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Short Selling Pressure, Stock Price Behavior, and Management Forecast Precision: 
Evidence from a Natural Experiment 

 

ABSTRACT 

Using a natural experiment (Regulation SHO), we show that short selling pressure and 
consequent stock price behavior have a causal effect on managers’ voluntary disclosure choices. 
Specifically, we find that managers respond to a positive exogenous shock to short selling 
pressure and price sensitivity to bad news by reducing the precision of bad news forecasts. This 
finding on management forecasts appears to be generalizable to other corporate disclosures. In 
particular, we find that, in response to increased short selling pressure, managers also reduce the 
readability (or increase the fuzziness) of bad news annual reports. Overall, our results suggest 
that maintaining the current level of stock prices is an important consideration in managers’ 
strategic disclosure decisions. 
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1. Introduction 

Corporate executives pay considerable attention to secondary market prices and they 

have strong incentives to maintain or increase their firms’ stock prices. The accounting literature 

argues that managers can make strategic financial reporting or disclosure choices to influence 

stock prices (e.g., Healy and Palepu [2001]). A large body of empirical research examines 

whether and how corporate disclosures affect stock prices. The literature, however, provides 

little directional evidence on whether the behavior of stock prices has a causal effect on 

managerial strategic disclosure decisions. The difficulty in establishing causality stems largely 

from the endogenous nature of stock prices. In this paper, we use a natural experiment to 

examine the causal effect of stock price behavior on managers’ voluntary disclosure choices. 

Specifically, we examine the effect of an exogenous shock to short selling pressure and 

consequent price sensitivity to bad news on management forecast precision, where precision 

refers to the specificity of forecasts.1 

We focus on management forecasts and their precision for the following reasons. First, 

management forecasts are an important source of corporate financial information for investors. 

For example, Beyer et al. [2010] show that management forecasts provide, on average, 

approximately 55% of accounting-based information to the stock market over the 1994 to 2007 

period. Thus, it is important to understand factors that affect management forecast choices. 

Second, there is a large degree of variation in forecast precision, and managers have a great deal 

of control and discretion over forecast precision (Hirst et al. [2008]). Once the decision to issue a 

forecast is made, managers can issue either qualitative or quantitative forecasts. Quantitative 

1 Our study focuses on one specific aspect of stock price behavior, price sensitivity to bad news, as dictated by our 
experimental setting. 
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forecasts can be made as point, range, minimum, or maximum estimates. For range forecasts, 

managers can further choose their width. Due to litigation or reputation concerns, managers may 

have even greater discretion over forecast precision than over the decision of whether to issue a 

forecast (Cheng et al. [2013], Skinner [1994]). Thus, forecast precision is an ideal setting in 

which to test managers’ strategic disclosure choices. Finally, prior research shows that forecast 

precision has a significant effect on the sensitivity of market prices to forecast news (e.g., 

Baginski et al. [1993]). This effect makes the choice of forecast precision a natural fit in our 

controlled experiment, as discussed below. 

Our experiment is based on Securities and Exchange Commission (SEC) Regulation 

SHO (Reg SHO), adopted in 2005. On September 7, 2004, the SEC passed Reg SHO, which 

mandated temporary suspension of short-sale price tests for a set of randomly selected pilot 

stocks during the period May 2, 2005 to August 6, 2007. The pilot stocks comprise every third 

stock of the Russell 3000 Index ranked by average daily trading volume. The suspension of 

short-sale price tests (i.e., the uptick test for the NYSE and the bid test for the NASDAQ) 

represents an exogenous decrease in short-sale constraints, leading to an increase in short selling 

activities for the pilot stocks (e.g., SEC [2007], Diether et al. [2009]). Increased trading activities 

of pessimistic investors make prices of the pilot stocks more sensitive to negative news (e.g., 

Goldstein and Guembel [2008], Grullon et al. [2012]). 

This study predicts that managers of pilot firms, in response to the positive shock to price 

sensitivity to bad news, reduce the precision of bad news forecasts to maintain the current level 

of stock prices.2 This prediction is based on the theory and evidence that the magnitude of price 

2 According to a 2008 NYSE survey, managers appear to be aware of and sensitive to the impact of eliminating price 
tests on the amount of short-selling in their firms (Grullon et al. [2012], Fang et al. [2013]). They also should have 
known whether their firms were selected for the experiment given the public disclosure of the list of pilot securities 
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reaction to a disclosed signal is positively related to its precision (e.g., Kim and Verrecchia 

[1991], Baginski et al. [1993], Baginski et al. [2007]). In fact, our conjecture requires only that 

managers believe that reducing the precision of bad news can minimize its impact on stock 

prices. This assumption appears to be true given the survey evidence that some CFOs admit that 

they tend to make fuzzy disclosures if the news is bad (Graham et al. [2005]). 

To conduct our empirical tests, we first obtain a list of the 2004 and 2005 Russell 3000 

Index constituents from Russell Investments. The pilot stocks chosen by the SEC are naturally 

our treatment stocks. We then assign the remaining stocks of the Russell 3000 Index to the 

control group. The sample period covers eight quarters before and eight quarters after the 

adoption date of Reg SHO (i.e., May 2, 2005). Following Cheng et al. [2013], we focus on point 

and range forecasts from the First Call Database, because the calculation and classification of 

forecast news is more straightforward for these forecasts. Before conducting our main tests, we 

first examine whether Reg SHO affects stock market reaction to management forecast news. 

Consistent with the idea that short-sale constraints hinder incorporation of bad news into prices, 

we find that stock prices of the pilot firms become significantly more sensitive to negative 

forecast news after Reg SHO. In contrast, we find no meaningful or much smaller changes in 

price reactions to negative news for stocks in the control group. Moreover, stock price sensitivity 

to good news forecasts changes for neither the pilot nor the control stocks. These results suggest 

that Reg SHO is an exogenous shock to price sensitivity to bad news forecasts. 

Taking Reg SHO as an exogenous shock to stock price behavior, we examine whether 

on the SEC’s website several months before implementation of Reg SHO and the extensive financial media 
coverage of the experiment. 
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stock price behavior has a causal effect on managerial choice of forecast precision.3 We measure 

forecast precision as the negative of forecast width (with point estimates assigned a zero width). 

