by AKT subgroup membership then ordered by
correlation coefficient. AKT gene order in the discovery set was determined by one-way hierarchical clustering and retained in the validation set.
Discovery (C) and validation (D) datasets have similar DNA CNA. The percentage of patients in the discovery (A) and validation (B) datasets with copy
number gains or losses in chr7, 10 and 19q is shown.
doi:10.1371/journal.pone.0100827.g002
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We next investigated correspondence between copy number

alterations (CNA) in AKT subgroups from discovery (figure 2C)

and validation (figure 2D) datasets. The PN subgroup was omitted

since it had no CNA information in the discovery dataset. CNA

within subgroups were similar in the discovery and validation

datasets: a high percentage of tumors with 7gain/10 loss occurred

in every subgroup except SL, the SL subgroup had greater

frequency of 19q loss and the CLAS subgroup had increased gain

of chr19q relative to the rest. Therefore all subgroup-associated

trends in CNA within the discovery dataset were recapitulated in

the validation dataset.

TCGA, Phillips and G-CIMP subgroups distribute non-
randomly in AKT subgroups

Phillips, TCGA and G-CIMP subgroups distributed non-

randomly in AKT subgroups (Figure 3A, B and C; Tables S3

and S4). There was a tendency for AKT subtyping to split each

Phillips subgroup in two. The AKT PN and SL subtypes were

significantly enriched in the Phillips PN subtype (Figure 3A, Table

S3; p , 0.5 Bonferroni corrected). The AKT MES and CLAS

subtypes were significantly enriched in Phillips MES subtype

(figure 3A, Table S3, p , 0.5; Bonferroni corrected). The AKT

PROLIF subtype was significantly enriched in the Phillips

PROLIF subtype (Figure 3A, Table S3; p , 0.5; Bonferroni

corrected). The enrichment of Phillips PROLIF tumors in AKT

C1 subtype did not reach significance. AKT subgroups had less

concordance with TCGA subgroups [10]. AKT SL and PROLIF

subtypes were significantly enriched in TCGA PN subtype; while

AKT MES and CL subgroups were enriched in the TCGA MES

and CL subtype, respectively (Figure 3B, Table S4; p , 0.5;

Bonferroni corrected). The AKT PN subtype was a mixture of all

the TCGA subgroups. The AKT SL and PROLIF subgroups

contained the majority of G-CIMP tumors (figure 3C). Taken

together these data show AKT classification divides existing

subgroups further.

Patients in the SL subgroup are younger and have longer
survival

AKT subgroups have different clinical characteristics (figure 4B

and D; Table S3 and S4). SL patients in the discovery dataset had

longer median survival (3.9 vs. 1.05 yrs.; p = 0.0005; figure 4b;

SL vs. the rest) and were younger (median age = 38 vs. 49; SL vs.

total; p = 0.05 using Tukey HSD test to correct for multiple

comparisons; Table S3). After adjusting for age in Cox multivar-

iate analysis, SL status remained a significant predictor of survival

(p = 0.027; SL vs. the rest). The PROLIF subgroup had

statistically significant shorter survival than the rest (0.75 vs.

1.25 yrs.; p = 0.0029; figure 4B) although age of these patients

was not different than all patients (median age = 49 vs. 49 years;

PROLIF vs. total; Table S3). Although the magnitude was

diminished, a similar trend was observed for SL patients in the

validation dataset for survival (1.67 vs. 1.1 yrs.; p = .003 SL vs.

rest; figure 4D) and age (median age = 49 vs. 59 yrs.; p = .07; SL

vs. total, Table S4) although the age difference was not statistically

significant. In comparison, patient subgroups defined using Phillips

(figure 4A) and TCGA (figure 4C) methods using the same

database have no statistically significant differences in survival.

Consistent with the less aggressive character of SL tumors, there

was a trend toward decreased endothelial proliferation (46% vs.

