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Synchronization of neuronal activity is associated with neurological disorders such as epilepsy.

This process of neuronal synchronization is not fully understood. To further our understanding, we

have experimentally studied the progression of this synchronization from normal neuronal firing to

full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-

Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the

neurons in the ring were either unsynchronized or completely synchronized when locally coupled

in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate

state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dy-

namical disease but also a topological disease, strongly tied to the connectivity of the underlying

network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none”

phenomenon, but can pass through an intermediate stage (chimera). VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4905856]

Synchronization is a universal phenomenon observed in

natural systems ranging from mechanical oscillators to

hormonal cycles in the body to the synchronized flashing

seen in fireflies. In the brain, synchronization is often asso-

ciated with epileptiform behavior. Epilepsy, one of the

most common neurological disorders, can affect memory,

motor function, and consciousness. It is associated with

synchronous discharge of the neurons in a brain region

termed the epileptic focus.1 This collective firing (observed

in EEG as interictal spikes) is usually considered to arise

suddenly and spontaneously. However, recent theoretical2,3

and experimental4,5 results from nonlinear dynamics sug-

gest that the process of synchronization can be a more com-

plex phenomenon. Here, we explore the two hypotheses

that such synchronization may be caused by the connectiv-

ity of the underlying network of neurons and that the syn-

chronization need not be all or none, but alternatively may

pass through an extended, partially synchronized state (chi-
mera). Experimentally, we employ a physical network of

nine electronic Fitzhugh-Nagumo neurons
6,7

arranged in a

ring, modified by introduction of a single, weak, and long-

range interaction. Advantages to this approach are that the

“neurons” are actual physical constructs, with all the

imprecision and noisiness which that implies, and the inter-

connections between the neurons are under our control.

I. INTRODUCTION

The Fitzhugh-Nagumo description6,7 of the neuron,

based on the seminal work of Hodgkin and Huxley,8 captures

the fundamental excitability and oscillatory dynamics of a

neuron9 without requiring the complexity of the full

Hodgkin-Huxley model.

We employ the equations used by Izhikevich10

_Vi ¼ Viða� ViÞðVi � 1Þ � wi þ I þ
Xj¼N

j¼1;j6¼i

GijðVj � ViÞ;

_wi ¼ bVi � cwi; (1)

where Vi is the membrane voltage and wi is a recovery vari-

able mimicking the activation of an outward current. The

constant a describes the overall shape of the voltage curve,

while the constants b � 0 and c � 0 describe the recovery

variable’s kinetics. The current I represents injected current

and is set to zero for this experiment. The neurons are

coupled to each other via coupling strengths Gij. The sub-

script i (1 � i � N) indexes the neurons in the chain.

As shown in Fig. 1(a), we connected 9 neurons in a ring

and, for the initial part of this paper, we chose to make the

coupling symmetrical. Thus, Gij ¼ Gji � G only if j ¼ i61,

otherwise zero. To complete the ring, we must also add the

connection G19 ¼ G91 � G. The detailed electronic imple-

mentation is detailed below. This is similar to the experiment

of Gambuzza et al.11 in that we use a ring of electronic

Fitzhugh-Nagumo neurons; however we constructed the

symmetry-broken ring with an odd number of neurons and a

single small-world-type link with weak coupling.

Additionally their inter-neuron coupling is accomplished via

the recovery variable, while we couple the neurons via the

voltage variable.