Using a difference-in-differences regression approach, we find that the pilot firms significantly 

reduce their bad news forecast precision by about 17% relative to the control group upon 

adoption of Reg SHO, consistent with our prediction. Thus, it appears that managers act 

strategically to minimize the adverse effect of short selling pressure on stock prices. This result is 

robust to controlling for a battery of other determinants of forecast precision, such as firm size, 

return volatility, litigation risk, analyst coverage, institutional ownership, forecast horizon, and 

the magnitude of forecast surprise, as well as firm and time fixed effects. Moreover, we find no 

significant differences in changes in good news forecast precision between the treatment and 

control groups. This null result for good news forecasts essentially lends additional credence to 

the causal effect of short selling pressure and consequent price behavior on management 

disclosure choices. 

We next examine whether our main findings are generalizable to other corporate 

disclosures. Bloomfield [2002] argues that managers can reduce the market response to bad news 

by making bad news more costly to analyze. Therefore, we conjecture that managers may also 

respond to increased short selling pressure by increasing the obscurity of their bad news financial 

reports. Consistent with this conjecture, we show that pilot firms with bad earnings news also 

reduce the readability (or increase the fogginess) of their annual reports around implementation 

of Reg SHO. This result provides some corroborating evidence for our main thesis that managers 

respond to increased short selling pressure by reducing the precision (or increasing the fuzziness) 

3 If managers respond to Reg SHO by stopping bad news forecasts, our empirical tests on forecast precision may 
suffer from self-selection bias. Empirically, however, we find no evidence that managers forgo bad news forecasts 
upon implementation of Reg SHO. We offer more detailed discussions on this issue in Section 4.2. 
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of bad news disclosures. 

Further, we conduct several additional tests. First, we find no evidence that Reg SHO 

affects the magnitude (or direction) of management forecast news or the accuracy (or bias) of 

management forecasts. Second, we show that the significant reductions in bad news forecast 

precision among pilot firms are concentrated in the second half of the post-Reg SHO period. 

Moreover, we find that pilot firms reduce their forecast precision to a greater extent during the 

second half of the treatment period if their industry peers reduce their forecast precision more 

during the first half of the treatment period, suggesting intra-industry learning. Finally, we find 

that the effect of short selling pressure on bad news forecast precision is more pronounced for 

smaller firms, firms with higher CFO compensation portfolio sensitivity to stock prices, firms 

with lower analyst following, and firms experiencing a larger increase in price sensitivity to 

earnings news after Reg SHO. 

Our study is related to several strands of literature. First, it contributes to the broader 

accounting literature on managerial strategic reporting and disclosure choices.4 The accounting 

literature has long recognized that maintaining or increasing stock prices is one of the most 

important considerations in managers’ reporting and disclosure decisions. However, although 

there are many studies examining the effect of disclosure on stock prices, we are not aware of 

prior research that provides direct causal evidence of the effect of stock price behavior on 

managerial disclosure choices. Our study fills this void by showing a causal effect of short 

selling pressure and consequent stock price behavior on management forecast precision. 

Moreover, our analysis shows that managers also respond to the positive shock to price 

4 See Beyer et al. [2010] and Healy and Palepu [2001] for more detailed discussions of this literature. 
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sensitivity to bad news by reducing the readability of their bad news annual reports. In a related 

study, Li [2008] argues that investors react less completely to information that is less easily 

extracted from public disclosures and finds that firms with poor performance provide annual 

reports that are harder to read. Our results complement Li [2008] by documenting a causal effect 

of stock price behavior on the fuzziness of annual report disclosures. 

Second, our study is part of the emerging literature on the real effects of secondary 

financial markets. Bond et al. [2012] argue that the secondary stock market is not just a sideshow, 

but rather has an effect on the real decisions of managers. For example, Edmans et al. [2012] 

show a strong causal effect of stock prices on takeover activities. Consistent with the idea that 

stock prices have real effects, our study shows that short selling pressure in the stock market has 

a causal effect on managers’ disclosure decisions. 

Third, our study adds to the literature on the determinants of management forecast 

precision. Prior research examines the effects of various firm-level characteristics on 

management forecast precision.5 Our study extends this line of research by identifying short 

selling pressure and consequent price sensitivity to bad news as a significant determinant of 

forecast precision. Perhaps more importantly, while most prior studies are association research, 

which suffers from endogeneity issues, our paper is one of the first to use a natural experiment to 

provide casual evidence on the determinants of management forecast precision. 

Finally, our study provides additional evidence on the effect of short selling regulation. 

Recent research examines the effect of Reg SHO on short selling activities and market quality 

(Diether et al. [2009]), corporate financing and investment decisions (Grullon et al. [2012]), the 

5 See Hirst et al. [2008] for a survey of this literature. 
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design of CEO compensation contracts (Angelis et al. [2013]), and earnings management (Fang 

et al. [2013]). Our study contributes to this line of research by examining the effect of Reg SHO 

on corporate voluntary disclosure decisions. 

The remainder of this paper proceeds as follows. Section 2 reviews the related literature 

and develops empirical predictions. Section 3 describes the data and measurement of key 

variables. Section 4 presents the main empirical analyses and robustness checks. In Section 5, we 

conduct several cross-sectional analyses. Section 6 sets forth our conclusions. 

2. Literature Review and Empirical Predictions 

Corporate managers have an information advantage over outside investors regarding the 

profitability and growth of their firms, and they have incentives to maximize investor perception 

of firm value as reflected by stock prices (e.g., Beyer et al. [2010]). Management earnings 

forecasts are one of the key disclosure mechanisms that managers use to convey information and 

influence market prices. A number of studies provide evidence that the stock market reacts to 

management forecast news, suggesting that investors perceive these disclosures to be 

informative.6 Beyer et al. [2010] estimate that, for the average firm, 15.67% of quarterly stock 

return variance occurs on days when management forecasts are made, representing 55.23% of 

the return variances explained by all types of accounting disclosure. 

Given the significant influence of management forecasts on investor decisions, it is 

critical to understand what factors affect managers’ forecast choices (Healy and Palepu [2001]). 