66%; p = 0.017 vs. rest; uncorrected), and palisading necrosis

(10% vs. 51%; p = 0.07 vs. rest; uncorrected) in the validation

dataset (Table S4). There were similar trends in the discovery set

although they also did not reach significance (Table S3). Taken

together these data show subgroups in the discovery and validation

datasets have similar clinical features. It also shows AKT subtypes

have distinct clinical characteristics.

Evidence AKT subtyping is a predictive marker for
sensitivity to BCNU/CCNU

Survival differences between subgroups suggest AKT subtypes

are either prognostic or predictive (forecasts tumor aggressiveness

or response to therapy, respectively). Since AKT influences

response to chemotherapy [33], we hypothesize AKT subgroups

are predictive markers. Indeed, TCGA SL patients treated with

BCNU or CCNU had longer median survival than those receiving

other treatments (figure 5; median survival = 5.8 vs. 1.05 years; p

= 0.03 after correcting for age; log rank). Those receiving BCNU

or CCNU were older and had less IDH1 mutations than those that

didn’t (median age = 54 vs. 49 years; % with IDH1 mutations =

Figure 3. Previous classification systems distribute non-
randomly in AKT subgroups. Distribution of Phillips (A), TCGA (B)
and G-CIMP (C) subgroups in AKT subgroups.
doi:10.1371/journal.pone.0100827.g003
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17% vs. 32%; with vs. without BCNU/CCNU respectively);

indicating age and IDH1 mutation status do not account their

increased survival. This finding indicates patients in the SL

subgroup are sensitive to BCNU and CCNU.

Subgroups have distinct genomic alterations
We used TCGA data to investigate how molecular alterations

partition in subgroups. All subgroups had unique broad (figure 6A;

Figure S3) and/or focal (Table S6 and S7) DNA CNA. The CLAS

subtype was enriched in broad CNA previously associated with

more aggressive tumors such as loss of chromosome regions 6q

and gain of 19q and 20q [34](figure 6A). The SL subtype was

enriched in broad CNA associated with better prognosis (loss of

19q; figure 6A) [34]. Each subgroup had unique focal CNA (Table

S6 and S7). This data shows AKT subtyping groups tumors with

similar molecular characteristics.

An integrated analysis of mutations, CNA and mRNA

expression in glioma-associated genes shows some AKT subgroups

had similar features as TCGA subgroups (figure 6B). The AKT

CLAS subgroup was significantly enriched in alterations in EGFR

and CDKN2A similar to TCGA CLAS subgroup [10]. The AKT

MES subtype was characterized by mutations in NF1 and RB1

and increased mRNA for the mesenchymal marker, MET, similar

to the TCGA MES subgroup [10], although these did not reach

statistical significance. The SL subtype was enriched in IDH1

mutations (42% vs 3% SL vs. rest) and GCIMP (47% vs. 4%; SL

vs. rest) although only the enrichment in IDH1 mutant tumors was

significant. The PROLIF subtype was also slightly enriched in

IDH1 mutations (11%) in this dataset containing 218 validated

samples. However that dropped to 7% when considering all

TCGA tumors with IDH1 mutation information (not shown).

Both the SL and PROLIF subgroups were also enriched in

alterations found more frequently in secondary tumors including

TP53 mutations and increased mRNA and CN gains for

PDGFRA. The PROLIF was distinguished from SL subtype by

an increase in mutations and copy number alterations in EGFR

and CDKN2A (figure 6B) and enrichment in recurrent tumors

(18% vs 8%; PROLIF vs rest; Table S4). Genomic alterations in

other RTK/RAS/PI3K/AKT pathway members were either not

significantly enriched in any subgroup (PTEN, PIK3R1, MET,

SPRY2; figure 6B) or the frequency was too low to evaluate

(ERBB2, KRAS, NRAS, HRAS, PIK3CA, FOXO1, FOXO3,

AKT1, AKT2, AKT3; not shown); although MET mRNA was

enriched and SPRY2 mRNA was low in the MES and CLAS

subtypes, respectively (figure 6B). Taken together these data

suggest involvement of oncogenic and tumor suppressor pathways

can differ between subgroups.