II. EXPRESSION OF THE FITZHUGH-NAGUMO
NEURON IN DISCRETE ELECTRONICS

For the purposes of implementing these neurons, it is

useful to rewrite Eqs. (1) as

_Vi ¼ �V3
i þ V2

i þ aðV2
i � ViÞ � wi þ I þ

Xj¼N

j¼1;j 6¼i

GijðVj � ViÞ;

_wi ¼ bVi � cwi: (2)

a)Current address: Electrical Geodesics, Inc., 500 E. 4th Ave., Eugene,

Oregon 97401, USA.
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The circuit implementing Eqs. (2) for a single neuron is

shown in Fig. 2. Begin at the upper left, where a voltage �V
is introduced. (For clarity, we drop the subscript i indexing

the different neurons.) The voltage is passed through op amp

(1.1) to change the sign of the voltage. Then the voltage is

introduced into the two positive terminals of an Analog

Devices 734 high speed, four-quadrant analog multiplier

with a 100 MHz bandwidth. The output is the product of the

two input voltages scaled down by a factor of 10. Thus, the

output from the multiplier labeled (A) is V2/10. This voltage

is then scaled back up by a factor of 10 by passing it through

op amp (1.2). (Op amps add/subtract as well as rescale. The

scaling is determined by the values of the nearby resistors.

Here, we use the Analog Devices 704 quad op amp.) The

FIG. 1. Neuronal coupling. (a) Overall schematic of nonlocal coupling. As a control, all nine neurons were connected in a ring (bidirectional coupling) with

the same coupling strength, G¼ 0.0087. For testing our hypothesis, an additional connection from neuron 1 to neuron 5 was added, with coupling strength

G0 ¼ 0.000169; other parameters are a� threshold value between periodic firing and not firing (varies slightly by neuron), b¼ 0.32, c¼ 0.32, I¼ 0. (b)

Coupling circuit using an op-amp (3.1) as a subtractor feeding into a voltage divider with a resistor and a digital potentiometer.

FIG. 2. Circuit diagram of electronic FitzHugh-Nagumo neuron. A, B, C, D, and E represent analog multipliers; 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 2.1, and 2.2 are

quad op-amps; the time constants sV¼ 10 ls and sw¼ 10 ms were chosen to yield a 3 ms refractory period.
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resulting V2 and the original V are input to another AD734

multiplier (B) to obtain V3/10, which is then rescaled by a

factor of �10 to obtain �V3 at the output of op amp (1.3).

This is the first term on the right hand side of the V equation.

In this way each term of the equation can be built up. Figure

2 has been labeled to show the values of V or w at each stage

of the circuit.

Since these are first-order differential equations, we

need to integrate the terms on the right hand side once they

have been added together to form _Vi. Op amp (1.4) performs

this integration because the feedback around it is accom-

plished with a capacitor rather than a resistor. The output is

�Vi.

The use of capacitors has another implication as well:

time constants are introduced into the neuron. The integrat-

ing op amp (1.4) has a time constant sV of 10 ls and op amp

(2.2) has a time constant sw of 10 ms. These were chosen to

mimic a real neuron having a refractory period of approxi-

mately 3 ms.12

In similar fashion, the w equation can also be con-

structed, as shown in the lower half of the figure. The con-

stants a, b, and c are set by dividing a voltage (�15 to þ15 V

in the case of a, 0 to 15 V in the case of b and c) via

potentiometers.

The parameters b and c, and the coupling strength G
were set using a programmable digital potentiometer, the

Analog Devices 7376. This is a 128-position, digitally con-

trolled variable resistor controlled by a National Instruments

USB 6289 Multifunction Data Acquisition device (DAQ).

Both neuronal variables were sampled at 10 kHz using the

18-bit analog inputs on the same device. National Instruments’

LabVIEW program controlled the DAQ to vary b and c, and the

coupling parameter G. A series resistor was added before each

AD7376 to increase the resolution of the parameter G. A me-

chanical potentiometer was used to vary the parameter a.

Essential parts of the construction are the long lines run-

ning along the bottom from the output of op amp (1.4) to the

input of op amp (1.1) as well as the line above it running

from op amp (2.2) to the input of analog multiplier (E).

These connect the output voltages to the input voltages and

implement the “equal signs” in the V and the w equations,

respectively.

External inputs such as I and/or coupling to other neu-

rons is done via the “hanging leads” at the lower right of the

figure.