While a large body of research examines the propensity or frequency of earnings forecasts, Hirst 

et al. [2008] argue that managers have greater discretion over forecast characteristics than over 

6 See Patell [1976], Penman [1980], Waymire [1984], Baginski and Hassell [1990], Pownall et al. [1993], Baginski 
et al. [1993, 2004], Hutton et al. [2003], and Hutton and Stocken [2007], among others. 
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the decision of whether to issue a forecast; these authors call for more research on the 

determinants of forecast characteristics. As discussed in the introduction, the main focus of our 

study is management forecast precision. The literature shows that several firm characteristics are 

associated with forecast precision. For example, Baginski and Hassell [1997] find that managers 

produce more precise earnings forecasts for firms with greater analyst following and for smaller 

firms. Bamber and Cheon [1998] show that exposure to legal liability is negatively related to 

forecast precision. Baginski et al. [2002] find that Canadian managers issue more precise 

forecasts than their US counterparts, consistent with the legal environment affecting forecast 

precision. Ajinkya et al. [2005] find that firms with more outside directors and higher 

institutional ownership produce more precise forecasts, suggesting that superior governance is 

associated with greater forecast precision. In contrast, Karamanou and Vafeas [2005] find that 

more effective boards and audit committees are associated with less precise forecasts. Skinner 

[1994] and Choi et al. [2010] find that management forecasts of negative news are less precise. 

Finally, Cheng et al. [2013] show that managers choose forecast precision strategically to 

maximize insider trading profits. 

In reviewing the corporate disclosure literature, Healy and Palepu [2001] and Beyer et al. 

[2010] recognize that a significant challenge facing this body of literature is the issue of causality 

or endogeneity. These authors recommend that researchers identify research design settings in 

which an exogenous shock can be used to study the causal relations between corporate 

disclosures and their environments. Following this recommendation, our study extends the 

literature on management forecasts by investigating the effect of an exogenous shock to short 

selling pressure on management forecast precision. In doing so, we intend to shed light on the 

causal effect of stock price behavior on managers’ strategic disclosure decisions. 
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The exogenous shock is brought about by Reg SHO’s Pilot Program. On May 2, 2005, 

the SEC implemented Reg SHO, which suspended the short-sale price tests for a random sample 

of pilot stocks. Reg SHO significantly relaxed the short-sale constraints on the pilot stocks. As 

expected, short selling activities increased significantly for the pilot stocks relative to other 

stocks during the suspension period (e.g., Diether et al. [2009], Grullon et al. [2012], Angelis et 

al. [2013]). Prior research argues that short selling facilitates incorporation of unfavorable 

information into share prices and that short-sale constraints make it harder for prices to reflect 

negative information (e.g., Miller [1977], Hong and Stein [2003]). Consistent with this view, 

Grullon et al. [2012] and Angelis et al. [2013] find that the pilot stocks’ share prices become 

more sensitive to negative earnings surprises, but not to positive earnings surprises, during the 

suspension period. Our study shows a similar pattern for management earnings forecasts. 

Building on these arguments and facts, we predict that managers, in response to the shock 

of short selling pressure, reduce the precision of bad news forecasts to minimize their influence 

on share prices. Kim and Verrecchia [1991] show analytically that stock prices react more 

strongly to more precise information. Consistent with the Kim and Verrecchia [1991] theory, 

Baginski et al. [1993] find that point forecasts are associated with stronger market reactions than 

other, less precise, types of forecasts. Thus, it appears to be intuitive that managers, in response 

to exogenously increased price sensitivity to bad news, reduce bad news forecast precision to 

maximize stock prices. One may argue that managers can respond to this shock simply by 

withholding bad news or providing upwardly biased forecasts. However, we argue that these 

alternative strategies are very costly because of litigation or reputation concerns (e.g., Skinner 

[1994], Hirst et al. [2008], Cheng et al. [2013]). 
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Prediction 1: Pilot firms reduce their bad news forecast precision relative to control 

firms during the Reg SHO implementation period. 

Our investigation is related to two studies. Skinner [1994] finds that bad news forecasts 

are less precise and Choi et al. [2010] show that the more negative the bad news, the lower the 

precision. Our study differs from Skinner [1994] and Choi et al. [2010] by examining the effect 

of an exogenous change in price sensitivity to bad news instead of the effect of bad news per se 

on forecast precision. Moreover, our setting of a natural experiment can provide important causal 

implications. 

One substantial stream of management forecast research argues that managers may issue 

“bad news” guidance to walk down overly optimistic analysts and to avoid negative earnings 

surprises during earnings announcements (Cotter et al. [2006], Kross et al. [2011]). It is possible 

that more precise forecasts are more effective in walking down optimistic analysts, thereby 

avoiding negative earnings surprises and future price declines. This study, however, does not 

focus on the particular type of guidance that is motivated by overly optimistic analyst forecasts. 

Instead, we examine the general case in which managers are endowed with real information that 

needs to be disclosed (e.g., because of litigation concerns or pressure from analysts). Therefore, 

our hypothesis is not in direct competition with the arguments and findings of the “walk-down” 

research. 

3. Data and Variable Measurement 

3.1 DATA 

We obtain a list of the Russell 3000 Index member firms from Russell Investments. 

Following Diether et al. [2009], we use the 2004 and 2005 versions of the Russell 3000 Index to 
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construct our initial sample. Specifically, we retain firms that were in the Russell 3000 Index in 

both 2004 and 2005. We then merge this list with the list of pilot securities announced by the 

SEC on July 28, 2004, resulting in 864 unique pilot firms and 1,740 unique control firms.7 

Finally, we obtain necessary data for the pilot and control firms from Thomson First Call’s 

Company Issued Guidance (CIG) Database (management forecast data), S&P Compustat  

(financial data), Center for Research in Securities Prices (stock price and volume data), I/B/E/S 

(analyst estimates data), and Thomson’s CDA/Spectrum Database (institutional holdings data). 