Subgroups have distinct patterns of expression for PI3K/
AKT/mTOR components

We find subgroups have distinct patterns of expression of

mRNA (figure 7A), protein and phospho-proteins (figure 7B) for

Figure 4. AKT subgroups are prognostic. Kaplan Meier survival curves plotted for Phillips (A) and AKT (B) subgroups in the discovery dataset and
for TCGA (C) and AKT (D) subgroups in the validation dataset. Log rank p value = 0.0005 (B; SL vs. rest); 0.0029 (B; PROLIF vs. rest) and 0.003 (D; SL vs
rest). Survival differences did not reach significance in (A) and (C).
doi:10.1371/journal.pone.0100827.g004
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PI3K/AKT/mTOR pathway components. The most notable

patterns were in the MES and SL subgroups. The MES subtype

had decreased expression for inhibitors of mTOR, AKT and PI3K

(TSC2 and p-AMPK protein; TSC1, TSC2, PHLPP1, PHLPP2

and PI3KR1 message). Consistent with increased activity of the

AKT/mTOR/S6 axis, this subgroup also had elevated p-S6

(figure 7B) and a high positive correlation between p-AKT and p-

S6 (figure 7C). The long surviving SL subgroup had the opposite

pattern of expression; high expression of AKT and mTOR

inhibitors (figure 7A and B), decreased expression of pS6 (figure 7B)

and lower correlation between pAKT and pS6 (figure 7C). Our

proposed pathway map for the MES and SL subgroups (7D) based

on this data posits how expression of pathway inhibitors affects

output of the AKT/mTOR/S6 axis. This data indicates

subgroups will have different sensitivities to pathway inhibitors.

GO terms suggest subgroups have a different dominant
biological process and cell of origin

We used Gene Ontology (GO) to investigate the biological role

of genes expressed in tumors and how terms partition in

subgroups. Each subgroup, except CLAS, had a high percentage

of tumors with functionally related terms that suggested a different

dominate biological process (Table S5). The CLAS subgroup had

a mixture of terms. Each subgroup also had GO terms associated

with neurodevelopment (Table S5; highlighted dark grey; sum-

marized in figure 8B). The PN and CLAS subgroups had only

terms associated with neurogenesis suggesting a committed neural

precursor cell of origin. The MES, SL and PROLIF subgroups

had terms associated with both neuro- and glio-genesis suggesting

a stem cell or early uncommitted progenitor cell of origin. These

data suggest the cell of origin and dominant biological process can

differ in subgroups.

Discussion

The major finding is that AKT pathway genes classify GBM

into at least five patient subgroups with unique clinical and

molecular characteristics. The results were validated in an

independent dataset of non-overlapping samples, suggesting

AKT classes reflect underlying structure in the data and do not

arise from chance or technical artifacts such as batch effects and

patient sampling. Taken together these data add to previous results

suggesting histopathologically diagnosed GBM is a collection of

molecular subgroups with fundamental differences in biology and

clinical behavior. This approach advances classification of GBM

by splitting out groups not previously identified by other

approaches and expands our understanding of molecular aberra-

tions underlying subgroups.