The neurons were weakly coupled by an op-amp config-

ured as a subtractor and a digital potentiometer to vary the

coupling strength between the neurons. Figure 1(b) shows

how the voltage of two neurons Vi and Vj is subtracted and

then multiplied by the coupling parameter (G). Isolation

amplifiers were inserted so that, while all neurons share the

same parameter value, no crosstalk from one neuron to

another is allowed through the parameter circuitry.

Figure 1(a) depicts the initial connection topology in

green, with an optional nonlocal link shown in red. The cou-

pling value, G¼ 0.0087, is in the weak coupling limit.13

Note that the coupling strength of the additional link G0 is

one and a half orders of magnitude weaker than the nearest

neighbor coupling, G.

III. RESULTS

The parameters for each neuron were individually

selected to place the neuron approximately at threshold, the

point at which spontaneous firing begins. This individual treat-

ment is required because these are actual physical objects;

imperfections and variances are inherent in the electronic

components. Data were taken on each neuron individually and

then the neurons were coupled into the ring topology.

Synchronization arises as the appearance of a relation

between phases and frequencies. To find the instantaneous

phase of the data, we reconstructed the phase of the signal

via the Hilbert transform14

1ðtÞ ¼ VðtÞ þ jVHðtÞ ¼ AðtÞe juðtÞ; (3)

where V(t) is voltage and VH(t) is its transform. (Here, j
denotes the imaginary number and should not be confused

with the index j used previously.) A(t) and uðtÞ are the result-

ing amplitude and phase, respectively.14

For the array of neurons with only nearest neighbor cou-

pling, the array was unsynchronized when the coupling G
was zero. As G was increased to about 0.01, the neurons

synchronized, with increasing G leading to a decreasing

spread in the phase angles of the neurons.

Now consider the case where a single long-range con-

nection is added. This arrangement, known as small-world
coupling,15 radically changes the behavior of the network.

Starting from a completely desynchronized state, as the cou-

pling parameter G was increased, some of the oscillators

synchronized; while the rest synchronized into a separate

group that was desynchronized from the first. Individual neu-

rons would remain with their group for a while, but would

then move into synchronization with the second group.

Migration from the second group to the first also occurred.

This was not a transitory effect, but rather was stable over

the length of the experiment and is a hallmark of a chi-
mera.2–5 Examples of this phase clustering are shown for

specific times in Fig. 3.

A much better understanding of the dynamics of the

array can be gleaned from the movies included in the supple-

mentary material.16 The movies are presented in temporal

order, covering the frames (times) 3500 to 4600, frames

9600 to 10 100, frames 1 100 300 to 1 101 500, and finally

frames 2 003 000 to 2 004 000.

The actual circuit boards are also presented in the sup-

plementary material.16 In this picture, a single neuron is out-

lined in the upper center. The circuitry for the parameters a,

b, and c is outlined in the lower left of the picture and the

coupling circuitry (G) is outlined in the lower right. The

“untidiness” of the longer wiring serves to minimize stray

capacitive coupling.

We have calculated the order parameter of the array in

the standard fashion

O tð Þ ¼ 1

N

XN

k¼1

ej/k tð Þ; (4)

where O(t) is the order parameter at time t (in units of frame

number), /k(t) is the phase of oscillator k at time t, and N¼ 9
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is the total number of oscillators. Among other things, the

order parameter is a good indicator of when transients due to

experimental startup have dissipated. Fig. 4 shows a plot of

the magnitude of order parameter as a function of coupling.

Unsurprisingly, this run-averaged order increases as the near-

est neighbor coupling increases. Of more interest is the varia-

tion in the order parameter as a function of time (Fig. 4, right).

The order varies in a complex fashion, with occasional large

FIG. 3. Synchronization phase plots. (Left) Polar plots showing the phases (in degrees) of all oscillators at two different instants of time. (Right) Instantaneous

spatial distribution of the corresponding phases of the oscillators in radians. Note that in the top frame, neurons 9, 1, and 2 are synchronized, while the rest are

form a separately synchronized group. In the bottom frame, neurons 6, 7, 8, 9, and 1 are synchronized. Neuron 6 is caught in a transition from one group to

another. The parameters and the coupling constants are the same as in Fig. 1.

