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Abstract. We review a general class of models for self-organized dynamics based on alignment. The
dynamics of such systems is governed solely by interactions among individuals or “agents,”
with the tendency to adjust to their “environmental averages.” This, in turn, leads to the
formation of clusters, e.g., colonies of ants, flocks of birds, parties of people, rendezvous
in mobile networks, etc. A natural question which arises in this context is to ask when
and how clusters emerge through the self-alignment of agents, and what types of “rules
of engagement” influence the formation of such clusters. Of particular interest to us are
cases in which the self-organized behavior tends to concentrate into one cluster, reflecting
a consensus of opinions, flocking of birds, fish, or cells, rendezvous of mobile agents, and,
in general, concentration of other traits intrinsic to the dynamics.

Many standard models for self-organized dynamics in social, biological, and physical
sciences assume that the intensity of alignment increases as agents get closer, reflecting
a common tendency to align with those who think or act alike. Moreover, “similarity
breeds connection” reflects our intuition that increasing the intensity of alignment as the
difference of positions decreases is more likely to lead to a consensus. We argue here that
the converse is true: when the dynamics is driven by local interactions, it is more likely
to approach a consensus when the interactions among agents increase as a function of
their difference in position. Heterophily, the tendency to bond more with those who are
different rather than with those who are similar, plays a decisive role in the process of
clustering. We point out that the number of clusters in heterophilious dynamics decreases
as the heterophily dependence among agents increases. In particular, sufficiently strong
heterophilious interactions enhance consensus.
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1. Introduction. Nature and human societies offer many examples of self-organ-
ized behavior. Ants form colonies to coordinate the construction of a new nest,
birds form flocks which fly in the same direction, mobile networks are sought to
form a coordinated rendezvous, and human crowds form parties to reach a consensus
when choosing a leader. The self-organized aspect of such systems is their dynamics,
governed solely by interactions among its individuals or “agents,” which tend to cluster
into colonies, flocks, parties, etc. A natural question which arises in this context is to
ask when and how clusters emerge through the self-interactions of agents, and what
types of “rules of engagement” influence the formation of such clusters. Of particular
interest to us are cases in which the self-organized behavior tends to concentrate
into one cluster, reflecting a consensus of opinions, flocking of birds, fish, or cells,
rendezvous of mobile networks, and, in general, concentration around other positions
intrinsic to the self-organized dynamics. Generically, we will refer to this process as
concentration around an emerging consensus.

Many models have been introduced to appraise the emergence of consensus. Rep-
resentative examples can be found in [12, 34, 36, 49, 63, 88, 107, 112], and we refer the
reader to a more comprehensive list of references surveyed in section 9. The starting
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point for our discussion is a general framework which embeds several types of models
describing self-organized dynamics. We consider the evolution of N agents, each of
which is identified by its “position” pi(t) ∈ R

d. The position pi(t) may account for
opinion, velocity, or other attributes of agent “i” at time t. Each agent adjusts its
position according to the position of its neighbors:

(1.1)
d

dt
pi = α

∑
j �=i

aij(pj − pi), aij ≥ 0.

This provides a rather general description for processes of alignment. Here, α > 0 is a
scaling parameter and the coefficients aij quantify the strength of influence between
agents i and j: the larger aij is, the more weight is given to agent j to align itself
with agent i, based on the difference of their positions pi − pj . The underlying
fundamental assumption here is that agents react not to the positions of others, but
to their differences relative to other agents. In particular, the aij ’s themselves are
allowed to depend on the relative differences pi − pj . Indeed, we consider nonlinear
models (1.1) where

aij = aij(P(t)), P(t) := {pk(t)}k.
We emphasize the nonlinear aspect of the alignment models (1.1): the intricate aspect
of such models is the nonlinear dependence of the influence matrix on the dynamics,
aij = aij(P(t)). We ignore two other important processes involved in self-organized
dynamics as advocated in the pioneering work of Reynolds [93], namely, the short-
range repulsion (or avoidance) and the long-range cohesion (or attraction), and we
refer to recent works driven by the balance of these two processes such as [8, 47, 50,
79, 84, 104]. Our purpose here is to shed light on the role of mid-range alignment,
which covers the important zone “trapped” between the short-range attraction and
long-range repulsion.

We distinguish between two main classes of self-alignment models. In the global
case, the rules of engagement are such that every agent is influenced by every other
agent, aij > η > 0. The dynamics in this case is driven by global interactions.
We have a fairly good understanding of the large time dynamics of such models; an
incomplete list of recent works in this direction includes [11, 17, 36, 44, 60, 61, 63, 69,
75, 88] and the references therein. Global interactions which are sufficiently strong
lead to unconditional consensus in the sense that all initial configurations of agents
concentrate around an emerging limit state, the “consensus” p∞,

pi(t)
t→∞−→ p∞.

Section 2 contains an overview of the concentration dynamics in such global models
from the perspective of the general framework of (1.1).

In more realistic models, however, interactions between agents are limited to their
local neighbors [1, 4, 35, 71, 93]. The behavior of local models, where some of the aij
may vanish, requires a more intricate analysis. In the general scenario for such local
models, discussed in section 3, agents tend to concentrate into one or more separate
clusters. The particular case in which agents concentrate into one cluster, that is, the
emergence of a consensus or a flock, depends on the propagation of uniform connec-
tivity of the underlying (weighted) graph associated with the adjacency matrix, {aij}.
This issue is explored in section 4, where we show that connectivity implies consen-
sus. Thus, the question of consensus for local models is turned into the question of
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persistence of connectivity over time. Note that even if the initial configuration is
assumed connected, then there is still a possibility of losing connectivity as the aij ’s
may vary in time together with the positions P(t). The open question of tracing the
propagation of connectivity in time for the general class of local models (1.1) plays an
important role in many applications, beyond the implication of emerging consensus.
As an example we mention engineering applications to sensor-based networks, from
automatic traffic control and wireless communication to production systems and mo-
bile robot networks, as seen, e.g., in [64, 71, 89, 91, 94, 113, 112] and the references
therein.

Many standard models for self-organized dynamics in social, biological, and phys-
ical sciences assume that the dependence of aij decreases as a function of |pi − pj |,
where | · | is a problem-dependent proper metric to measure a difference of posi-
tions, opinions, etc. The statement that “birds of a feather flock together” reflects a
common tendency to align with those who think or act alike [69, 77, 83]. Moreover,
“similarity breeds connection” reflects the intuitive scenarios in which the influence
coefficients aij increase as the difference of positions |pi−pj| decreases: the more the
aij ’s increase, the more likely this will lead to a consensus. However, we argue here
that the converse is true: for a self-organized dynamics driven by local interactions, it
is more likely to approach a consensus when the interaction among agents increases
as a function of their difference |pi − pj |. Heterophily, the tendency to bond, more
with the different rather than with those who are similar, plays a decisive role in
the clustering of (1.1). The consensus in heterophilious dynamics is explored in the
second part of the paper in terms of local interactions of the form aij = φ(|pi − pj |),
where φ(·) is a compactly supported influence function which is increasing over its
support. In section 5 we report on our extensive numerical simulations which con-
firm the counterintuitive phenomenon in which the number of clusters decreases as
the heterophilious dependence increases; in particular, if φ is increasing fast enough,
then the corresponding dynamics concentrate into one cluster, that is, heterophilious
dynamics enhances consensus. We mention in passing the scenario of “extreme het-
erophily” advocated in [71, 113, 112], where distributed coordination is governed by
a local influence function φ(·) which grows to infinity as it approaches the right edge
of its support, in order to create an energy barrier which enforces connectivity and
hence consensus. We are not unaware that this phenomenon of enhanced consensus in
the presence of heterophilious interactions may have intriguing consequences in areas
other than social networks, e.g., global bonding in atomic scales, avoiding materials’
fractures in mesoscopic scales, or “cloud” formations in macroscopic scales.

In the rest of the paper, we address a few important extensions of the self-
alignment models outlined above. These extensions are still a work in progress and we
by no means try to be comprehensive. In section 6 we turn our attention to nearest
neighbor dynamics. Careful 3D observations made by the StarFlag project [26, 25, 24]
showed that interactions of birds are driven by topological neighborhoods, involving
a fixed number of nearby birds, instead of geometric neighborhoods involving a fixed
radius of interaction. Here we prove that in the simplest case of two nearest neigh-
bor dynamics, connectivity propagates in time and consensus follows for influence
functions which are nondecreasing on their compact support. In section 7 we turn
our attention to fully discrete models for self-alignment. The large time evolution
in discrete time-steps, e.g., the opinion of dynamics in [11, 12, 75], may depend on
the time-step Δt. Here, we show that the semidiscrete framework for global and
local self-alignment outlined in sections 2–5 can be extended, mutatis mutandis, to
the fully discrete case. In particular, we recover a decreasing Lyapunov functional, a
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fully discrete analogue of the semidiscrete clustering analysis in section 4.2. Finally,
in section 8 we discuss the passage from the agent-based description to mean-field
limits as the number of agents, or “particles,” tends to be large enough. There is a
growing literature on kinetic descriptions of such models; see [20, 21, 22, 49, 51, 61]
and the references therein. Here we focus our attention on the hydrodynamic de-
scriptions of self-organized opinion dynamics and flocking. The closing section 9 is
devoted to a more detailed discussion on the broader subject of self-organized dy-
namics. Since a comprehensive review of this multidisciplinary subject is beyond the
scope of this paper, in particular, we include a selection of references, classified into
several complementary categories of different disciplines, models, scales, approaches,
and patterns.

1.1. Examples of Opinion Dynamics and Flocking. Models for self-organized
dynamics (1.1) have appeared in a large variety of different contexts, including load
balancing in computer networks, evolution of languages, gossiping, algorithms for sen-
sor networks, emergence of flocks, herds, schools, and other biological “clustering,”
pedestrian dynamics, ecological models, peridynamic elasticity, multiagent robots,
models for opinion dynamics, economic networks, and more; a detailed list of refer-
ences is surveyed in section 9.

To demonstrate the general framework for self-alignment dynamics (1.1), we shall
work with two main concrete examples. The first models opinions dynamics. In these
models, N agents, each with a vector of opinions quantified by pi � xi ∈ R

d, interact
with each other according to the first-order system

(1.2a)
d

dt
xi = α

∑
j �=i

aij(xj − xi), aij =
φ(|xj − xi|)

N
.

Here, 0 < φ < 1 is the scaled influence function which acts on the “difference of
opinions” |xi − xj |. The metric | · | needs to be properly interpreted, adapted to the
specific context of the problem at hand. Another model for interaction of opinions is

(1.2b)
d

dt
xi = α

∑
j �=i

aij(xj − xi), aij =
φij∑
k φik

, φij := φ(|xj − xi|).

The classical Krause model for opinion dynamics [75, 12] is a time-discretization of
(1.2b), which will be discussed in section 7. Observe that the adjacency matrix {aij}
in the first model (1.2a) is symmetric, while in the second model (1.2b) it is not.

Another branch of models has been proposed to describe flocking. These are
second-order models where the observed property is the velocity of birds, pi �→ vi ∈
R

d, which are coupled to their location xi ∈ R
d. The flocking model of Cucker and

Smale (C-S) has received considerable attention in recent years [36, 37, 61, 17, 60],

(1.3a)
d

dt
vi = α

∑
j �=i

aij(vj − vi), aij =
φ(|xj − xi|)

N
, where

d

dt
xi = vi.

In the C-S model, alignment is carried out by isotropic averaging. In [88] we advocated
a more realistic alignment-based model for flocking, where alignment is based on the
relative influence, similar to (1.2b),

(1.3b)
d

dt
vi = α

∑
j �=i

aij(vj − vi), aij =
φij∑
k φik

, with φij := φ(|xj − xi|).D
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582 SEBASTIEN MOTSCH AND EITAN TADMOR

Again, the C-S model is based on a symmetric adjacency matrix, {aij}, while sym-
metry is lost in (1.3b), i.e., aij �= aji.

The models for opinion and flocking dynamics (1.2) and, respectively, (1.3) can
be written in the unified form

(1.4)
d

dt
pi = α

N∑
j=1

aij(pj − pi), aij =
1

σi
φ(|xi − xj |).