We interpret with caution the finding that SL patients treated

with BCNU or CCNU have appreciably longer survival than SL

patients receiving other treatments (median survival 5.8 vs. 1.05

years respectively). Inhomogeneity between the cohorts (including

treatment protocols and institution providing tumor) could impact

survival. However, age and IDH1 mutation status clearly do not

contribute since patients in the longer surviving cohort were older

and had less IDH1 mutations. If validated these results suggest

AKT classification is a predictive marker that identifies a subset of

GBM patients with sensitivity to BCNU/CCNU. Interestingly,

there is a subset of anaplastic oligodendroglial tumors character-

Figure 5. Evidence that SL patients are sensitive to BCNU and
CCNU. Kaplan Meier survival curves for TCGA patients receiving (solid
line) or not receiving (dashed line) alkylating agent (BCNU and/or

CCNU) by subgroup. p = 0.03 after correcting for age (SL subtype; log
rank). n = 6 and 16 for SL patients receiving or not receiving BCNU/
CCNU, respectively.
doi:10.1371/journal.pone.0100827.g005
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ized by 1p19q loss of heterozygosity (LOH) and IDH1 mutations

that significantly benefits from procarbazine, CCNU, and

vincristine (PCV) chemotherapy [35]. This anaplastic oligoden-

droglial subtype shares similarities to the AKT SL subgroup (19q

loss and IDH1 mutant tumors).

Mutations in IDH1 are a common and early event in low grade

glioma, they are present in secondary GBM [36,37,38] and may

cause the G-CIMP phenotype [36,37,38,39]. One third of SL

tumors have IDH1 mutations and CIMP. This subgroup also has

other molecular similarities to secondary tumors (enriched for

genomic alterations in TP53 and PDGFRA), longer survival and a

tendency for less endothelial proliferation and pallisading necrosis

(Tables S3 and S4). These data suggest tumors in the SL subtype

are grade IV secondary tumors or borderline grade III/IV

secondary tumors progressing to GBM. If this is true then genomic

alterations associated with the SL subtype might be used as

markers of progression for grade II/III secondary tumors. These

results also indicate there is a population of GBM without IDH1

mutations that share clinical characteristics and a similar pattern

of AKT pathway gene expression with the IDH1 mutant tumors.

This suggests other paths beside IDH1 mutation give rise to the

IDH1 mutant/CIMP phenotype.

We found distinct patterns of expression for PI3K/AKT/

mTOR components in subgroups. Our results suggest gene

products that inhibit AKT and mTOR are important regulators

of PI3K/AKT/mTOR/S6 axis output. In our model the loss of

AKT and mTOR inhibitors (PHLPP, TSC and pAMPK)

increases output of the AKT/mTOR/S6 axis in the MES

subgroup. Conversely, increased expression of these inhibitors

decreases output in the SL subgroup. In an apparent paradox, p-

AKT expression is low in the MES subgroup. We suggest AKT

phosphorylation is held in check in the MES subgroup by (1)

heightened activity of an mTOR/S6K/IRS1 negative feedback

loop [40,41,42,43] and (2) low TSC1 and 2 expression that

decreases mTORC2 activation and AKT phosphorylation

[42,44]. Our model suggests the MES subtype will be sensitive

to joint inhibition of mTOR and PI3K, but inhibition of mTOR

alone will increase p-AKT. Interestingly, NF1 loss drives mTOR/

S6 hyper-activation via AKT [45,46,47] and the MES subtype is

enriched for NF1 loss. These data suggest subgroups have

variations in AKT pathway signaling that will affect sensitivity to

pathway inhibitors.