FIG. 4. (Left) Order parameter (averaged over the entire length of each run) as a function of the nearest neighbor coupling. Different values of the small world

coupling did not significantly affect the order. (Right) Expanded view of the parameter at the coupling values denoted by the circle in the left pane.
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excursions from order to disorder and back whenever an indi-

vidual oscillator migrates from one group to another. We

speculate that the smaller, more regular excursions represent

internal modes of the group of oscillators.

Kuramoto and Battogtokh2 first theorized the existence

of chimeras when studying non-locally coupled systems.

Since the first experimental observations of chimeras, one in

an optical system by Hagerstrom et al.4 as well as in chemi-

cal oscillators by Tinsley et al.,5 there have been many other

papers and reviews on the subject.

Dudkowski et al.17 have begun to classify the different

types of chimera states observed in the literature. However,

they consider either maps or a driven system (the Van der

Pol oscillator), while our system is both experimental and

undriven. Their techniques are difficult to apply to a noisy

experimental system.

Panaggio and Abrams18 have done a systematic review

of the field and have collected several references on “bump-

states” in neural networks. However, the observation of chi-

meras in such networks has not been reported until

Gambuzza11 and the current work.

IV. CONCLUSIONS

We have already mentioned the paper by Gambuzza

et al.11 Their results differ from ours in that we do not see

chimeras unless small world coupling is introduced. This dif-

ference may be due to the radically different types of cou-

pling employed. However, both papers have shown that

chimeras can be seen in neuronal systems, but there seems to

be a complex and sensitive dependence on the type and

range of the coupling.

We report three primary results. First, the introduction

of a single, weak long-distance connection G0 can transform

the behavior of the neuronal network as a whole from all-or-

nothing synchronization to a situation where chimeric behav-

ior arises. That this transformation can occur in an array with

neurons that are “normal” and roughly identical suggests that

the synchronization seen in interictal spikes may be due to

the topology of the interneuron connections and need not

involve any pathology of the individual neurons themselves.

Second, the process of neuronal synchronization seen

during the development of interictal spikes prior to epilepti-

form behavior need not be an “all or nothing” affair. Rather,

we show that the synchronization may proceed through inter-

mediate (chimeric) stages. This has implications both for the

prediction of seizures as well as for possible electrical

interventions.

Speculatively, grand mal seizures (or tonic-clonic seiz-

ures) are a class of seizure in which discharges involve syn-

chronous high frequency neuronal firing propagating through

long-range connections in the nervous system.19 The corpus

callosum link between the left and right hemispheres of the

brain passes neuronal signals back and forth between the

hemispheres in a positive feedback loop, causing this electri-

cal activity. Synchrony plus the long-range link requires the

consideration of a chimeric approach to that synchrony.

Third, the FitzHugh-Nagumo neuronal model is generic.

Thus, the ideas presented here may apply whenever the

synchronization of neurons is relevant, such as in the percep-

tion of a signal by sensory neurons. Thus, it could be impor-

tant for information processing, where coordination (more

appropriate in this context than the term synchronization) of

neurons, whether in the same region of the body or in differ-

ent regions (recall the long-range connection above) is

important.

The current study suggests the need to examine the rele-

vance of chimeras in vivo. Studies of synchronization in split

brain could be done for generalized tonic-clonic epileptic

patients, whose corpus callosum has been removed in order

to stop signal propagation between the hemispheres.

In conclusion, the synchrony seen in interictal spikes

need not be an “all or nothing” event. There may be interme-

diate stages through which the process of neuronal synchro-

nization occurs. The chimera state that we have

demonstrated in our neuronal system is an example of such

an intermediate stage, where synchronization and desynchro-

nization coexist in the same system.
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