Our sample period covers eight quarters before and eight quarters after the implementation date 

of Reg SHO (May 2, 2005).8 We include quarterly point and range earnings forecasts issued 

during a fiscal quarter to predict earnings per share for the current quarter.9 This procedure leads 

to a final sample of 3,130 quarterly point and range forecasts for 346 unique pilot firms and 

6,175 quarterly point and range forecasts for 711 unique control firms with non-missing control 

variables.10 

Chuk et al. [2013] find that the CIG database tends to cover press releases that contain an 

EPS forecast with a specific dollar amount and press releases that convey bad news. In addition, 

coverage of CIG is less complete before 1997. These coverage biases of CIG are unlikely to be a 

significant concern, because our research focuses on quantitative EPS forecasts containing bad 

earnings news. Our sample period is also much more recent than 1997. Chuk et al. [2013] also 

7 The pilot stocks consist of 50% NYSE-listed securities, 2.2% AMEX-listed securities, and 47.8% NASDAQ NNM 
securities. See http://www.sec.gov/rules/other/34-50104.htm. 
8 The event quarter 0 is included in the post–Reg SHO window. However, inferences remain unchanged if we 
exclude the event quarter and use the alternative windows: [-8, -1] and [+1, +8] (see the online appendix for 
robustness tests). 
9 Point and range forecasts represent 93.2% of all quarterly earnings forecasts in the First Call Database during the 
period 2002 to 2007. 
10  We focus on quarterly earnings forecasts because prior research finds that quarterly management earnings 
forecasts attract the greatest attention and have the greatest impact on market prices (e.g., Baginski et al. [1993], 
Pownall et al. [1993]). However, all the results hold if we also include annual earnings forecasts. 
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find that CIG tends to cover larger firms with higher analyst following and institutional 

ownership. Our subsequent cross-sectional tests suggest that the main results of our study are 

more pronounced for smaller firms and firms with less analyst coverage. Therefore, coverage of 

CIG biases against finding significant results for our study. That is, the main results would likely 

be even stronger if the missing firms (smaller firms with low analyst following) were included in 

our sample. 

3.2 MEASURING MANAGEMENT FORECAST PRECISION 

Following Johnson et al. [2001] and Cheng et al. [2013], we measure forecast precision 

(PRECISION) as the negative of management forecast width. For range forecasts, forecast width 

is the difference between the upper- and the lower-end estimates, scaled by beginning-of-quarter 

stock price. For point forecasts, we assign a zero forecast width. Thus, higher values of 

PRECISION indicate more precise management forecasts. 

3.3 MEASURING MANAGEMENT FORECAST NEWS 

We use two methods to estimate management forecast news. First, under the traditional 

approach, management forecast news or forecast surprise (MFSURP) is computed as the 

difference between the point estimate (or the mid-point estimate of the range forecast) and the 

consensus analyst forecast, scaled by beginning-of-quarter share price. The consensus analyst 

forecast is the median of outstanding analyst forecasts (collected from the IBES Summary 

History files) at the time of the management forecast.11 We classify each management forecast as 

11 Inferences are identical if we use the IBES detailed forecast file to construct consensus forecasts (see the online 
appendix for robustness tests).  
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conveying good news, neutral news, or bad news according to the sign of the forecast news.12 In 

our main regression analysis, by research design, we exclude neutral forecasts. 

Rogers and Van Buskirk [2013] show that the traditional measure of forecast news has an 

inherent measurement error problem for bundled forecasts. These authors develop an alternative 

method for calculating forecast news (“the RV measure”) for bundled forecasts and suggest 

researchers use this new measure in concert with the traditional measure to triangulate empirical 

results. In our sample, bundled forecasts represent 68.7% and 75.8% of all forecasts issued by 

the pilot firms during the pre- and post-Reg SHO windows, respectively. For the control firms, 

bundled forecasts are 67.3% and 75.8% of all forecasts issued during the pre- and post-Reg SHO 

windows, respectively. Given the significant presence of bundled forecasts in our sample, we 

also use the RV measure in addition to the traditional forecast news measure for all tests 

involving management forecast news. 

The percentages of good news, bad news, and neutral forecasts for pilot firms based on 

the traditional news measure (RV measure) are 30.0% (44.7%), 56.8% (52.3%), and 12.2% 

(3.0%), respectively. For control firms, the percentages of good news, bad news, and neutral 

forecasts based on the traditional news measure (the RV measure) are 32.4% (45.7%), 55.1% 

(50.8%), and 12.5% (3.5%), respectively. In addition, we find that 992 (222) bad (good) news 

forecasts under the traditional approach are re-classified as good (bad) news based on the RV 

measure. 

3.4 CONTROL VARIABLES 

Following the literature on management forecast precision, we include a vector of firm 

12 Inferences are unchanged if we define forecast news as neutral when the magnitude of forecast news is very small 
(for instance, the absolute forecast news being in the bottom quintile of the sample distribution). 
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and forecast characteristics that can affect a firm’s management forecast precision. In our 

forecast precision model, we include firm size (logarithm of market capitalization at the 

beginning of the quarter), book-to-market ratio (book value divided by market value at the 

beginning of the quarter), a loss indicator (one if the firm reports negative actual earnings in the 

quarter), annual stock return (cumulated daily returns over the twelve-month period before the 

current quarter), daily return volatility (volatility of daily returns over the twelve-month period 

before the current quarter), litigation risk (litigation risk measure of Kim and Skinner [2012]), 

analyst following (number of analysts following the firm during the current quarter), institutional 

ownership (percentage of shares held by institutional investors during the current quarter), 

management forecast horizon (number of calendar days between the management forecast 

release date and the fiscal quarter end date of the quarterly forecast), management forecast error 

(absolute difference between forecast estimate and actual earnings, scaled by pre-release share 

price), and absolute forecast surprise (absolute management forecast news, where forecast news 

is defined in Section 3.3). The appendix provides detailed definitions for all variables used in our 

regression analysis. 