How do these results compare with other approaches that use

mRNA to classify GBM? AKT classification is complementary to

previous classification methods but divides GBM into more

subgroups. It gives patient subgroups with statistically significant

differences in survival while Phillips [4] or TCGA [10] methods do

not when using the same database. The performance of the

validation dataset is typically not as robust as the discovery dataset

[48] and this may contribute to our inability to replicate survival

differences seen by Phillips et.al. [4]. Interestingly, there was

higher concordance between AKT classification and classification

Figure 6. AKT subgroups have distinct genomic alterations. (A) Copy number alterations in TCGA AKT subgroups. The GISTIC method was
applied to TCGA samples in each subgroup with copy number information. Data are presented as a G score which is an integrated score of the
prevalence of the copy-number change times the average (log2-transformed) amplitude. The green line shows significance threshold (FDR q values
to account for multiple-hypothesis testing). Regions with subgroup-specific CNA are highlighted in yellow. (B) Distribution of clinical information and
mutations, CNA and mRNA expression for glioma-associated genes in AKT subgroups. The 218 TCGA GBM cases with gene expression, consensus
putative copy number alteration and validated mutation data [55,56] was used for this analysis (The cBio Cancer Genomics Portal; http://www.
cbioportal.org/). Gene expression is represented as z scores calculated relative to diploid tumors for each gene and are the median value of 3 mRNA
platforms (Affymetrix U133A and Exon arrays and Agilent custom array). There was a statistically significant enrichment of IDH1 mutations in the SL
and EGFR and CDKN2A mutations plus CNA in the CLAS subtype (p , 0.02).
doi:10.1371/journal.pone.0100827.g006
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based on survival-associated mRNA used by Phillips et. al. [4]

than most variable mRNA used by Verhaak et. al.[10]. We suggest

classification schemes based on mRNA relevant to tumorigenicity,

like survival-associated and AKT pathway genes, are more

effective at partitioning tumors into clinically and molecularly

relevant groups.

Survival differences found in the discovery dataset were

diminished in the validation dataset. Inhomogeneity’s between

datasets that could confound comparisons including (1) age

(median age = 49 yrs. in discovery vs. 59 yrs. in validation

dataset), (2) patient populations (three institutions contributed

tumors to the discovery and eighteen to the validation dataset), (3)

treatment (there were large variations in treatment regimens in the

validation dataset). In addition, performance of the validation

dataset is typically not as robust as the discovery dataset [48].

One AKT subgroup was not found in the validation dataset

(C1). We know morphological heterogeneity can result in

inconsistent intra- and inter-observer diagnosis of grade and

histological type (astrocytoma, oligodendroglioma and mixed

oligoastrocytoma) [48,49,50]. Therefore C1 may be a histological

variant diagnosed as GBM and included in the discovery, but not

the validation dataset.

Figure 7. Subgroups have distinct patterns of expression for PI3K/AKT/mTOR pathway components. Tumors (x axis) were grouped by
AKT class then Z transformed mRNA (A) or protein and phospho-protein expression (B) color coded to reflect magnitude (y axis). The Pearson
correlation coefficient for AKT pS473 vs. RPS6 pS235/236 (light gray) and AKT pS473 vs. RPS6 pS240/244 (dark gray) for each subgroup is shown (C).
Proposed AKT/mTOR/S6 pathway map for the MES and SL subtypes based on this data (D). This model shows loss of AKT and mTOR inhibitors
(PHLPP, TSC and pAMPK) increases output of the AKT/mTOR/S6 axis (pRPS6) in the MES subgroup. Conversely, increased expression of these
inhibitors decreases output in the SL subgroup. Red, grey and green represent high, intermediate and low expression/activity, respectively.
doi:10.1371/journal.pone.0100827.g007
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GO term analysis suggests different cells of origin/dominant

biological processes for each subgroup (summarized in figure 8A

and B). The younger, longer surviving, SL patient subgroup with

molecular similarities to secondary GBM had terms associated

with both neuro- and glio-genesis suggesting a NSC cell of origin.

Indeed, the longer survival of these patients is consistent with the

quiescent nature of NSC. PROLIF tumors also contained neuro-

and glio-genesis terms in addition to terms related to mitosis,

spindle formation and cell cycle checkpoint. Literature suggests the

balance between symmetric and asymmetric cell divisions regu-

lates NSC [51] which is influenced by proteins with a role in

spindle formation and mitotic progression [52]. Based on this and

their aggressive nature we propose PROLIF tumors are derived

from NSC with enforced symmetric cell divisions that rapidly

expand the population (figure 8B). The ability of AKT classifica-

tion to group tumors by cell of origin would suggest a major role

for the PI3K/AKT pathway in neurodevelopment. This is

consistent with reports showing a role for pathway members in

NSC maintenance [53,54].