In the opinion dynamics, p �→ x; in the flocking dynamics, p �→ ẋ. The degree is
σi = N in the symmetric models, or σi =

∑
j �=i φ(|xi − xj |) in the nonsymmetric

models. The local versus global behavior of these models hinges on the behavior of
the influence function, φ. If the support of φ is large enough to cover the convex
hull of P(0) = {pk(0)}k, then global interactions will yield unconditional consensus
or flocking. On the other hand, if φ is locally supported, then the group dynamics
in (1.4) depends on the connectivity of the underlying graph, {aij}. In particular,
if the overall connectivity is lost over time, then each connected component may
lead to a separate cluster. Heterophilious self-organized dynamics is characterized
by a locally supported influence function, φ, which is increasing as a function of the
mutual differences, φij = φ(|xi − xj |). The more heterophilious the dynamics is, in
the sense that its influence function has a steeper increase over its compact support,
the more it tends to concentrate in the sense of approaching a smaller number of
clusters. In particular, heterophilious dynamics is more likely to lead to a consensus
as demonstrated, for example, in Figure 1 (and further documented in Figures 8 and
13). Observe that the only difference between the two models depicted in Figure 1 is
that the influence in the immediate neighborhood (of radius r ≤ 1/

√
2) was decreased,

from φ = 1χ[0,1] (at the top) into φ = 0.1χ[0,1/
√
2] + χ[1/

√
2,1] (at the bottom): this

was sufficient to enhance the four-party clustering on the top to become a consensus
shown on the bottom.

2. Global Interactions and Unconditional Emergence of Consensus. In this
section we derive explicit conditions for global self-organized dynamics (1.1) to con-
centrate around an emerging consensus. Our starting point is a convexity argument
which is valid for any adjacency matrix A = {aij}, whether symmetric or not. We be-
gin by noting that, without loss of generality, A may be assumed to be row-stochastic,

(2.1)
∑
j

aij = 1, i = 1, . . . , N.

Indeed, by rescaling α if necessary we have
∑

j �=i aij ≤ 1, and (2.1) holds when we
set aii := 1−∑

j �=i aij ≥ 0. We rewrite (1.1) in the form

(2.2)
d

dt
pi = α (pi − pi) , pi :=

N∑
j=1

aijpj .

Thus, if we let Ω(t) denote the convex hull of the properties {pk}k, then, according
to (2.2), pi is relaxing to the average value pi ∈ Ω(t), while the boundary of Ω is a
barrier for the dynamics, as shown in Figure 2. It follows that the positions in the
general self-organized model (1.1) remain bounded.

Proposition 2.1. The convex hull of p(t) is decreasing in time in the sense that
the convex hull, Ω(t) := Conv

({pi(t)}i∈[1,N ]

)
, satisfies

(2.3) Ω(t2) ⊂ Ω(t1), t2 > t1 ≥ 0.
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Fig. 1 Evolution in time of the consensus model for two different influence functions φ (top:
φ(r) = χ[0,1]; bottom: φ(r) = .1χ[0,1/

√
2] + χ[1/

√
2,1]). By diminishing the influence of

close neighbors (bottom), we enhance the emergence of a consensus. Simulations are started
with the same initial condition (100 agents uniformly distributed on [0, 10]).

pi

Ω

ṗi

Fig. 2 The convex hull Ω of the positions pi.D
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584 SEBASTIEN MOTSCH AND EITAN TADMOR

Moreover, we have

(2.4) max
i

|pi(t)| ≤ max
i

|pi(0)|.

Proof. We verify (2.4) for a general vector norm | · | which we characterize in terms
of its dual |w|∗ = supw �=0〈w, z〉/|z|, so that |p| = sup〈p,w〉/|w|∗. Let w = w(t)
denote the maximal dual vector of pi(t), so that 〈pi,w〉 = |pi|; then

〈ṗi,w〉 = α (〈pi,w〉 − 〈pi,w〉) ≤ α(|pi| − |pi|).
Since 〈pi, ẇ〉 ≤ 0, we have

d

dt
|pi(t)| = 〈ṗi,w〉+ 〈pi, ẇ〉 ≤ α(|pi(t)| − |pi(t)|),

and, finally, |pi(t)| ≤ maxi |pi(t)| yields (2.4).
Remark 2.2. Since the models of opinion dynamics and flocking dynamics (1.4)

are translation invariant in the sense of admitting the family of solutions {pi − c},
then, for any fixed state c, Proposition 2.1 implies

max
i

|pi(t)− c| ≤ max
i

|pi(0)− c|.

Consensus and flocking are achieved when the decreasing Ω(t) shrinks to a limit

point Ω(t)
t→∞−→ {p∞},

max
i

|pi(t)− p∞| t→∞−→ 0.

There are various approaches, not unrelated, to deriving conditions which ensure un-
conditional consensus or flocking. We shall mention two: an L∞ contraction argument
and an L2 energy method based on spectral analysis.

2.1. An L∞ Approach: Contraction of Diameters. Proposition 2.1 tells us
that {pi(t)}i remain uniformly bounded and the diameter, maxij |pi(t) − pj(t)|, is
nonincreasing in time. In order to have concentration, however, we need to verify that
the diameter of p(t) decays to zero. The next proposition quantifies this decay rate.

Theorem 2.3. Consider the self-organized model (1.1) with a row-stochastic
adjacency matrix A (2.1). Let

[p] := max
ij

|pi − pj |

denote the diameter of the position vector p. Then the diameter satisfies the concen-
tration estimate

(2.5)
d

dt
[p(t)] ≤ −αη

A(P(t))
[p(t)], ηA := min

ij

∑
k

min{aik, ajk}.

In particular, if there is a slow decay of the concentration factor so that
∫∞
η
A(P(s))

ds =
∞, then the agents concentrate in the sense that

(2.6a) Θ(t) :=

∫ t

η
A(P(s))

ds
t→∞−→ ∞ � lim

t→∞max
i,j

|pi(t)− pj(t)| = 0.

Moreover, if the decay of the concentration factor is slow enough in the sense that
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∫∞
exp(−αΘ(s))ds < ∞, then there is an emerging consensus p∞ ∈ Ω(0),

(2.6b)∫ ∞
e−αΘ(t)dt < ∞ � |pi(t)− p∞| � e−αΘ(t)[p(0)] for all i = 1, . . . , N.

Remark 2.4. We note that Theorem 2.3 applies to any vector norm | · |.
Proof. We begin with the following estimate, which quantifies the contractivity

of the row-stochastic A in the induced vector seminorm [ · ] (since this bound is solely
due to the convexity of the row-stochastic A, we suppress the time-dependence of p
and p = Ap),

(2.7) [Ap] ≤ (1− η
A
)[p], [p] = max

ij
|pi − pj |, 1− η

A
=

1

2

∑
k

|aik − ajk|.

The estimate (2.7) in its �1-dual form for column-stochastic matrices goes back to
Dobrushin [46], and his so-called coefficient of ergodicity, η

A
, was later used to quantify

the relative entropy in discrete Markov processes [29, 30] and the contractivity in
models of opinion dynamics [75]. For completeness, we proceed with the proof for
general vector norms | · |. Fix any i and j, which are to be chosen later, and set
ηk := min{aik, ajk} so that aik−ηk and ajk −ηk are nonnegative. Then, for arbitrary
w ∈ R

d, we have

〈pi − pj ,w〉 =
∑
k

aik〈pk,w〉 −
∑
k

ajk〈pk,w〉

=
∑
k

(aik − ηk)〈pk,w〉 −
∑
k

(ajk − ηk)〈pk,w〉

≤
∑
k

(aik − ηk)max
k

〈pk,w〉 −
∑
k

(ajk − ηk)min
k

〈pk,w〉

= (1− η
A
)

(
max

k
〈pk,w〉 −min

k
〈pk,w〉

)

≤ (1− η
A
)max

k�
〈pk − p�,w〉 ≤

(
1− η

A

)
max
k,�

|pk − p�||w|∗.

In the last step, we characterize the norm | · | by its dual |w|∗ = supw �=0〈w, z〉/|z| so
that 〈z,w〉 ≤ |z||w|∗. Now, choose i and j as a maximal pair such that [p] = |pi−pj |;
we then have

[Ap] ≡ [p] = |pi − pj | = sup
w �=0

〈pi − pj ,w〉
|w|∗ ≤ (1 − η

A
)max

k,�
|pk − p�|,

and (2.7) now follows.
Next, we consider the discrete time-marching system associated with (1.1),

p(t+Δt)− p(t)

Δt
= α (Ap(t)− p(t)) .

Using (2.7) we obtain

[p(t+Δt)] = [(1− αΔt)p(t) + αΔt Ap(t)] ≤ (1− αΔt)[p(t)] + αΔt(1 − η
A
)[p(t)],

or, after rearrangement,

[p(t+Δt)] − [p(t)]

Δt
≤ −αη

A
[p(t)],
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and the desired bound (2.5) follows by letting Δt → 0. In particular, we have

(2.8) max
ij

|pi(t)− pj(t)| ≤ exp

(
−α

∫ t

0

η
A(P(s))

ds

)
[p(0)]

t→∞−→ 0,

which proves (2.6a). Moreover,

|pi(t2)− pi(t1)| =
∣∣∣∣
∫ t2

τ=t1

ṗi(τ) dτ

∣∣∣∣ ≤ αmax
ij

∫ t2

τ=t1

|pi(τ) − pj(τ)| ds

≤ α

∫ t2

τ=t1

exp (−αΘ(τ)) dτ [p(0)], Θ(τ) =

∫ τ

0

η
A(P(s)

ds,

which tends to zero, |pi(t2)− pi(t1)| → 0 for t2 > t1 � 1, thanks to our assumption

(2.6b). It follows that the limit pi(t)
t→∞−→ p∞

i exists, and hence all agents concentrate
around the same limit position, an emerging consensus p∞ ∈ Ω(0). The concentration
rate estimate (2.6b) follows from (2.8).

Theorem 2.3 relates the emergence of consensus or flocking of ṗ = Ap − p to
the behavior of

∫ t
η
A(P(s))

ds ↑ ∞, and to this end we seek lower bounds on the
“concentration factor” η

A
, which are easily checkable in terms of the entries of A.

This brings us to the following definition.
Definition 2.5 (active sets [88]). Fix θ > 0. The active set, Λ(θ), is the set of

agents which influence every other agent “more” than θ,

(2.9) Λ(θ) := {j ∣∣ aij ≥ θ for any i}.
Observe that since aij changes in time, aij = aij(P(t)), the number of agents in the
active set Λ(θ) is a time-dependent quantity, denoted λ(θ) = λ(θ, t) := |Λ(θ, t)|.

The straightforward lower bound η
A
≥ maxθ θ ·λ(θ) yields the following corollary.

Corollary 2.6. The diameter of the self-organized model (1.1) with a stochastic
adjacency matrix A, as in (2.1), satisfies the concentration estimate

(2.10)
d

dt
[p(t)] ≤ −α(max

θ
θ · λ(θ, t)) [p(t)].

In particular, the lower bound η
A
≥ N minij aij , corresponding to θ = minij aij with

λ(θ, t) = N , yields [61]

(2.11) |p(t)− p∞| � exp

(
−αN

∫ t

0

m(s)ds

)
[p(0)], m(s) := min

ij
aij(s).

Remark 2.7. The bound (2.10) is an improvement of the “flocking” estimate
[88, Lemma 3.1]

d

dt
[p(t)] ≤ −α(max

θ
θ · λ(θ, t))2 [p(t)].

Corollary 2.6 is a useful tool to verify consensus and flocking behavior for general
adjacency matrices A = {aij}, whether symmetric or not. We demonstrate its appli-
cation with the following sufficient condition for the emergence of a consensus in the
opinion models (1.2). In either the symmetric or the nonsymmetric case,

aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φij

N

φij

σi

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≥ φ([x(t)])

N
, σi =

∑
k

φik ≤ N.D
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By Proposition 2.1, the diameter [x(t)] is nonincreasing, yielding the lower bound

Naij(P(t)) =
N

σi
φ(|xi(t)− xj(t)|) ≥ min

r≤[x(t)]
φ(r) ≥ min

r≤[x(0)]
φ(r),

which in turns implies the following exponentially fast convergence toward a consensus
x∞.

Proposition 2.8 (unconditional consensus). Consider the models for opinion
dynamics (1.2) with an influence function φ(r) ≤ 1, and assume that

(2.12) m := min
r≤[x(0)]

φ(r) > 0.