3.5 DESCRIPTIVE STATISTICS 

Table 1 presents descriptive statistics for the main variables measured before (panel A) 

and after (panel B) adoption of Reg SHO. As discussed, the SEC picked the pilot firms randomly 

from the Russell 3000 Index. Therefore, we expect no significant differences in firm 

characteristics between pilot firms and control firms. However, after requiring non-missing 

management forecasts and other relevant data for our tests, there appears to be several 

differences between our pilot firm and control firm samples. For example, in panel A, pilot firms 

are on average slightly larger than control firms prior to Reg SHO. There are also some minor 
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differences in litigation risk, analyst following, institutional ownership, and forecast surprise.13 

Overall, pilot firms and control firms are very similar. Nonetheless, we control for these firm 

characteristics in our difference-in-differences regressions. In panel B, during the post-Reg SHO 

period, pilot firms have lower management forecast precision (mean and median), lower absolute 

forecast error (mean), and lower absolute forecast surprise (mean). 

4. Main Empirical Analysis 

4.1 REG SHO AND PRICE SENSITIVITY TO FORECAST NEWS 

We first examine the impact of Reg SHO on stock price sensitivity to management 

forecast news. The removal of short-sale restrictions increases short selling activity, which 

imposes greater downward pressure on stocks with bad news. Consistent with this argument, 

several studies document that Reg SHO increases short selling activity and stock price sensitivity 

to negative earnings surprises (e.g., Diether et al. [2009], Grullon et al. [2012]). Our purpose here 

is to confirm whether the same effect exists for management earnings forecasts. Specifically, we 

estimate the following regression model:14 

𝐶𝐶𝐶𝐶𝐶𝐶[−2, +2] = 𝛼𝛼 + 𝛽𝛽(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝛾𝛾(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛿𝛿(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) + 𝜃𝜃(𝑋𝑋) + 𝜀𝜀,  (1) 

where CAR[-2,+2] is the five-day cumulative market-adjusted abnormal return around the 

management forecast release date;15 MFSURP is the magnitude of management forecast news as 

defined in Section 3; POST is an indicator variable that takes the value of one if the current 

13 Table OA1 of the online appendix presents descriptive statistics for the full sample of pilot and control firms 
(regardless of whether they issue management forecasts). Overall, we find that the statistical differences in firm 
characteristics between pilot and control firms are consistent across the full sample and the reduced sample with 
management forecast data. 
14 Inferences are the same if we include concurrent earnings surprise as an additional control variable when the 
management forecast is issued around an earnings announcement.  
15 Inferences are identical when we use a three-day event window. 
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quarter is within the eight-quarter period after the adoption date of Reg SHO, and zero if the 

current quarter is within the eight-quarter period preceding the adoption date; POST×MFSURP 

is the interaction term between POST and MFSURP, the coefficient of which measures the 

change in price sensitivity to forecast news around adoption of Reg SHO; and vector X 

represents a set of control variables, including size and market-to-book, and their interactions 

with POST and MFSURP. Standard errors are clustered at the firm level throughout the paper. 

We estimate Eq. (1) separately for four groups of firms: pilot firms with negative forecast news, 

control firms with negative forecast news, pilot firms with positive forecast news, and control 

firms with positive forecast news. 

Table 2 presents the regression results for estimating Eq. (1). Panel A of Table 2 reports 

the results for bad news forecasts. Columns (1) and (2) present the traditional forecast news 

results for pilot firms and control firms, respectively. Columns (3) and (4) present the RV 

measure-based results. In addition to forecast news, in columns (3) and (4), we also adjust 

forecast announcement returns (i.e., CAR[-2,+2]) for bundled forecasts using a method similar to 

that in Rogers and Van Buskirk [2013].16 In column (1), the coefficient of POST×MFSURP is 

positive and significant at the 5% level, suggesting that price sensitivity to bad news forecasts 

issued by pilot firms increases significantly after implementation of Reg SHO.17 In contrast, 

column (2) shows that price sensitivity to bad news forecasts does not change significantly for 

the control group. The coefficient of POST×MFSURP for the pilot firm sample is significantly 

different from that for the control sample. After adjustment of forecast news and forecast 

announcement returns using the method of Rogers and Van Buskirk [2013], the coefficient of 

16 See the appendix for more details. 
17 In columns (1) and (3), the coefficient of MFSURP is negative. Note, however, that the coefficient of the main 
effect is not very meaningful in regressions with interaction terms, because it represents the loading on the main 
effect when all control variables take the value of zero. In regressions without control variables, the coefficient of 
MFSURP is positive and significant. 
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POST×MFSURP for the pilot firms becomes even larger and is significant at the 1% level. 

Surprisingly, the coefficient of POST×MFSURP for the control firms becomes significant, albeit 

with a small magnitude. More importantly, the coefficient of POST×MFSURP for the pilot firms 

is significantly larger than that for the control firms. 

Panel B of Table 2 reports the results from estimating Eq. (1) for good news forecasts. 

The coefficient of POST×MFSURP is generally insignificant for both the pilot and control firms, 

irrespective of how forecast news or forecast announcement returns are calculated.18 Overall, the 

results in Table 2 show that Reg SHO increases price sensitivity to bad news forecasts of pilot 

firms and it has no meaningful (or much weaker) effects on bad news forecasts of the control 

firms or good news forecasts of both the pilot and control firms. Thus, we argue that Reg SHO 

represents an exogenous shock to stock price sensitivity to bad news for the pilot firms, since we 

have no reason to believe that the pilot firms have any influence over the SEC’s random 

selection process. 