We suggest AKT-based classification will augment drug

development on many levels. This work indicates evaluating new

drugs using all GBM patients combined with different natural

courses and/or response to therapy can confound clinical trials. It

suggests incorporating AKT classification will improve clinical

trial design, decreasing their cost and maximizing the number of

therapeutics that can be evaluated. In addition, AKT based

classification may enhance drug discovery since new pathways and

drug targets will be easier to find in molecularly homogeneous

samples. We propose that robust molecular classification of GBM

could ultimately improve patient care by guiding therapeutic

planning, sparing patients ineffective treatments, both standard

and experimental, and focusing on strategies more likely to work.

Supporting Information

Figure S1 Consensus k-means heat maps for k = 2 to 10
generated with AKT pathway genes in the discovery
dataset (GBM195). Red indicates total consensus (consensus

index of 1) while white indicates no consensus (consensus index of

0).

(TIF)

Figure S2 Average expression of AKT pathway genes in
subgroups. Hierarchical clustering using AKT pathway genes

was used to group GBM patients and genes in the discovery (GBM

195) dataset. Tumors in the validation dataset were grouped by

AKT class keeping the same order of genes. The expression of

AKT pathway genes in each class was averaged and is shown as a

heatmap; red and green is high and low expression respectively.

(TIF)

Figure S3 Log2 (tumor/normal) DNA copy number in
subgroups. Amplifications (red) and deletions (blue) in sub-

groups (y axis) were determined by segmentation analysis of

normalized signal intensities from TCGA SNP arrays using

GISTIC and viewed with IGV by chromosomal location (x axis).

(TIF)

Table S1 Clinical information for tumors in GBM195.

(XLSX)

Figure 8. Summary of features in AKT subtypes. Clinical and molecular features of AKT subgroups are summarized in (A). Illustration of
proposed neurodevelopmental cell of origin for AKT subgroups based on GO terms (B). ND = not determined.
doi:10.1371/journal.pone.0100827.g008
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Table S2 AKT pathway gene classifiers used for the
discovery and validation datasets.
(XLSX)

Table S3 Distribution of clinical and molecular infor-
mation by subgroup in the discovery dataset (GBM195).
The table lists the number of tumors with the specified feature in

each subgroup in the discovery dataset. Features with statistically

significant enrichment in a subgroup after Bonferroni correction (p

, 0.05) are highlighted.

(XLSX)

Table S4 Distribution of clinical and molecular infor-
mation by subgroup in the validation dataset (TCGA).
The table lists the number of tumors with the specified feature in

each subgroup in the validation dataset. Features with statistically

significant enrichment in a subgroup after Bonferroni correction (p

, 0.05) are highlighted in dark grey. Features with statistically

significant enrichment in a subgroup before Bonferroni correction

are highlighted in light grey.

(XLSX)

Table S5 GO term analysis of genes differentially
expressed in subgroups. The % of individual tumors within

a subgroup that are enriched for a specific GO term is shown,

ordered by decreasing representation. GO terms enriched in $

40% of tumors are highlighted light grey. Neurodevelopmental

terms are highlighted with dark grey.

(XLSX)

Table S6 Focal DNA amplifications in subgroups. Copy

number alterations in subgroups were evaluated using GISTIC

and the q score for statistically significant focal DNA copy number

gains (q score , 0.25) listed. Focal copy number changes common

to all subgroups (q , 0.25 in all subgroups) are not reported.

(XLSX)

Table S7 Focal DNA deletions in subgroups. Copy

number alterations in subgroups were evaluated using GISTIC

and the q score for statistically significant focal DNA copy number

losses (q score , 0.25) are listed. Focal copy number changes

common to all subgroups (q , 0.25 in all subgroups) are not

reported.

(XLSX)
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