Then there is an exponentially fast convergence toward an emerging consensus x∞,

(2.13) |xi(t)− x∞| � e−αmt[x(0)].

Similar arguments apply for the flocking models (1.3): since [v(t)] is nonincreas-
ing, then [x(t)] ≤ [x(0)] + t[v(0)] and hence

Naij(P(t)) =
N

σi
φ(|xi(t)− xj(t)|) ≥ min

r≤[x(t)]
φ(r) ≥ min

r≤[x(0)]+t[v(0)]
φ(r);

if φ(·) is decreasing, then we can set m(t) = φ([x(0)] + t[v(0)]) and unconditional
flocking follows from for Corollary 2.6 for sufficiently strong interaction such that∫∞

φ(s)ds = ∞. In fact, a more precise statement of flocking is summarized in the
following proposition.

Proposition 2.9 (unconditional flocking). Consider the flocking dynamics (1.3)
with a decreasing influence function φ(r) ≤ φ(0) ≤ 1, and assume that

(2.14)

∫ ∞
φ(s)ds = ∞.

Then the diameter of positions remains uniformly bounded, [x(t)] ≤ D∞ < ∞, and
there is an exponentially fast concentration of velocities around a flocking state v∞,

(2.15) |vi(t)− v∞| � e−αmt[v(0)], m = φ(D∞).

Proof. Unlike the first-order models for consensus, the diameter in second-order
flocking models, [x(t)], may increase over time. The bound D∞ stated in (2.15) places
a uniform bound on the maximal active diameter. To derive such a bound, observe
that in the second-order flocking models, the evolution of the diameter of velocities
satisfies

d

dt
[v(t)] ≤ −αφ([x(t)])[v(t)],

and is coupled with the evolution of positions [x(t)]: since ẋ = v, we have

d

dt
[x(t)] ≤ [v(t)].

The last two inequalities imply that the energy functional introduced by Ha and Liu
[60],

E(t) := [v(t)] + α

∫ [x(t)]

0

φ(s)ds,
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588 SEBASTIEN MOTSCH AND EITAN TADMOR

is decreasing in time,

(2.16) α

∫ [x(t)]

[x(0)]

φ(s) ds ≤ [v(0)] − [v(t)] ≤ [v(0)].

This, together with our assumption (2.14), yields the existence of a finite D∞ > [x(0)]
such that

(2.17) α

∫ [x(t)]

[x(0)]

φ(s) ds ≤ [v(0)] ≤ α

∫ D∞

[x(0)]

φ(s) ds.

Thus, the active diameter of positions does not exceed [x(t)] ≤ D∞, and since φ is
assumed decreasing, the minimal interaction is Naij ≥ φ([x(t)]) ≥ φ(D∞), which
yields

d

dt
[v(t)] ≤ −αφ(D∞)[v(t)].

This concludes the proof of (2.15).
Remark 2.10 (global interactions). Proposition 2.8 derives an unconditional

consensus under the assumption of global interaction, namely, according to (2.12)
every agent interacts with every other agent as

aij ≥ 1

N
φ(|xi − xj |) ≥ m

N
> 0.

Similarly, the unconditional flocking stated in Proposition 2.9 requires global interac-
tions, in the sense of having an influence function (2.14) which is supported over the
entire flock. Indeed, if the influence function φ is compactly supported, supp{φ} =
[0, R], then assumption (2.14) tells us that

[v(0)] ≤ α

∫ R

[x(0)]

φ(s) ds;

however, according to (2.16), α
∫ [x(t)]

[x(0)]
φ(s) ds ≤ [v(0)] and hence the support of φ

remains larger than the diameter of positions, R ≥ [x(t)].
Proposition 2.9 recovers the unconditional flocking results for the C-S model,

φ(r) ∝ (1 + r)−2β , β > 1/2, obtained elsewhere in using spectral analysis, �1-, �2-,
and �∞-based estimates [36, 61, 17, 60, 21]. The derivations are different, yet they
all require the symmetry of the C-S influence matrix, aij = φij/N . Here, we unify
and generalize the results, covering both the symmetric and nonsymmetric scenarios.
In particular, we improve here the unconditional flocking result in the nonsymmetric
model obtained in [88, Theorem 4.1]. Although the tools are different, notably, lack
of conservation of momentum 1

N

∑
i vi(t) in the nonsymmetric case—we nevertheless

end up with the same condition (2.14) for unconditional flocking.

2.2. Spectral Analysis of Symmetric Models. A more precise description of the
concentration phenomenon is available for models governed by symmetric influence
matrices, aij = aji, such as (1.2a) and (1.3a). Set qi = pi − 〈p〉, where 〈p〉 :=
1/N

∑
i pi is the average (total momentum), which thanks to symmetry is conserved

in time, ˙〈p〉(t) ∝∑
ij aij(pi − pj) = 0, and hence the symmetric system (1.1) reads

d

dt
qi(t) = α

N∑
j=1

aij(qj − qi), qi := pi − 〈p〉.D
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Let LA := I −A denote the Laplacian matrix associated with A, with ordered eigen-
values 0 = λ1(LA) ≤ λ2(LA) ≤ · · ·λN (LA). The following estimate is at the heart of
the matter (here, | · | denotes the usual Euclidean norm on R

d):

(2.18)
1

2

d

dt

∑
i

|qi(t)|2 = α
∑
i,j

aij〈qj−qi,qi〉 = −α

2

∑
ij

aij |qj−qi|2 ≤−αλ2(LA)
∑
i

|qi(t)|2.

The second equality is a straightforward consequence ofA being symmetric; the follow-
ing inequality follows from the Courant–Fischer characterization of the second eigen-
value of LA in terms of vectors q orthogonal to the first eigenvector 1 = (1, 1, . . . , 1)
,

(2.19) λ2(LA) = min∑
qk=0

〈LAq,q〉
〈q,q〉 ≤ (1/2)

∑
ij aij |qi − qj |2∑
i |qi|2 .

We end up with the following sufficient condition for the emergence of unconditional
concentration.

Theorem 2.11 (unconditional concentration in the symmetric case). Consider
the self-organized model (1.1), (2.1) with a symmetric adjacency matrix A. Then the
following concentration estimate holds:
(2.20)

∨p(t) ≤ exp

(
−α

∫ t

λ2(LA(P(s)))ds

)
∨p(0), ∨2

p(t) :=
1

N

∑
i

|pi(t)− 〈p〉(0)|2.

In particular, if the interactions remain “sufficiently strong” so that
∫∞

λ2(LA(P(s)))ds
= ∞, then there is convergence toward consensus pi(t) → p∞ = 〈p〉(0).

To apply Theorem 2.11, we need to trace effective lower bounds on λ2(LA); there
follow two examples which recover our previous results in section 2.1.

Example 1 (revisiting Theorem 2.3). If r is the Fiedler eigenvector associated
with λN−1(A) with r ⊥ 1, then (2.7) implies

λN−1(A) =
[Ar]

[r]
≤ sup

p⊥1

[Ap]

[p]
≤ 1− η

A
.

We end up with the following lower bound for the Fiedler number:

λ2(LA) = 1− λN−1(A) ≥ 1− (1− η
A
) ≥ η

A
.

Thus, Theorem 2.3 is recovered here as a special case of the sharp bound (2.20) in
Theorem 2.11. The former has the advantage that it applies to nonsymmetric models,
but, as remarked earlier, it is limited to models with global interactions; the latter
can address the consensus of local, connected models; see section 6.

We remark in passing that while Theorem 2.3 employs the �∞-based diameter,
[p] = [p]∞ = maxij |pi − pj |, Theorem 2.11 is in fact the corresponding �2-based

diameter, [p]22 :=
∑

ij |pi − pj |2/(2N) = ∨p.
Example 2 (revisiting Propositions 2.8 and 2.9). A straightforward lower bound

λ2(LA) ≥ N min aij recovers Corollary 2.6:

(2.21) ∨p(t) ≤ exp

(
−α

∫ t

m(s)ds

)
∨p(0), m(t) := min

ij
φ(|xi(t)− xj(t)|).

The characterization of concentration in Theorem 2.11 is sharp in the sense that
the estimate (2.18) is sharp. Indeed, it is well known that positivity of the Fiedler
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590 SEBASTIEN MOTSCH AND EITAN TADMOR

number, λ2(LA) > 0, characterizes the algebraic connectivity of the graph associated
with the adjacency matrix A [53, 87, 28]. Theorem 2.11 places a minimal requirement
on the amount of connectivity as a necessary condition for consensus.1 There are
many characterizations for the algebraic connectivity of static graphs [28, 45, 53, 54,
56, 86, 87, 95]. In the present context of self-organized dynamics (1.1), however, the
dynamics of ṗ = α(Ap − p) dictates the connectivity of A = A(P(t)), which in turn
determines the clustering behavior of the dynamics due to the nonlinear dependence,
A = A(P(t)). Thus, the intricate aspect of the self-organized dynamics (1.1) lies
in tracing its algebraic connectivity over time through the self-propelled mechanism
in which the nonlinear dynamics and algebraic connectivity are tied together. This
issue will be explored in the following sections dealing with clustering driven by local
interactions.

3. Local Interactions and Clustering. In this section we consider the self-organ-
ized dynamics (1.1) of a “crowd” of N agents, P = {pi}Ni=1, which do not interact
globally: entries in their adjacency matrix may vanish, aij ≥ 0. The dynamics is
dictated by local interactions and its large time behavior leads to the formation of
one or more clusters.

3.1. The Formation of Clusters. A cluster C is a connected subset of agents,
{pi}i∈C , which is separated from all other agents outside C, namely,

#1. aij �= 0 for all i, j ∈ C; and #2. aij = 0 whenever i ∈ C and j /∈ C.
The important feature of such clusters is their self-contained dynamics, in the sense
that

d

dt
pi = α

∑
j∈C

aij(pj − pi),
∑
j∈C

aij = 1, i ∈ C.

The dynamics of such self-contained clusters is covered by the concentration state-
ments of global dynamics in section 2. In particular, if cluster C(t) remains connected
and isolated for a sufficiently long time, then its agents will tend to concentrate around
a local consensus,

pi(t)
t→∞−→ p∞

C for all i ∈ C.
The intricate aspect, however, is the last if statement: the evolution of agents in a
cluster C may become influenced by non-C agents, and, in particular, different clusters
may merge over time.

In the following, we fix our attention on the particular models for opinion and
flocking dynamics expressed in the unified framework (1.4):

(3.1a)
d

dt
pi = α

N∑
j=1

aij(pj − pi), aij = aij(x) =
1

σi
φ(|xi − xj |).

Recall that p �→ x in opinion dynamics, p �→ ẋ in flocking dynamics, and σi is the
degree,

(3.1b)

⎧⎨
⎩

σi = N, symmetric model,

σi =
∑

j �=i φ(|xi − xj |), nonsymmetric model.

1We ignore possible cases in which the self-organized dynamics may regain connectivity under
“cluster dynamics,” namely, agents separated into disconnected clusters and merging into each other
at a later stage.
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We assume that the influence function φ is compactly supported,

(3.2) Supp{φ(·)} = [0, R].

A cluster C = C(t) ⊂ {1, 2, . . . , N} is specified by the finite diameter of the
influence function φ such that the following two properties hold:

#1. max
i,j∈C(t)

|xi(t)− xj(t)| ≤ R; and #2. min
i∈C(t),j /∈C(t)

|xi(t)− xj(t)| > R.

When the dynamics is global, R � [x(0)], then the whole crowd of agents can be
considered as one connected cluster. Here we consider the local dynamics when R is
small enough relative to the active diameter of the global dynamics: R < [x(0)] in the
opinion dynamics (1.2), or R < D∞ in the flocking dynamics (1.3). The statements
of global concentration toward a consensus state asserted in Propositions 2.8 and 2.9
do not apply. Instead, the local dynamics of agents leads them to concentrate in one
or several clusters—see, for example, Figures 1, 5, and 8. Our primary interest is in
the large time behavior of such clusters. The generic scenario is a crowd of agents
which is partitioned into a collection of clusters, Ck, k = 1, . . . ,K, such that⎧⎨

⎩
either |pi(t)− pj(t)| t→∞−→ 0 if i, j ∈ Ck ↔ |xi(t)− xj(t)| ≤ R,

or |xi(t)− xj(t)| > R if i ∈ Ck, j ∈ C�, k �= �.