4.2 REG SHO AND MANAGEMENT FORECAST LIKELIHOOD 

Before turning to our main test, we now examine whether Reg SHO impacts the 

likelihood of management forecast issuance. Prior research argues that managers have less 

discretion over the decision of whether to issue a forecast, because of litigation or reputation 

concerns. In a survey of the management forecast literature, Hirst et al. (2008) argue that the 

decision to issue a forecast is influenced by pre-existing conditions or antecedents, and these 

18 The coefficient of MFSURP is insignificant for our sample of good news forecasts. There are two potential 
interpretations. First, the magnitude of good news could be less relevant in the market because good news forecasts 
are perceived to be less credible (e.g., Hutton et al. [2003]). Second, the insignificant results can be partially caused 
by inaccurate measurement of forecast news or forecast announcement returns for bundled forecasts. In fact, under 
the RV method, the coefficient of MFSURP is significantly positive for the good news forecast sample if we do not 
include control variables and their interactions with MFSURP in the regression. 
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antecedents are not easily changed in the short term. However, in our setting, there remains a 

possibility that some managers respond to increased short selling pressure by forgoing bad news 

forecasts instead of reducing the precision of these forecasts. If this is the case for a significant 

number of firms, our main tests may suffer from a typical self-selection bias, because we are able 

to observe only the precision of forecasts actually issued.19 In this section, we check whether the 

self-selection concern is a real-world problem by examining the effect of Reg SHO on forecast 

likelihood. Toward this end, we track the forecast incidences of all the pilot and control firms 

over our sample period and estimate the following difference-in-differences logistic regression:20 

   𝑃𝑃𝑃𝑃(𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) = 𝛼𝛼 + 𝛽𝛽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛾𝛾(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛿𝛿(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝜃𝜃(𝑋𝑋) + 𝜀𝜀,  (2) 

where ISSUE takes the value of one for firm-quarters with at least one management forecast, 

zero otherwise;21 PILOT is an indicator variable that takes the value of one for all quarterly 

observations of pilot firms, zero for control firms; POST is as defined in Eq. (1); POST×PILOT 

is the interaction term between POST and PILOT; the coefficient of POST×PILOT, 𝛿𝛿, measures 

the difference in changes of forecast likelihood around Reg SHO between pilot firms and control 

firms; and vector X represents the set of control variables as defined in Section 3. We also 

include firm fixed effects and quarter indicators to control for time-invariant firm characteristics 

and time-specific effects, respectively. 

Table 3, column (1), presents the results from estimating Eq. (2). The indicator variable, 

PILOT, is subsumed by firm fixed effects. The coefficient of POST is negative and significant, 

19 In untabulated robustness tests, we address this problem using the Heckman two-stage procedure; the conclusions 
are unchanged. However, the Heckman approach is unlikely to be effective since we cannot find a truly exogenous 
variable that affects forecast precision via only its effect on forecast likelihood. 
20 In conducting this test, we keep all pilot and control firms that are covered by First Call’s Actuals data set. 
21 Inferences are the same if we use the number of forecasts as the dependent variable. See Table OA2 of the online 
appendix. 
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indicating a decreasing trend of management forecast likelihood, after controlling for time-

variant and time-invariant firm characteristics as well as time-specific effects.22 The coefficient 

of POST×PILOT is insignificant, suggesting that there is no significant difference in the changes 

of forecast likelihood around Reg SHO between the pilot and the control firms. Columns (2) and 

(3) present the results of re-estimating Eq. (2) by replacing the dependent variable with good 

news forecast likelihood and bad news forecast likelihood, respectively, where forecast news is 

calculated using the traditional approach. The coefficient of POST×PILOT is insignificant in 

both good news and bad news forecast regressions. Columns (4) and (5) show that the coefficient 

of POST×PILOT continues to be insignificant in both good news and bad news forecast 

regressions when we use the RV measure to classify forecast news. Overall, the results presented 

in Table 3 show no evidence that pilot firms change the incidence of their management forecasts 

relative to control firms. More importantly, columns (3) and (5) of Table 3 show that neither 

pilot firms nor control firms change the incidence of bad news forecasts around Reg SHO, 

regardless of which measure of forecast news is used. 

In the online appendix, we further examine whether there is a notable subset of firms that 

change their propensity to issue bad news forecasts. To do this, we introduce into Eq. (2) 

interaction terms between POST×PILOT and several meaningful firm characteristics, such as 

firm size, analyst coverage, and institutional ownership. We find that the coefficients of all of the 

triple interaction terms are insignificant.23 The results in this section can be partially explained 

by managers’ lack of control or discretion over forecast issuance in the short term, particularly 

for bad news issuance. Alternatively, managers may hold a belief that stopping the issuance of 

22 Note that the inclusion of quarter fixed effects can make the coefficient of POST less useful in detecting the 
absolute trend (for control firms). The conclusions remain unchanged if we exclude quarter fixed effects. 
23 See Tables OA3 to OA6 of the online appendix for more details regarding tests on the likelihood or frequency of 
management forecasts under various model specifications. 
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bad news forecasts can be interpreted as even worse news by investors. In any event, the results 

in this section partially alleviate concern over self-selection. It appears that the choice over 

whether to issue management forecasts is not affected by Reg SHO.24 

4.3 REG SHO AND MANAGEMENT FORECAST PRECISION 

In this section, we examine the impact of Reg SHO on management forecast precision. 

Specifically, we estimate the following difference-in-differences regression: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝛼𝛼 + 𝛽𝛽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛾𝛾(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛿𝛿(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝜃𝜃(𝑋𝑋) + 𝜀𝜀,  (3) 

where PRECISION is management forecast precision as defined in Section 3; PILOT, POST, and 

POST×PILOT are as defined in Eq. (2); and vector X represents the set of control variables as 

defined in Section 3. The coefficient of POST×PILOT, 𝛿𝛿, measures the difference in changes of 

forecast precision around Reg SHO between pilot firms and control firms Alternatively, it can be 

interpreted as changes in relative forecast precision (relative to the control group) for pilot firms 

around Reg SHO. A negative value of 𝛿𝛿 implies that Reg SHO causes a reduction in forecast 

precision of pilot firms relative to control firms. 

Prior research argues that investors in larger firms or firms with higher growth 

opportunities demand more precise forecasts (e.g., Cheng et al. [2013]). We include firm size 

and book-to-market ratio to capture the demand effect. Prior research finds that firms with 

declining earnings or bad performance are more likely to issue less precise forecasts (e.g., 

Bamber and Cheon [1998]). We use a loss indicator and annual stock return to capture the 

24 As a robustness check, we remove the pilot and control firms that changed their forecast issuance patterns around 
Reg SHO and the conclusions are unchanged. Moreover, in Section 4.4, we use an alternative setting without the 
selection problem to re-examine our central thesis that managers respond to Reg SHO by obfuscating bad news 
disclosures. 
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performance effect. Managers are more likely to issue less precise forecasts when facing more 

uncertainty. We use stock return volatility as the proxy for uncertainty (e.g., Rogers and Stocken 

[2005]). We also control for litigation risk because prior research argues that higher litigation 

risk is associated with lower management forecast precision (e.g., Skinner [1994]). We include 

analyst coverage and institutional ownership to capture the demand for precise forecasts. We also 

include three forecast characteristics to further capture managers’ uncertainty: forecast horizon, 

absolute forecast error, and absolute forecast surprise (e.g., Baginski and Hassell [1997], Choi et 

al. [2010], Cheng et al. [2013]).25 Finally, we include firm fixed effects and quarter fixed effects 

in all regression specifications. 

Table 4 reports results from estimating Eq. (3). Columns (1) and (2) report results for the 

traditional measure of forecast news, and columns (3) and (4) report results for the RV measure 

of forecast news. Consistent with our prediction, columns (1) and (3) show that the coefficient of 

POST×PILOT is negative and significant for bad news forecasts, regardless of which measure of 

forecast news is used. For example, in column (3), where the RV measure is used to classify 

forecast news (as well as the calculation of control variables involving forecast news), the 

coefficient of POST×PILOT is -0.031, significant at the 5% level. The magnitude of the 

coefficient indicates that, after removal of short-sale constraints for the pilot firms, bad news 

forecast precision of pilot firms decreases by 0.031 units more than control firms, which 

represents 17% (27%) of mean (median) forecast precision. Thus, it appears that the impact of 

Reg SHO on bad news forecast precision is both statistically and economically significant. 

Columns (2) and (4) of Table 4 report results from estimating Eq. (3) for the good news forecast 

sample. The coefficient of POST×PILOT is insignificant in both columns, suggesting that Reg 

25 Forecast surprise is one of the two measures of forecast news defined in Section 3. 
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SHO has no effect on the precision of good news forecasts. 

We also examine the time-series dynamics of the impact of Reg SHO on management 

forecast precision. To do this, we replace the indicator variable POST in Eq. (3) with eight 

indicator variables representing the individual quarters during the treatment period and re-

estimate the main regression. Table OA7 of the online appendix presents the results. We find that 

pilot firms begin reducing bad news forecast precision from the second quarter following 

implementation of Reg SHO. The (statistically) significant reductions in bad news forecast 

precision, however, are concentrated in the latter half of the treatment period (quarters [+4, +7]). 

In addition, Table OA8 shows that a pilot firm reduces its bad news forecast precision to a 

greater extent during the second half of the treatment period if its industry peers reduce their 

forecast precision more during the first half of the treatment period. Finally, we find that smaller 

firms and firms with low analyst following begin reducing their bad news forecast precision 

significantly during the first half of the treatment period. 

Overall, the results support our central prediction that there is a causal effect of short 

selling pressure and consequent price sensitivity to bad news on the precision of bad news 

forecasts. More generally, these results indicate that the stock market has a causal effect on 

managers’ strategic disclosure choices. 

4.4 REG SHO AND ANNUAL REPORT READABILITY 

The forecast likelihood results of Section 4.2 suggest that self-selection is unlikely to be a 

severe problem for our management forecast precision tests. To further alleviate self-selection 

concerns, in this section, we use an alternative construct to examine the central thesis that 

managers respond to the positive shock to price sensitivity to bad news by obfuscating disclosure 
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of negative information. In addition, we investigate whether the findings on forecast precision 

are generalizable to other disclosure settings. The Bloomfield [2002] incomplete revelation 

hypothesis (IRH) predicts that managers can reduce market response to bad news by making bad 

news more costly to analyze (Grossman and Stiglitz [1980]). Consistent with IRH, Li [2008] 

shows that the annual reports of firms with negative earnings are harder to read. In a more recent 

paper, Bushee et al. [2014] provide corroborating evidence that managerial linguistic complexity 

in firm disclosures reflects obfuscation rather than information. Based on theory and evidence, 

we predict that managers of pilot firms reduce the readability of their bad news 10-K reports 

around implementation of Reg SHO. Specifically, we estimate the following difference-in-

differences regression: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛼𝛼 + 𝛽𝛽(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛾𝛾(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝛿𝛿(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) + 𝜃𝜃(𝑋𝑋) + 𝜀𝜀,  (4) 

where FOG is the Gunning Fog Index of 10-K filings obtained from Li [2008]. This measure, 

developed in the computational linguistics literature, captures the written complexity of a 

document as a function of the number of syllables per word and the number of words per 

sentence.26 Higher values of FOG indicate less readable annual reports. lnFOG is the logarithm 

of one plus FOG. PILOT is an indicator variable that takes the value of one if the 10-K report 

belongs to a pilot firm, zero otherwise. POST is an indicator variable that takes the value of one 

if the year is within the two-year period following adoption of Reg SHO and zero if the current 

year is within the two-year period prior to adoption. POST×PILOT is the interaction term 

between POST and PILOT. The coefficient of POST×PILOT,  𝛿𝛿 , measures the difference in 

changes in annual report readability around Reg SHO between the pilot and control firms. A 

26 Please refer to Li [2008] for a more detailed discussion on the construction of the Fog Index. We thank Feng Li 
for sharing the annual Fog Index data on his website. 
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positive value of 𝛿𝛿 implies that Reg SHO causes a greater reduction in annual report readability 

of pilot firms relative to control firms. 

Vector X represents the set of control variables taken from Li [2008], including earnings 

performance (EARN), firm size (SIZE), market-to-book ratio (MTB), firm age (AGE), special 

items (SI), return and earnings volatility (RETVOL, EARNVOL), the number of business 

segments (NBSEG), financial complexity (NITEMS), and two special event indicators (SEO, 

MA).27 Li [2008] argues that firms with lower earnings, a larger size, higher growth, a younger 

age, lower special items, more volatile business environments, more complex operations and 

financial situations, and more firm events such as M&A and SEO, tend to have more complex 

annual reports. Similar to management forecast tests, we also include firm and year fixed effects 

in the regression model. 