In this context, we raise the following two fundamental questions.
Question 1. Identify the class of initial configurations, P(0), which evolve into

finitely many clusters, Ck, k = 1, . . . ,K. In particular, characterize the number of
such clusters K for t � 1.

Question 2. Assume that the initial configuration P(0)) is connected. Character-
ize the initial configuration P(0) which evolves into one cluster, K(t) = 1 for t � 1,
namely, the question of the emergence of consensus in the local dynamics.

A complete answer to each of these questions should provide an extremely inter-
esting insight into local processes of self-organized dynamics, with many applications.
In the next two sections we provide partial answers to these questions. We begin with
the first result, which shows that if the solution of (3.1) has bounded time-variation,
then it must be partitioned into a collection of clusters.

Proposition 3.1 (formation of clusters). Let P(t) = {pk(t)}k be the solution
of the opinion or flocking models (3.1) with compactly supported influence function
Supp{φ(·)} = [0, R), and assume it has a bounded time-variation

(3.3)

∫ ∞
|ṗi(s)|ds < ∞.

Then P(t) approaches a stationary state, p∞, which is partitioned into K clusters,
{Ck}Kk=1, such that {1, 2, . . . , N} = ∪K

k=1Ck and

(3.4)

⎧⎨
⎩

either pi(t) −→ p∞
Ck

as t → ∞ for all i ∈ Ck,

or |xi(t)− xj(t)| > R for t � 1 if i ∈ Ck, j ∈ C�, k �= �.

Remark 3.2. Observe that if the solution decays fast enough—in particular,
if p(t) decays exponentially fast, |pi(t) − p∞

i | � e−C(t−t0), t ≥ t0 > 0 (as in the
unconditional consensus and flocking of global interactions discussed in section 2),
then it has a bounded time-variation.
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592 SEBASTIEN MOTSCH AND EITAN TADMOR

Proof. Assumption (3.3) implies

|pi(t2)− pi(t1)| ≤
∫ t2

t1

|ṗi(s)|ds � 1 for t2 > t1 � 1,

hence each agent approaches its own stationary state, pi(t)
t→∞−→ p∞

i . We claim that

ṗi(t)
t→∞−→ 0. To this end, we distinguish between the two cases of first-order opinion

dynamics and second-order flocking dynamics. In opinion dynamics, p �→ x: since
the expression on the right of (3.1a),
(3.5)

ṗi(t) =
α

σi(t)

∑
j

φ(|xi(t)− xj(t)|)(pi(t)− pj(t)), σi(t) =
∑
j

φ(|xi(t)− xj(t)|),

has a limit (involving p∞
i = x∞

i ), it follows that limt→∞ ṗi(t) exists and by (3.3)
it must be zero, ṗi(t) → 0. In the case of flocking dynamics, p �→ ẋ, and there
are two types of pairs of agents (i, j): either they have the same limiting “velocity,”
p∞
i − p∞

j = 0, and, since φ is bounded,

φ(|xi(t)− xj(t)|)(pi(t)− pj(t))
t→∞−→ 0;

or, if p∞
i − p∞

j �= 0, then

(3.6) |x∞
i − x∞

j | � |p∞
i − p∞

j |t > R, t � 1,

and hence

φ(|xi(t)− xj(t)|)(pi(t)− pj(t)) = 0, t � 1.

In either case, the expression on the right of (3.5) vanishes as t → ∞.
Now, take the scalar product of (3.5) against pi and sum:

(3.7)
∑
i

σi〈ṗi,pi〉 = α
∑
ij

φij〈pj − pi,pi〉 ≡ −α

2

∑
ij

φij |pj − pi|2.

Since pi ∈ Ω(0), σi ≤ N are uniformly bounded and ṗi(t) → 0 on the left, it follows
that the expression on the right tends to zero. In opinion dynamics (p �→ x), we can
pass to the limit in the expression on the right, which yields

(3.8) φ(|x∞
i − x∞

j |)|p∞
i − p∞

j |2 = 0 for all i, j ≤ N.

Thus, if |x∞
i −x∞

j | > R, then agents i and j are in separate clusters. Otherwise, when
they are in the same cluster, say, i, j ∈ Ck so that |x∞

i −x∞
j | < R, then φ(|x∞

i −x∞
j |) >

0, and by (3.8) they must share the same stationary state, p∞
i = p∞

j =: p∞
Ck
, that is,

(3.4) holds. In the case of flocking dynamics, p �→ ẋ, we either have one type of pairs,

|pi(t)− pj(t)| t→∞−→ 0, or a second type of pairs, (3.6), namely, (3.4) holds.
We now turn our attention to the number of clusters, K.

3.2. How Many Clusters?. Note that if p∞ = (p∞
1 , . . . ,p∞

N )
 is a stationary state
of (3.1), then p∞ is an eigenvector associated with the nonlinear eigenvalue problem,

A(x∞)p∞ = p∞,
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corresponding to the eigenvalue λN (A(x∞)) = 1. In fact, the number of stationary
clusters can be directly computed from the multiplicity of leading spectral eigenvalues
of λN (A(x∞)).

Proposition 3.3. Assume that the crowd of N agents {pi(t)}Ni=1 is partitioned

into K clusters, {1, 2, . . . , N} = ∪K(t)
k=1 Ck. Then the number of clusters, K = K(t),

equals the geometric multiplicity of λN (A(x(t)) = 1,

(3.9) K(t) = {#λN (A(x(t)) | λN (A(x(t)) = 1} .
Proof. We include the rather standard argument for completeness. Suppose that

the dynamics of (3.1) at time t consists of K = K(t) clusters, ∪K(t)
k=1 Ck. Define the

vector rk = (rk1 , . . . , r
k
N )
 such that

rkj =

{
1 if j ∈ Ck,
0 otherwise.

We obtain (
Ark

)
i
=
∑
j

aijr
k
j =

∑
j∈Ck

aij .

Using the facts that A is a stochastic matrix and that aij = 0 if xi and xj are not in
the same cluster, we deduce

∑
j∈Ck

aij =

{
1 if i ∈ Ck
0 otherwise

}
= rki ,

and therefore Ark = rk. Thus, associated with each cluster Ck there is an eigenvector
rk corresponding to λN (A) = 1. To conclude the proof, we have to show that there
are no other vectors r satisfying Ar = r. Indeed, assume that Ar = r,∑

j

aijrj = ri for any i.

Fix a cluster Ck. Then for any p ∈ Ck we have∑
j∈Ck

apjrj = rp for any p ∈ Ck.

Denote by rq the maximal entry of rj ’s on the left, corresponding to some q ∈ Ck:
since

∑
j∈Ck

apj = 1 with apj > 0, we deduce that for any p ∈ Ck we have rp =∑
apjrj ≤

∑
apjrq = rq. Thus, the entries of r are constant on the cluster Ck, so that

r ∝ rk.

3.3. Numerical Simulations with Local Dynamics. We illustrate the emergence
of clusters with 1D and 2D simulations of the opinion dynamics model (1.2b),

(3.10)
d

dt
xi =

∑
j

φij∑
k φik

(xj − xi), xi(t) ∈ R
d.

The influence function, φ, is taken as the characteristic function of the interval [0, 1]:
φ(r) = χ[0,1], and we use the Runge–Kutta method of order 4 with a time-step of

Δt = .05 for the time-discretization of the system of ODEs (3.10).
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Fig. 3 The opinion model (1.2b) with M = 100 agents and φ = χ[0,1] (left) and the histogram of
the distribution of xi at t = 40 unit time (right). We observe the formation of 4 clusters
separated by a distance greater than 1.

As a first example, we run a simulation of the 1D opinion model, d = 1, subject to
an initial configuration of N = 100 agents uniformly distributed on the interval [0, 10].
In Figure 3 (left) we plot the evolution of the opinions xi(t) in time. We observe the
formation of four clusters after 15 unit time. The histogram of the distribution of
agents at the final time t = 40 (see Figure 3 (right)) shows that the distance between
the clusters is greater than 1, as predicted by Proposition 3.1. We also observe that the
number of opinions contained in each cluster differs (respectively, 35, 14, 31, and 20
agents). Indeed, the larger cluster at x ≈ 2 with 35 opinions is a merge between three
branches (see Figure 3) with one branch in the middle connecting the two external
branches. When the two external branches finally connect at t ≈ 8.5 (their distance
is less than 1), we observe an abrupt change in the dynamics followed by a merge of
the three branches into a single cluster.

To analyze the cluster formation, we also look at the evolution of the eigenvalues
of the matrix of interaction A(x(t)) in (3.10), aij = φij/

∑
k φik. In Figure 4, we

represent the evolution of the first eight eigenvalues of the matrix A. From t = 0 to
t ≈ 3.5, we observe that the first four first eigenvalues converge to 1, which accounts for
the fact that only four clusters remain at this time. Then the matrix A(x(t)) remains
constant in time from t ≈ 3.5 to t ≈ 8.5. At t ≈ 8.5, two branches (see Figure 3)
reconnect, and the two eigenvalues λ5 and λ6 equal zero. This confirms Proposition 3.3
where the additional multiplicity of the spectral eigenvalue λN (A(x(t)) = 1 indicates
the formation of a new cluster.

Next we illustrate the dynamics of the 2D, d = 2, opinion model (1.2b). With
this aim, we run the model starting with an initial condition of N = 1000 agents
distributed uniformly on the square [0, 10]× [0, 10]. We present, in Figure 5, several
snapshots of the simulations at different times (t = 0, 2, 4, 6, 12, and 30 unit time).
As in the 1D case, we first observe a fast transition to a cluster formation (from t = 0
to t = 6). However, at time t = 12, the dynamics has not yet converged to a stationary
state, and we observe on the upper left that three branches are at a distance less than
1 from each other. This scenario is similar to the one observed in Figure 3 with the
apparition of three branches. At t = 30, the three clusters on the upper left have
finally merged and the system has reached a stationary state: each cluster is at a
distance greater than 1 from all others.
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Fig. 4 Absolute values of the eigenvalues of the matrix A (3.10) during the simulation given in
Figure 3. The number of eigenvalues equal to 1 corresponds to the number of clusters.

4. K = 1: Uniform Connectivity Implies Consensus. The emergence of a con-
sensus in the opinion or flocking models (1.4) implies that the underlying graph as-
sociated with the dynamics must remain connected, namely, |xi(t) − xi(t)| � R at
least for t � 1. In this section we discuss the converse statement, namely, that uni-
form connectivity implies consensus. The implication of consensus in the symmetric
case is based on a straightforward application of algebraic connectivity and is outlined
in section 4.1. The corresponding question of consensus in nonsymmetric connected
models is carried out in section 4.2 using an energy method. We emphasize that
consensus in both cases depends on the time-dependent behavior of intensity of con-
nectivity, beyond the mere graph connectivity. Recall that the graph associated with
(1.1), GA := (P , A(P)), is connected if every two agents pi(t) and pj(t) are connected
through a path Γij := {k1 = i < k2 < · · · < kr = j} of length rij ≤ N . We measure
the uniform connectivity by its “weakest link.”

Definition 4.1 (uniform connectivity). The self-organized dynamics (1.1) is
connected if there exists μ(t) > 0 such that, for all paths Γij,

(4.1) min
k�∈Γij

ak�,k�+1
(P(t)) ≥ μ(t) > 0 for all i, j.

In particular, if μ(t) ≥ μ > 0, then we say that P(t) is uniformly connected.
Alternatively, uniform connectivity of (1.1) requires the existence of μ = μA > 0

independent of time, such that(
AN (P(t))

)
ij
≥ μN > 0.

4.1. Consensus in Local Dynamics: Symmetric Models. We consider the sym-
metric dynamics (1.1) with associated graph GA := (P , A(P)). Fix the positions of any
two agents pi(t) and pj(t) and their (shortest) connecting path Γij of length rij . Thus,
rij measures the degree of separation between agents (i, j), and if we let the maximal
degree of separation denote the diameter of the graph, diam(GA) := maxij rij , then

|pi − pj |2 ≤ diam(GA)
∑

k�∈Γij

|pk�+1
− pk�

|2, diam(GA) ≤ N.
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Fig. 5 Simulation of the opinion model (1.2b) in 2D with M = 1000 agents and φ = χ[0,1]. The
dynamics converges to a cluster formation (17 clusters), with each cluster separated by a
distance greater than 1.
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By uniform connectivity, μ ≤ ak�+1,k�
along each path and hence

(4.2)
μ

diam(GA)
|pi − pj |2 ≤

∑
k�∈Γij

ak�+1,k�
|pk�+1

− pk�
|2 ≤

∑
ij

aij |pi − pj |2,

and summation over all pairs yields

μ

diam(GA)

∑
ij

|pi − pj |2 ≤ N2
∑
ij

aij |pi − pj |2.

Now we recall our notation qi := pi − 〈p〉: invoking (2.19) we find

(4.3) λ2(LA) = min∑
qk=0

〈LAq,q〉
〈q,q〉 = min

p

(1/2)
∑

ij aij |pi − pj |2
(1/2N)

∑
ij |pi − pj |2 ≥ μ

Ndiam(GA)
.

Thus, the scaled connectivity factor μ/(Ndiam(GA)) ≥ μ/N2 serves as a lower bound
for the Fiedler number associated with the symmetric dynamics of (1.1) (counting the
number of “maximal” edges, it yields the slightly sharper lower bound λ2 ≥ 4μ/N2

[87]).
Using Theorem 2.11 we conclude the following result.
Theorem 4.2 (connectivity implies consensus: the symmetric case). Let P(t) =

{pk(t)}k be the solution of a symmetric self-organized dynamics

d

dt
pi(t) = α

∑
j �=i

aij(P(t))(pj(t)− pi(t)), aij = aji.

If P(t) remains connected in time with “sufficiently strong” connectivity μA(P(s)) > 0,
then it approaches the consensus 〈p〉(0), namely,

∨p(t) � exp

(
− α

N2

∫ t

0

μA(P(s))ds

)
∨p(0), ∨2

p(t) :=
1

N

∑
|pi(t)− 〈p〉(0)|2.

In particular, if P(t) remains uniformly connected in time (cf. (4.1)), then it ap-
proaches an emerging consensus, pi(t) → p∞ = 〈p〉(0), with a convergence rate

(4.4) ∨p(t) � e
−α

μ

N2
t ∨p(0) .

It is important to notice that Theorem 4.2 requires the intensity of connectivity to
be sufficiently strong: connectivity alone, with a rapidly decaying μ(t), is not sufficient
for consensus as illustrated by the following counterexample.

Counterexample. Consider the symmetric dynamics (1.2a) with five agents, x1,
. . . , x5, subject to initial configuration

(4.5) x1(0) = −x5(0), x2(0) = −x4(0), x3(0) = 0,

with (x4(0),x5(0)) to be specified below inside the box D := { 1
2 < x4 < 1 < x5 < 3

2}.
We fix the influence function φ(r) = (1 + r)2(1 − r)2χ[0,1], compactly supported on
[0, 1]; note that φ′(0) = φ′(1) = 0. By symmetry, the initial ordering in (4.5) is
preserved in time. In particular, x3(t) ≡ 0, and (x4(t),x5(t)) �→ (x(t), y(t)) preserve
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the original ordering, 1
2 < x(t) < 1 < y(t); the symmetric opinion dynamics (1.2a)

(with α = 5 for simplicity) is reduced to

(4.6)
ẋ = −φ(|x|)x + φ(|y − x|)(y − x),
ẏ = φ(|x− y|)(x− y).

An equilibrium for the system is given by x = y = 1. The eigenvalues of the linearized
system at (1, 1) are λ1 = 0 and λ2 = −2; therefore, the equilibrium is unstable. We
would like to prove that there exists an initial condition (x(0), y(0)) close to (1, 1)
which converges toward this unstable equilibrium. We use for this purpose a variant
of the antifunnel theorem [68].

�
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�
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���	 
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�

x1

1+ε

1

(x∗, y∗)
y

Dε

Fig. 6 Left: A solution of the symmetric model that stays connected but does not converge to a con-
sensus. Right: In phase space, the counterexample is a solution that stays in the antifunnel
D − ε enclosed by the curves α on its left, β on its right, and γ on top.

We study the phase portrait of the dynamical system (4.6) close to the unstable
equilibrium (1, 1). Take ε such that 0 < ε < 1

2 and consider the three curves (see
Figure 6)

α(s) = (2− s, s), β(s) = (1, s) for s ∈ (1, 1 + ε],

γ(s) = (2− s, 1 + ε) for s ∈ [1, 1 + ε].

We denote by Dε the domain enclosed by the three curves:

Dε = {2− y ≤ x ≤ 1 , 1 < y ≤ 1 + ε}.

Notice that on the domain Dε, we have ẏ < 0. Thus, given a solution of (4.6) starting
on γ, there are three possibilities: the solution exits the domain passing through the
curves α, or it exits passing through β, or it converges to the equilibrium (1, 1).

To prove the existence of solutions in the third category, we notice that the curves
α and β form an antifunnel for the dynamical system. Starting on the curve β, since
ẋ > 0, the solution exits the domain Dε (see Figure 6). Similarly, on the curve α,
since ẋ < ẏ, the solution exits the domain Dε as well.

We denote by γα the set of initial conditions contained in γ such that the solution
exits through α. The set γa is nonempty since (1− ε, 1+ ε) ∈ γa. Moreover, using the
same arguments as in [68], we find that γα is open. Similarly, we denote by γβ ⊂ γ
the set of initial conditions such that the solution exits through β and we deduce that

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

49
.1

69
.1

44
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HETEROPHILIOUS DYNAMICS ENHANCES CONSENSUS 599

γβ is open and nonempty. Since γα ∩γβ = ∅, by connectivity of the set γ, there exists
(x∗, y∗) which does not belong to γα∪γβ . Thus, the solution (x(t), y(t)) starting from
(x∗, y∗) stays in between α and β:

2− y(t) ≤ x(t) ≤ 1, 1 ≤ y(t) ≤ 1 + ε for all t ≥ 0.

Since y(t) is decreasing and lower bounded, y(t) converges: y(t)
t→∞−→ y∞. Moreover,

the solution (x(t), y(t)) is globally Lipschitz, thus ẏ converges to zero. Thus, combin-

ing (4.6) with φ(|y(t) − x(t)|)≥m> 0, we deduce that x(t)
t→∞−→ y∞. Since there is

only one equilibrium in the domain Dε, we necessarily have y∞ = 1, and therefore

(x(t), y(t))
t→∞−→ (1, 1).

4.2. Consensus in Local Nonsymmetric Opinion Dynamics. Next we consider
the question of consensus for the nonsymmetric opinion model (1.2b).

Theorem 4.3 (connectivity implies consensus: nonsymmetric opinion dynam-
ics). Let P(t) = {pk(t)}k be the solution of the nonsymmetric opinion dynamics
(1.2b) with compactly supported influence function, Supp{φ(·)} = [0, R),

σi
d

dt
xi(t) = α

∑
j

φij(xi(t)− xj(t)), σi =
∑
k

φik.

If P(t) remains uniformly connected in time in the sense that each pair of agents (i, j)
is connected through a path Γij such that2

min
k�∈Γij

φ(|xk�
− xk�+1

|) ≥ μ > 0 for all i, j,

then it has bounded time-variation and, consequently, P(t) approaches an emerging
consensus xi(t) → x∞ with a convergence rate

(4.7) |xi(t)− x∞| � e−αm(t−t0)[x(0)], m = min
r≤R/2

φ(r) > 0.

Proof. We introduce the energy functional

(4.8a) E(t) := α
∑
i,j

Φ(|xj(t)− xi(t)|), Φ(r) :=

∫ r

s=0

sφ(s)ds,

which is decreasing in time,

d

dt
E(t) = α

∑
i,j

φij〈ẋj − ẋi , xj − xi〉 = −2α
∑
i,j

φij〈ẋi , xj − xi〉(4.8b)

= −2
∑
i

〈ẋi , α
∑
j �=i

φij (xj − xi)〉 = −2
∑
i

σi|ẋi|2 ≤ 0.

To upper-bound the expression on the right of (4.8a), sum (1.2b) against xi to find

α

2

∑
i,j

φij |xi − xj |2 = −α
∑
i,j

φij〈xi − xj ,xi〉 =
∑

σi〈xi, ẋi〉(4.9)

≤
√∑

i

σi|xi|2
√∑

i

σi|ẋi|2 ≤ N max
i

|xi(0)|
√∑

i

σi|ẋi|2.

2Observe that here we measure connectivity in terms of the influence function φij rather than
the adjacency matrix aij as in (4.1); the two are equivalent up to an obvious scaling of the degree
σi.
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We end up with the energy decay

(4.10)
d

dt
E(t) ≤ −1

2
α2C2

0

⎛
⎝∑

i,j

φij |xi − xj |2
⎞
⎠

2

, C0 =
1

N maxi |xi(0)| .

Hence, since

∫ ∞
⎛
⎝∑

i,j

φij(t)|xi(t)− xj(t)|2
⎞
⎠

2

dt <
2

α2C2
0

E(0) < ∞,

the sum
∑

i,j φij(t)|xi(t) − xj(t)|2 must become arbitrarily small at some point in
time, namely, there exists t0 > 0 such that

(4.11)
∑
i,j

φij(t0)|xi(t0)− xj(t0)|2 ≤ μ

4N
R2,

and, by uniform connectivity (cf. (4.2)),

(4.12)
μ

N
|xi(t0)− xj(t0)|2 ≤

∑
k�∈Γij

φk�,k�+1
(t0)|xk�

(t0)− xk�+1
(t)|2 ≤ μ

4N
R2.

Thus, the dynamics at time t0 concentrate so that its diameter, [x(t0)] = maxi,j |xi(t0)
− xj(t0)| ≤ R/2, and, since [x(·)] is nonincreasing in time, [x(t)] ≤ R/2 thereafter.
Arguing along the lines of Proposition 2.8, we conclude that there is an exponential
time decay,

Naij ≥ φ(|xi(t)− xj(t)|) ≥ min
r≤[x(t)]

φ(r) ≥ min
r≤R/2

φ(r) = m, t > t0,

and consensus follows from Corollary 2.6.
The decreasing energy functional E(t) can be used to estimate the first “arrival”

time of concentration t0. To this end, observe that

Φ(|xj − xi|) =
∫ |xj−xi|

s=0

sφ(s)ds ≤ M

∫ |xj−xi|

s=0

sds = M
|xj − xi|2

2
, M := max

r
φ(r).

Using the assumption of uniform connectivity, there exists μ > 0 and a path Γij such
that

|xj − xi|2 ≤ N

μ

∑
k�∈Γij

φk�,k�+1
|xk�+1

− xk�
|2 ≤ N

μ

∑
ij

φi,j |xj − xi|2.

Combining the last two inequalities, we can upper-bound the energy E :

E =
∑
ij

Φij ≤ MN3

4μ

∑
ij

φi,j |xj − xi|2.

Hence, (4.10) implies the Riccati equation

d

dt
E(t) ≤ −1

2
α2C2

0

(
4μ

MN3
E
)2

= −Cμ2

N6
E2,
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which shows the energy decay

E(t) � 1

1 +
Cμ2t

N6

.

Thus, the arrival time of concentration t0 (4.11) is of the order of at most O(N7/μ3).
This bound on the first arrival time can be improved.3

We close this section by noting that the lack of a consensus proof for our non-
symmetric model of flocking dynamics (1.3b) is due to the lack of a proper decreasing
energy functional.

5. Heterophilious Dynamics Enhances Consensus: Simulations. As we noted
earlier, the large time behavior of local models for self-organized dynamics depends
on the details of the interactions, {aij}, and, in the particular case of local models
(3.1), on the profile of the compactly supported influence function φ. Here we explore
how the profile of φ dictates cluster formation in the opinion dynamics model (1.2b).
The numerical simulations presented in this section lead to the main conclusion that
an increasing profile of φ reduces the number of clusters {Ck}Kk=1. In particular, if
the profile of φ is increasing fast enough, then K = 1; thus, heterophilious dynamics
enhances the emergence of consensus.

In what follows, we employ a compactly supported influence function φ which is
a simple step function,

(5.1) φ(r) =

⎧⎨
⎩

a for r ≤ 1√
2
,

b for 1√
2
< r ≤ 1,

0 for r > 1.

The essential quantity here is the ratio b/a, which measures the balance between
the influence of “far” and “close” neighbors (see Figure 7). We initiate the opinion
dynamics (1.2b) with random initial configuration {xi(0)}i.

� �

�

�

�

���

Fig. 7 Influence functions φ used in the simulations. The larger b/a is, the more heterophilious is
the dynamics.

3In fact, the energy E(t) decays exponentially in time.
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Fig. 8 Simulation of the opinion dynamics model with different interacting functions φ. When the
influence of close neighbors is reduced (i.e., b/a is large), the number of cluster decreases.
For b/a = 10, the dynamics converges to a consensus.

5.1. 1D Simulations. We begin with four simulations of the 1D opinion dynam-
ics (1.2b) subject to 100 opinions distributed uniformly on [0, 10], the same initial
configuration as in Figure 3. To explore the impact of the influence step function
(5.1) on the dynamics, we used four different ratios, b/a = .1, 1, 2, and 10. As b/a
increases, we reduce the influence of the closer neighbors and increase the influence
of neighbors further away; thus, increasing b/a reflects the tendency to “bond with
the other.” As observed in Figure 8, the increase in the ratios b/a = .1, 1, 2, and 10
reduces the corresponding number of limit clusters to K = 6, 4, 2, and, for b/a = 10,
the dynamics converges to a consensus, K = 1. The simulations of Figure 8 indi-
cate that reducing the influence of closer neighbors, and hence increasing the weight
of the influence of neighbors further away, will favor increased connectivity and the
emergence of consensus.
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Fig. 9 Average number of clusters 〈S〉 depending on the ratio b/a. Left: The larger b/a is, the
fewer the number of clusters. The decay is logarithmic on [1, 10]. Right: For each value of
b/a, we run 100 simulations to estimate the mean number of clusters 〈S〉. Simulations are
run with Δt = .05 and a final time equal to t = 100 unit time.
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Fig. 10 The distribution of {xi}i in the simulation of Figure 8 with b/a = 10 at time t = 5.
The distance between two picks of density is around 1/

√
2 ≈ .7 space units. This distance

corresponds to the discontinuity of the function φ(r).

For a systematic analysis of the cluster formation dependence on the ratio b/a, we
made several simulations with random initial conditions for a given ratio b/a. Then,
we take an average of the number of clusters, denoted by 〈S〉, at the end of each
simulation (t = 100). To compute the number of clusters, we estimate the number of
connected components of the matrix A (3.10) using a depth-first search algorithm. As
observed in Figure 9, the number of clusters 〈S〉 decreases as b/a increases. Moreover,
〈S〉 approaches 1 when b/a approaches 10, implying that a consensus is likely to occur
when b/a is large enough.

5.2. Clusters and Branches. We revisit the opinion model (1.2b) with an influ-
ence step function (5.1). As noted above, increasing b/a increases the probability of
reaching a consensus. The simulations in Figure 8 with b/a = 2 and with b/a = 10
show the apparition of branches, where subgroups of agents have converged to the
same opinion; however in contrast to clustering, these branches of opinions are still
interacting with outsiders, which are at a distance strictly less than R = 1. In par-
ticular, when b/a = 10, the distribution of opinions {xi(t)}i aggregates to form the
distinct branches seen in Figure 8: at t ∼ 5, one can identify in Figure 10 the forma-
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Fig. 11 Initial condition with an equirepartition of {xi}i: |xi+1−xi| = .9 (left) and |xi+1−xi| = .6
(right). Nearest neighbors readjust their distance to 1/

√
2 ≈ .7 unit space; we observe a

concentration of the trajectories in the left graph and a spread of the trajectories in the
right graph.

tion of ten branches separated by a distance of approximately .7 spatial units. Since
the distance between two such branches is always less than the diameter R = 1 of φ,
these branches do not qualify as isolated clusters as they continue to be influenced
by “outsiders” from the nearby branches. Over time, these branches merge into each
other before they emerge as one final cluster, the consensus, at t ∼ 33. Thus, the
decisive factor in the consensus dynamics is not the number of branches, but their
large time connected components. Indeed, Figure 8 with b/a = 10 shows that the
agents in the different branches remain in the same connected component at distance
∼ .7, corresponding to the discontinuity of φ(·), which experiences a jump from .1 to
1 at 1/

√
2 ≈ .7.

To illustrate the apparition of the distance 1/
√
2 between two nearest branches,

we repeated the simulations, this time with special initial configurations where all the
opinions are uniformly spaced with |xi+1 − xi| = d∗ for 0 < d∗ < 1. As we observe in
Figure 11, the agents {xi}i readjust their “opinion” such that the distance between
nearest neighbors |xi+1 − xi| approaches 1/

√
2 as t � 1.

5.3. 2D Simulations. We made several 2D simulations with different influence
functions φ. As a first illustration, we made a 2D simulation with the same initial
configuration used in Figure 5, but this time we used the influence step function φ
in (5.1) with b/a = 10. In Figure 12, one can observe a concentration phenomenon
(from t = 0 to t = 2.5)—the opinions aggregate into five final clusters, compared with
the 17 clusters observed in Figure 5 with the influence function φ = χ[0,1]. Thus, as in
the 1D case, a more heterophilious influence function increases the clustering effect.

We also estimate the average number of clusters 〈S〉 depending on the ratio b/a.
As observed in Figure 13, 〈S〉 is a decreasing function of b/a and once again the decay
of 〈S〉 as a function of b/a ∈ [0, 10] is logarithmic.

6. Heterophilious Dynamics with a Fixed Number of Neighbors. Careful ob-
servations of starling flocks led the Rome group [26, 25, 24] to the fundamental conclu-
sion that their dynamics is driven by local interaction with a fixed number of nearest
neighbors. This motivates our study of nearest neighbor models for opinion dynamics
which take the form

(6.1a)
d

dt
xi = α

∑
{j: |j−i|≤q}

φij

σi
(xj − xi), xi ∈ R

d,
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Fig. 12 The heterophilious effect: Diminishing the influence of close neighbors relative to those
further away increases the clustering effect. 2D simulation of the opinion model (1.2b)
with M = 1000 agents using a step influence function φ = .1χ[0,1/

√
2] + χ[1/

√
2,1] leads to

five clusters which remain at the end of the simulation. This should be compared with 17
clusters with φ = χ[0,1] (see Figure 5).
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Fig. 13 Average number of clusters 〈S〉 depending on the ratio b/a in 2D (left). As in the 1D case,
the larger b/a is, the fewer the number of clusters, and the decay is logarithmic on [1, 10]
(right). For each value of b/a, we made 100 simulations to estimate the mean number of
clusters 〈S〉. Simulations were made with Δt = .05 and were recorded at the final time
t = 100.

where the degree σi is given by one of two forms, depending on the symmetric and
nonsymmetric versions of the opinion dynamics in (1.2):

(6.1b)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

symmetric case : σi =
1

2q
;

nonsymmetric case : σi =
∑

{j:|j−i|≤q}
φij .

Thus, each agent i is assumed to interact only with its 2q agents i− q, . . . , i+ q.
Typically, q is small (the observations in [26, 25, 24] report on six to seven active
nearest neighbors). We analyze the connectivity of the particular case of two nearest
neighbors, q = 1. Here we prove that such local models preserve connectivity and
hence converge to a consensus, provided the influence function φ is increasing. This
result supports our findings in section 5 that heterophilious dynamics is an efficient
strategy to reach a consensus.

6.1. A Fixed Number of Neighbors with Global Influence Function. We begin
by noting that the different approaches for consensus of global models apply in the
present framework of local nearest neighbor models (6.1). For example, consider the
nonsymmetric nearest neighbor model

(6.2) σi
d

dt
xi = α

∑
{j:|j−i|≤q}

φij(xj − xi), σi =
∑

{j:|j−i|≤q}
φij .

This admits an energy functional,

E(t) := α
∑

{i,j:|i−j|≤q}
Φ(|xj(t)− xi(t)|), Φ(r) :=

∫ r

s=0

sφ(s)ds,

which is decreasing in time, E(t) ≤ E(0), and we conclude the following result.
Theorem 6.1 (global connectivity). Consider the nearest neighbor model (6.2)

with an influence function φ, Supp{φ(·)} = [0, R), and assume αΦ(R) > E(0). Then

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

49
.1

69
.1

44
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HETEROPHILIOUS DYNAMICS ENHANCES CONSENSUS 607

min|i−j|≤q φij(t) > m∞, where m∞ := minr<R φ(r). Hence, the nearest neighbor
dynamics (6.2) remains connected and consensus follows.

Proof. Since E is decreasing in time,

αΦ(|xi(t)− xj(t)|) < E(0) ≤ αΦ(R) for any |i− j| ≤ q,

and since Φ(r) =
∫ r

sφ(s)ds is an increasing function, |xi(t) − xj(t)| < R, hence
φij > m∞ and consensus follows.

We note, however, that since m∞ ≤ φ ≤ 1, then Φ(r) has a quadratic bounds,
m∞r2 ≤ 2Φ(r) ≤ r2, and hence the assumption made in Theorem 6.1 implies

αΦ(R) > E(0) � R2 > m∞
∑

|i−j|≤q

|xi − xj |2.

In other words, the support of φ should be sufficiently large to cover a globally con-
nected path in phase space.

6.2. Two-Neighbor Dynamics. In this section we prove uniform connectivity
and hence convergence to a consensus of a symmetric two nearest neighbor model, as
in (6.1):

(6.3)
d

dt
xi =

α

2

(
κi+ 1

2
(xi+1−xi)+κi− 1

2
(xi−1−xi)

)
, κi+ 1

2
:=

{
0, i = 0, N,
φ(|xi+1 − xi)|), 1 ≤ i ≤ N.

We assume that the initial configuration of agents can be enumerated such that
{xi(0)}i is connected:
(6.4) max

i
|xi+1(0)− xi(0)| < R, Supp{φ(·)} = [0, R).

The configuration of such “purely” local interactions applies to the 1D setup where
each agent is initially connected to its left and right neighbors; we emphasize that
these configurations are not necessarily restricted to the 1D setup.

Forward differencing of (6.3) implies that Δi+ 1
2
:= Δi+ 1

2
(t) := xi+1(t) − xi(t)

satisfy

d

dt
Δi+ 1

2
=

α

2

(
κi+ 3

2
(xi+2 − xi+1)+κi+ 1

2
(xi−xi+1)−κi+ 1

2
(xi+1−xi)−κi− 1

2
(xi−1−xi)

)
=

α

2

(
κi+ 3

2
Δi+ 3

2
− 2κi+ 1

2
Δi+ 1

2
+ κi− 1

2
Δi− 1

2

)
, i = 1, 2, . . . , N − 1.

The missing Δ’s for i = 1
2 and i = N + 1

2 are defined as Δ 1
2
= ΔN+ 1

2
= 0. Let Δp+ 1

2

denote the maximal difference |Δp+ 1
2
| = maxi |Δi+ 1

2
| measured in the �2-norm. Then

1

2

d

dt
|Δp+ 1

2
|2 =

α

2

(
κp+ 3

2
〈Δp+ 3

2
,Δp+ 1

2
〉 − 2κp+ 1

2
|Δp+ 1

2
|2 + κp− 1

2
〈Δp− 1

2
,Δp+ 1

2
〉
)

≤ α

2

(
κp+ 3

2
− 2κp+ 1

2
+ κp− 1

2

)
|Δp+ 1

2
|2.

Now, if φ is a nondecreasing influence function, then

|Δp+ 1
2
| ≥ |Δi+ 1

2
| � 2κp+ 1

2
= 2φ(|Δp+ 1

2
|) ≥ φ(|Δp− 1

2
|) + φ(|Δp+ 3

2
|),

and hence |Δp+ 1
2
(t)| = maxi φ(|xi+1(t) − xi(t)|) ≤ maxi φ(|xi+1(0) − xi(0)|). We

deduce the following theorem.
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608 SEBASTIEN MOTSCH AND EITAN TADMOR

Theorem 6.2. Consider the nearest neighbor dynamics (6.3) subject to initial
configuration, x(0), which is connected (cf. (6.4)),

max
i

|xi+1(0)− xi(0)| < R, Supp{φ(·)} = [0, R).

Assume that the influence function, φ, is nondecreasing. Then the dynamics (6.3)
remains connected and converges to a consensus, x∞ = 〈x〉(0),
(6.5)∑

i

|xi(t)− 〈x〉(0)|2 � exp

(
−2φ(0)t

N

)∑
i

|xi(0)− 〈x〉(0)|2, 〈x〉 := 1

N

∑
i

xi.

It is important to notice that Theorem 6.2 requires a nondecreasing influence
function. Indeed, the steeper the increase of φ is, the better the connectivity is. This is
a concrete ramification of our main statement that heterophilious dynamics enhances
consensus. Note that a two nearest neighbor dynamics driven by a decreasing φ will
not guarantee consensus, as illustrated by the following counterexample.

Counterexample. We revisit the counterexample in section 4.1 of five agents
symmetrically distributed around x3(t) ≡ 0 with 1

2 < x4(t) < 1 < x5(t) <
3
2 , governed

by

ẋ4 = −φ(|x4|)x4 + φ(|x5 − x4|)(x5 − x4),

ẋ5 = φ(|x5 − x5|)(x4 − x5),

with a compactly supported influence function φ(r) = (1− r)2(1 + r)2χ[0,1]. Observe
that this configuration amounts to a two nearest neighbor dynamics. Its concentration
into three separate clusters {−1, 0, 1} shown in Figure 6 requires a rapidly decreasing
influence function (to be precise, φ(r)r ↓ for r ∼ 1), which is not covered by the two
nearest neighbor heterophilious dynamics sought in Theorem 6.2.

Proof. The adjacency matrix associated with (6.3), ẋ = α(Ax − x), is given by
the tridiagonal matrix A = {aij} given by

aij =

⎧⎪⎪⎨
⎪⎪⎩

1

2
κ i+j

2
, κ i+j

2
= φ(|xi − xj |), |i− j| = 1,

1− 1

2
κi, κi := φi,i+1 + φi,i−1, i = j.

The corresponding Laplacian associated with A is given by

(6.6) LA =
1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−κ1 κ 3
2

κ 3
2

−κ2 κ 5
2

κ 5
2

−κ3 κ 7
2

. . .
. . .

. . .

κN− 3
2

−κN−1 κN− 1
2

κN− 1
2

−κN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since |xi+1(t) − xi(t)| < R, the off-diagonal entries κi+ 1
2
= φ(|xi+1 − xi|) > 0 and,

hence, the graph GA = ({x(t)}, A(x(t))) remains connected with μ = mini κi+ 1
2
and

diam(GA) = N . By (4.3) we find

λ2(LA) ≥
mini κi+ 1

2

N2
≥ φ(0)

N2
.
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Using Theorem 2.11 (see (2.21)), we end up with

∑
i

|xi(t)− 〈x〉(0)|2 � e
−αφ(0)t

N2
∑
i

|xi(0)− 〈x〉(0)|2,

which concludes the proof.
Remark 6.3. The worst-case scenario for the decaying of |xi(t)−〈x〉| is to have

many opinions xi concentrate at two extreme values, with just one path of opinion
connecting the two extremes (see Figure 14).

x1 xNxi xi+1

Δi+ 1
2

Fig. 14 The worst-case scenario for the decaying of the norm of the vector Δ: the formation is
connected, but there are two large groups with extreme values.

7. Self-Alignment Dynamics with Discrete Time-Steps. Models for opinion
dynamics were originally introduced as discrete algorithms. In this section we there-
fore extend our results on the semidiscrete continuous opinion dynamics (1.2b) to the
fully discrete case,

(7.1)
xi(t+Δt)− xi(t)

Δt
= α

∑
j φij(xj(t)− xi(t))∑

j φij
.

In particular, for α = 1/Δt we find that xn
i = xi(nΔt) satisfies the Krause model

[11, 12, 75]

(7.2) xn+1
i =

∑
j φijx

n
j∑

j φij
, φij = φ(|xn

j − xn
i |).

In what follows, we study the properties of the discrete dynamics (7.2).

7.1. Consensus with Global Interactions. Many results of the continuous dy-
namics (1.2b) can be translated to the discrete dynamics (7.2). For example, the
convex hull of the opinions Ω (2.3) is still decreasing over time:

Ω(n+ 1) ⊂ Ω(n).

The discrete dynamics (7.2) will also converge to a consensus if initially all agents
interact with each other. More precisely, arguing along the lines of Proposition 2.8
gives the following result.

Theorem 7.1. Assume that m = minr∈[0,[x(0)]] φ(r) > 0. Then the diameter of
the discrete dynamics (7.2) satisfies

(7.3) [xn] ≤ (1−m)n[x0]
n→∞−→ 0,

and convergence to a consensus xn
i

n→∞−→ x∞ ∈ Ω(0) follows.
Proof. Using the contraction estimate (2.7) followed by the bound η

A
≥ maxθ θ ·

λ(θ) yields

[xn+1] ≤ (1− η
A
)[xn] ≤ (1− θ · λ(θ, tn))[xn], aij =

φij∑
� φ�j

.

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

49
.1

69
.1

44
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

610 SEBASTIEN MOTSCH AND EITAN TADMOR

Fix θ = m/N ; then Λ(θ) includes all agents, λ(θ, tn) = N , and we conclude

[xn+1] ≤ (
1−m

)
[xn],

which proves (7.3).

7.2. Clustering with Local Interactions. As in the continuous dynamics, we
would like to investigate the behavior of the discrete dynamics (7.2) with local inter-
actions; in particular, we are interested in the formation of clusters. Our aim is to
reproduce the discrete analogue of Proposition 3.1.

Proposition 7.2. Let Pn = {xn
k}k be the solution of the discrete opinion dynam-

ics (7.2) with compactly supported influence function Supp{φ(·)} = [0, R). Assume
that it approaches a steady state fast enough so that

(7.4)

∞∑
n=m

∑
i

|xn+1
i − xn

i | m→∞−→ 0.

Then {xn} approaches a stationary state, x∞, which is partitioned into clusters,
{Ck}k, such that {1, 2, . . . , N} = ∪K

k=1Ck and

(7.5) xn
i −→ x∞

Ck
for all i ∈ Ck.

Proof. By assumption (7.4),

|xn2

i − xn1

i | ≤
n2−1∑
n=n1

|xn+1
i − xn

i | � 1 for n2 > n1 � 1,

and hence xn approaches a limit, xn
i

n→∞−→ x∞
i . The discrete dynamics (7.2) can be

written in the following form:∑
j

φij

(
xn+1
i − xn

i

)
=
∑
j

φij(x
n
j − xn

i ).

Taking the scalar product against xn
i , summing in i, and using the symmetry of φij

yields

∑
ij

φij

〈(
xn+1
i − xn

i

)
,xn

i

〉
=
∑
ij

φij〈xn
j − xn

i , xn
i 〉 = −1

2

∑
ij

φij |xn
j − xn

i |2.

Since φij , x
n
i , and, by assumption, the tail

∑∞
m |xn+1

i −xn
i | are bounded, we conclude

that the sum on the right converges to zero,

φij |xn
j − xn

i |2 n→∞−→ φ(|x∞
j − x∞

i |)|x∞
j − x∞

i |2 = 0.

Hence, either x∞
j and x∞

i are in separate clusters, |x∞
j − x∞

i | > R, or they are in the

limiting point of the same cluster, say, i, j ∈ C�, so that x∞
j = x∞

i .
We now turn our attention to the convergence toward consensus for the discrete

dynamics (7.2). As for the continuous dynamics (1.2), there exists a Lyapunov func-
tional energy for the dynamics under the additional assumption that the influence
function φ is nonincreasing. Consequently, we deduce the analogue of Theorem 4.3
for the discrete dynamics.

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

49
.1

69
.1

44
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HETEROPHILIOUS DYNAMICS ENHANCES CONSENSUS 611

Theorem 7.3. Let Pn = {xn
k}k be the solution of the discrete opinion dynamics

(7.2) with nonincreasing, compactly supported influence function Supp{φ(·)} = [0, R).
If Pn remains uniformly connected for any n, then Pn converges to a consensus.

Proof. First, we prove that the energy functional En is also a Lyapunov function
for the discrete dynamics:

(7.6) En :=
∑
ij

Φ(|xn
j − xn

i |), Φ(r) =

∫ r

0

sφ(s)ds.

Introducing ϕ(r2) = Φ(r), we have ϕ(r) =
∫√

r

0
sφ(s)ds = 1

2

∫ r

0
φ(
√
y)dy. By assump-

tion, φ is nonincreasing, thus ϕ is concave-down. Therefore,

En+1 − En =
∑
ij

ϕ(|xn+1
j − xn+1

i |2) − ϕ(|xn
j − xn

i |2)

≤ 1

2

∑
ij

φ(|xn
j − xn

i |)
(|xn+1

j − xn+1
i |2 − |xn

j − xn
i |2
)
.

Using |a|2 − |b|2 = 〈a− b , a+ b〉, we deduce

En+1 − En ≤ 1

2

∑
ij

φij〈Δtx
n
j −Δtx

n
i , x

n+1
j − xn+1

i + xn
j − xn

i 〉

=
∑
ij

φij〈Δtx
n
j , xn+1

j − xn+1
i + xn

j − xn
i 〉,

since φij = φji. Writing xn+1
j = xn

j +Δtx
n
j , we obtain

En+1 − En ≤
∑
ij

φij〈Δtx
n
j , 2(x

n
j − xn

i ) + Δtx
n
i −Δtx

n
j 〉.

Combining with the equality

(7.7)
∑
j

φijΔtx
n
i =

∑
j

φij(x
n
j − xn

i ),

we conclude

En+1 − En ≤
∑
ij

φij〈Δtx
n
i , −Δtx

n
i −Δtx

n
j 〉 = −

∑
ij

φij |Δtx
n
i |2,

where we use once again the symmetry of the coefficients φij . Thus, En is decaying.
Now, we would like to combine the decay of En and the strong connectivity of

Pn. Noting σi =
∑

j φij , the equality (7.7) yields

1

2

∑
i,j

φij |xn
j − xn

i |2 =
∑
i

σi〈xn
i ,Δtx

n
i 〉 ≤ N max

i
|x0

i |
√∑

i

σi|Δtxn
i |2.

Thus,

En+1 − En ≤ −C2
0

⎛
⎝∑

i,j

φij |xn
j − xn

i |2
⎞
⎠

2

, C0 =
1

2N maxi |xi(0)| .

Summing in n, we deduce that the sum
∑

i,j φij |xn
j − xn

i |2 becomes arbitrarily small.

To conclude, we proceed as in the proof of Theorem 4.3.
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612 SEBASTIEN MOTSCH AND EITAN TADMOR

7.3. Numerical Simulations of Discrete Dynamics. In this section we illus-
trate the difference between the continuous opinion models (1.2b) and its discrete
version (7.2). To this end, we run in parallel numerical simulations of the discrete
and continuous models subject to the same initial conditions.

First, we run a simulation with an influence function φ = χ[0,1] (see Figure 15).
Discrete and continuous dynamics are very similar, except that there are three branches
in the continuous dynamics which are not present in the discrete dynamics. For this
reason, at the end of the simulation, we count four clusters in the discrete dynamics
and only three in the continuous version.
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Fig. 15 Simulations of the discrete (top) and continuous (bottom) dynamics with φ = χ[0,1], starting
with the same initial condition. Although the two simulations are very similar, the discrete
dynamics yields four clusters, whereas the continuous dynamics gives three. We use a
time-discretization of Δt = .05 to simulate the continuous dynamics.

Next we use the influence function (5.1) φ = aχ[0,1/
√
2] + bχ[1/

√
2,1] with b/a =

10. Here, the discrete and continuous dynamics give very different results shown
in Figure 16. As we have seen previously, the continuous dynamics converges to a
distribution with uniformly spaced clusters and then reaches a consensus. In contrast,
the discrete dynamics does not stabilize. Order between the opinions {xi}i is no longer

D
ow

nl
oa

de
d 

03
/0

9/
15

 to
 1

49
.1

69
.1

44
.2

34
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

HETEROPHILIOUS DYNAMICS ENHANCES CONSENSUS 613

�

�

�

�

�

��

� � �� �� �� �� �� �� ��

�
��
��
��
�
	



���	 
��

�������� ������ �� � ��

�

�

�

�

�

��

� � �� �� �� �� �� �� ��

�
��
��
��
�
	



���	 
��

���������� ������ �� � ��

Fig. 16 Simulations of the discrete (top) and continuous (bottom) dynamics with φ = .1χ[0,1/
√

2] +

χ[1/
√

2,1], starting with the same initial condition. In contrast with Figure 15, the two

models produce very different output. There is no uniformly spaced formation in the discrete
model: we only observe cluster formation.

preserved, and trajectories do cross. Even though the total number of clusters has
been diminished with b/a = 10 (from four to three clusters), the effect of the ratio
b/a on the clustering formation is less pronounced in the discrete dynamics.

8. Mean-Field Limits: Self-Organized Hydrodynamics. When the number of
agents N is large, it is convenient to describe the evolution of the resulting large
dynamical systems as a mean-field equation. We limit ourselves to a few classic general
references on this topic [27, 57, 101] and a few recent references in the contexts of
opinion hydrodynamics [18, 105] and flocking hydrodynamics [21, 22, 40, 61, 73, 84,
88].

8.1. Opinion Hydrodynamics. To derive the mean-field limit of the opinion dy-
namics model (1.2b), we introduce the so-called empirical distribution ρ(t,x),

ρ(t,x) :=
1

N

N∑
j=1

δxj(t)(x),
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614 SEBASTIEN MOTSCH AND EITAN TADMOR

where δ is a Dirac mass and {xj(t)}j is the solution of the consensus model (1.2b).
Expressed in terms of this empirical distribution, the nonsymmetric model (1.2b)
(with α = 1) reads

(8.1) ẋi =

∫
y φ(|y − xi|)(y − xi)ρ(t,y) dy∫

y φ(|y − xi|)ρ(t,y) dy =
(φ(|y|)y ∗ ρ)(xi)

(φ(|y|) ∗ ρ)(xi)
.

This equation describes the characteristics of the density ρ. Indeed, integrating ρ
against a test function ϕ yields4

d

dt

(
ρ, ϕ

)
=

d

dt

⎛
⎝ 1

N

N∑
j=1

ϕ(xj(t))

⎞
⎠ =

1

N

N∑
j

〈ẋj(t),∇xϕ(xj(t))〉.

Using the expression (8.1), we deduce

d

dt
(ρ, ϕ) =

1

N

N∑
j=1

〈
φ(|y|)y ∗ ρ(xj)

φ(|y|) ∗ ρ(xj)
,∇xϕ(xj(t))

〉
=

(
ρ,

〈
φ(|y|)y ∗ ρ
φ(|y|) ∗ ρ ,∇xϕ

〉)

=

(
−∇x ·

(
φ(|y|)y ∗ ρ
φ(|y|) ∗ ρ ρ

)
, ϕ

)
.

Thus, ρ = ρ(t,x) satisfies a continuum transport equation,

(8.2a) ∂tρ+∇x · (ρu) = 0 with u(x) =

∫
y φ(|y−x|)(y−x) ρ(y) dy∫

y φ(|y−x|) ρ(y) dy .

This is the hydrodynamic description of the agent-based opinion model (1.2b). Simi-
larly, the opinion hydrodynamics of the corresponding symmetric model (1.2a) (with
α = 1) amounts to the aggregation model [8, 18]

(8.2b) ∂tρ+∇x · (ρu) = 0 with u(x) = ∇Φ ∗ ρ.

We note that the transport equations (8.2) are nonlinear due to the dependence of
the velocity field u = u(ρ). The main features of the particle description for opinion
dynamics (1.2) carry over to the hydrodynamic model (8.2). Thus, for example, the
symmetric model (8.2b) preserves the center of mass, d

dt

(∫
x xρ(t,x) dx

)
= 0, whereas

the nonsymmetric model (8.2a) does not. We distinguish between the two cases of
global and local interactions.

The existence of regular solutions of the symmetric aggregation model (8.2b) for
bounded decreasing φ such that |φ′(r)r| � φ(r) was proved in [8]. This holds inde-
pendently, whether or not φ is global. Moreover, if the kernel φ is globally supported,
then one can argue along the lines of the underlying agent-based model (8.1) to prove
convergence of the hydrodynamics toward a consensus, that is, ρ(t,x) converges to
a single point asymptotically in time. If φ is compactly supported, however, then
the velocity field u need not be continuous with respect to ρ due to the singularity
when

∫
y φ(|y−x|) ρ(y) dy = 0. Then existence and uniqueness of solutions of the

nonsymmetric model (8.2a) cannot be obtained through a standard Picard’s iteration
argument. The large time behavior of the dynamics in this local setup is completely

4(·, ·) denotes the duality bracket between distributions and test functions.
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open. As in the agent-based dynamics, the generic solution ρ(t,x) is expected to
concentrate in finitely many clusters, or “islands”; in particular, under appropriate
assumptions on the persistence of connectivity among these islands, one may expect
a consensus. Preliminary simulations show that cluster formation tends to persist for
the hydrodynamic model, but analytical justification remains open.

8.2. Flocking Hydrodynamics. We study the second-order flocking models (1.3)

in terms of the empirical distribution fN(t,x,v) := 1
N

∑N
j=1 δxj(t)(x) ⊗ δvj(t)(v),

where δx ⊗ δv is the usual Dirac mass on the phase space R
d × R

d. Consider the
nonsymmetric particle model system for flocking (1.3b): expressed in terms of fN , it
reads

dxi

dt
= vi,

dvi

dt
= αF [fN ](xi,vi), F [f ](x,v) := α

∫
y,w φ(|y−x|) (w−vi) f(y,w) dydw∫

y φ(|y−x|) f(y,w) dydw
,

which leads to Liouville’s equation,

(8.3) ∂tf + v · ∇xf +∇v · (F [f ] f) = 0.

Integrating the empirical distribution fN in the velocity variable v yields the hydro-
dynamic description of flocking, expressed in terms of the density and momentum
distributions of particles:

ρ(t,x) =

∫
v

f(t,x,v) dv

⎛
⎝corresponding to

1

N

N∑
j=1

δxj(t)(x)

⎞
⎠ ,

ρ(t,x)u(t,x) =

∫
v

vf(t,x,v) dv

⎛
⎝corresponding to

1

N

N∑
j=1

vj(t)δxj(t)(x)

⎞
⎠ .

Integrating the kinetic equation (8.3) against the first moments (1,v) yields the system
(cf. [61, 22, 88])

∂tρ+∇x · (ρu) = 0,(8.4a)

∂t(ρu) +∇x · (ρu⊗ u+P) = αρ(u− u).(8.4b)

The expression on the right of (8.4b) reflects alignment: the tendency of agents with
velocity u to relax toward the local average velocity, u(x), dictated by the normalized
influence function a(x,y),

(8.4c) u(x) :=

∫
y

a(x,y)ρ(y)u(y) dy,

∫
y

a(x,y)ρ(y) dy = 1.

This includes, in particular, the hydrodynamic description of the symmetric and non-
symmetric flocking models, given, respectively, by

a(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

φ(|y − x|), C-S model (1.3a),

φ(|y − x|)∫
y
φ(|y − x|)ρ(y) dy , nonsymmetric model (1.3b).

The system (8.4) is not closed since the equation for ρu (8.4b) depends on the
third moment of f , which is encoded in the pressure term P :=

∫
v
(v − u) ⊗ (v −
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u)f(t,x,v) dv. If we neglect the pressure (in other words, assume a monophase distri-
bution, f(t,x,v) = ρ(t,x) δu(t,x)(v) so that P ≡ 0), then the flocking hydrodynamics
(8.4) is reduced to the closed system

(8.5)

⎧⎨
⎩

∂tρ+∇x · (ρu) = 0,

∂tu+ (u · ∇x)u = α(u− u).

The question of an emerging flock in (8.5) follows along the lines of our discussion
on the underlying agent-based models (1.3). The case of a global influence function
is rather well understood: in particular, regularity of the 1D “incompressible” case,
ρ ≡ 1, depends on an initial critical threshold [81, 96]. Flocking hydrodynamics
governed by a locally supported influence function requires a more intricate analysis,
due to the realistic presence of a vacuum [102]. The hydrodynamic description of
self-organized dynamics gives rise to systems like (8.5) which involve nonlocal means.
Questions of regularity and quantitative behavior of such systems provide a rich source
for future studies.

9. Further Reading on Self-Organized Dynamics. In this paper we discussed
fundamental aspects which arise in the context of flocking and opinion dynamics, as
prototype models for self-organized dynamics. Specifically, we focused on the emerg-
ing large time behavior of self-alignment and we highlighted a few open questions
aiming to attract further mathematical studies in this direction. The much broader
subject of self-organized dynamics lies at the crossroads of several fields. A compre-
hensive review of the subject is beyond the scope of this paper, in particular, as it
continues to attract an increasing amount of attention reported in a rapidly growing
literature. Instead, we refer the interested reader to a selection of references outlined
below. As with all multidisciplinary fields, the work on self-organized dynamics can
be classified into several different categories. We shall mention five of them.

Different Disciplines. A natural classification is offered by the underlying topic.
Many models of self-organized dynamics are driven by examples from biology: these
include aggregation of bacteria and amoeba [6, 51, 59, 74, 98], dynamics of insects
[14, 33], schools of fish [1, 67, 111], flocking of birds [4, 26, 25, 24, 36, 37, 61, 93,
103, 107], and related models in ecology [58]. Self-organized dynamics is found in
many other areas, from pedestrian and traffic dynamics [64, 92], social networks and
economics [48, 66, 69, 77, 83], complex networks [5, 44, 91], and opinion dynamics
[7, 23, 42, 49, 50, 63, 75, 105, 110, 109], all the way to applications in marketing
[2, 3], production networks [94], robotics [32, 71, 112], and materials [99, 85], and in
somewhat more esoteric examples such as gossiping [13], collective motion at heavy
metal concerts [100], and self-organized phases in the Tour de France [106].

Different Models. Together with the different contexts come different models of
self-organized dynamics. We mention a few of the more notable ones: the Krause
model for opinion dynamics [75] and the follow-up works in [12, 18, 63, 76, 82]; the
Axelrod models for marketing [2] and the influential models for “flocking” (at various
“levels”) of Aoki, Reynolds, and Couzin [1, 33, 35, 80, 93, 111], Vicsek et al. [107],
and the follow-up works in [40, 41, 70]; the C-S model [36, 37] and related works in
[10, 21, 60, 61, 62, 73, 88, 97]; and the StarFlag project [4, 26, 25, 24].

Different Scales. Different models of self-organized dynamics are realized at dif-
ferent scales. As examples of agent-based models (also known as individual-based
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models (IBMs)), we mention [7, 33, 58, 75, 79, 90, 93]. Their mean-field limit leads
to a kinetic description [20, 21, 49, 61, 105], and macroscopic averaging then leads to
a hydrodynamic-scale description as in [15, 22, 40, 41, 51, 73, 74, 78, 84, 85, 102].

Different Approaches. In this paper, we have focused our attention on math-
ematical aspects which explain the large time behavior of self-alignment models.
The study of general models for self-organized dynamics includes several different
approaches. Classified by the tools of the trade, we mention statistical mechanics
[10, 23, 101], clustering and spectral theory of graphs [15, 31, 32, 70, 90], optimization
and control [39, 43, 44, 71, 72, 91, 112], game theory [5, 65], jump processes, nonlinear
Markov chains, and stochastic analysis [15, 52, 66, 107].

Different Patterns. One of the most intriguing features of self-organized dynam-
ics is the formation of different patterns. In this paper, we have limited ourselves
to the simple pattern of “consensus” (or a “flock”), but the class of possible pat-
terns is much richer. We mention the examples of swarming and mill-like vortices
[17, 20, 22, 47, 50, 78, 79, 80, 98, 104], phase transition [55, 107], aggregation [15],
biotic colonies [6, 74], lattices [89], leaders [34, 97], shocks [9, 102], and related issues
which arise in the context of control and stability [11, 47, 72, 79].

Finally, we recommend several reviews on self-organization [16, 23, 51, 66, 109] and,
in particular, the most recent comprehensive review of Vicsek and Zefeiris [108].

Acknowledgment. We thank the anonymous referee who brought to our atten-
tion several references which helped improve an earlier version of the paper.
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