We estimate Eq. (4) separately for firms with negative earnings news and positive 

earnings news. Because the annual earnings numbers are disclosed before the 10-K filing dates, 

we are not able to estimate earnings news in the annual reports. We classify an annual report as 

containing bad (good) news if the firm’s annual ROA is lower (higher) than the industry median 

ROA.28 Columns (1) and (2) of Table 5 present the results. Consistent with our prediction, 

column (1) shows that the coefficient of POST×PILOT is positive and significant for the sample 

of firms with bad earnings news. The magnitude of the coefficient indicates that pilot firms with 

lower earnings (relative to industry-average earnings) reduce their annual report readability by 

27 Li [2008] also includes the state of incorporation as a control variable. We do not need this control variable 
because of the inclusion of firm fixed effects. 
28 Li [2008] defines good/bad earnings news (or high vs. low earnings) using raw net income (i.e., a loss indicator 
for bad earnings news). We argue that our benchmarking of profit relative to industry performance is more powerful. 
In robustness tests, we also use zero earnings (as in Li [2008]), analysts’ annual earnings forecasts, or last year’s 
earnings as benchmarks to define good/bad earnings news. We also use market reaction around 10-K filings to 
define good/bad news. The results are qualitatively unchanged (albeit weaker). 
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3.2% around implementation of Reg SHO, relative to control firms. On the other hand, column 

(2) shows that the coefficient of POST×PILOT is insignificant for the sample of firms with good 

earnings news. One may argue that a 3.2% reduction in readability is not very significant 

economically. However, we note that the magnitude in our tests is in line with the finding of Li 

[2008], which shows that annual report readability of loss firms is on average 0.9% lower than 

that of profit firms.29 Loughran and McDonald [2014] argue that the file size of 10-K reports can 

be an alternative (inverse) measure of annual report readability. Thus, we also estimate Eq. (4) 

after replacing FOG with the 10-K file size (FILESIZE). Consistent with the results using FOG, 

column (3) of Table 5 shows that pilot firms with poor earnings news increase the file sizes of 

their 10-K reports by 13.3% relative to control firms around Reg SHO. On the other hand, 

column (4) shows that there are no significant changes in the size of 10-K reports with positive 

earnings news for pilot firms.30 

Overall, the results discussed in this section support the conjecture that managers, in 

response to the positive shock to short selling pressure, reduce the readability of bad news annual 

reports, which is inherently consistent with our earlier tests on management forecast precision. 

That is, managers respond to the positive shock to price sensitivity to bad news by obfuscating 

disclosures of negative information. An advantage of the annual report disclosure setting is that 

we are less concerned with the self-selection problem associated with management earnings 

forecasts tests. Moreover, Lehavy et al. [2011] argue that annual report readability is a more 

comprehensive measure of disclosure characteristics than other disclosure measures that focus on 

one single financial statement item. At the same time, however, given the diverse and rich 

29 The magnitude is estimated from Table 1 and Table 3 of Li [2008]. 
30 Interestingly, we find that pilot firms that reduce the readability of their annual reports are also more likely to 
reduce the precision of their management forecasts (see Table OA9 of the online appendix). 
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information contained in annual reports, classifying news of annual reports based solely on 

reported earnings is likely to introduce significant measurement errors. In addition, there is an 

ongoing debate over the appropriate measurement of financial disclosure readability. Therefore, 

our analysis on annual report readability is explorative in nature, and we leave an in-depth 

examination of changes in financial report readability around Reg SHO to future research. 

4.5 OTHER CHARACTERISTICS OF MANAGEMENT FORECASTS 

The main objective of our research is to examine whether managers strategically respond 

to increased short selling pressure by decreasing the precision of bad news disclosures. This 

pursuit is partially motivated by the observation that managers tend to obfuscate disclosure of 

bad news to maintain the current level of stock prices (e.g., Bloomfield [2002]). One may 

contend that manipulating the sign and magnitude of forecast news could achieve the same end. 

We argue, however, that managers have less freedom in manipulating the amount of forecast 

news, due to litigation and reputation concerns. Moreover, the amount of forecast news is largely 

endowed by the economic reality of the firm, over which managers have less control at the point 

of forecast issuance. To capture the “discretionary portion” of forecast news, we need to control 

for the true amount of news observed by managers, which is very difficult. Nonetheless, it is 

interesting to see whether the amount of forecast news or bias changes for pilot firms relative to 

control firms around Reg SHO. Using management forecast surprise as a measure of the amount 

of forecast news, we estimate a difference-in-differences regression similar to Eq. (3) and report 

the results in columns (1) and (2) of Table 6. The coefficient of POST×PILOT is insignificant for 

both the traditional forecast news measure and the RV measure. Column (3) of Table 6 reports 

the results of estimating the difference-in-differences regression using management forecast bias 

as the dependent variable. The coefficient of POST×PILOT is again insignificant. Overall, there 
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is no evidence that managers respond to Reg SHO by manipulating the sign and magnitude of 

forecast news. 

Prior research suggests that managers can learn from stock market prices in making their 

decisions (e.g., Chen et al. [2007]). In fact, Zuo [2013] provides evidence that managers learn 

from stock prices when making forward-looking disclosures. Increased short selling activity can 

increase the informativeness of stock prices, especially with regard to negative information. 

Learning from more informative prices, managers can then make more precise or accurate bad 

news forecasts. Thus, there is a reason to believe that short selling pressure and consequent price 

informativeness have a positive effect on management forecast precision. While this argument 

represents an interesting tension in our investigation, it is not supported by our main empirical 

results. To further examine the potential learning (from price) effect, we examine the effect of 

Reg SHO on management forecast accuracy (proxied by absolute forecast error). Column (4) of 

Table 6 presents the results. The coefficient of POST×PILOT is negative but not significant at 

conventional levels, suggesting that management forecast errors are somewhat reduced but that 

the reduction in errors does not achieve statistical significance. Overall, the “learning from stock 

prices” effect is not well supported by our empirical results. 

4.6 ADDITIONAL ANALYSIS AND ROBUSTNESS CHECKS 

Angelis et al. [2013] find that Reg SHO increases use of stock options in managerial 

compensation packages. It is possible that Reg SHO impacts management forecast precision 

through its effects on compensation structures. We argue that our results are unlikely to be driven 

solely by the compensation structure effect. Specifically, if stock options indeed have an effect 

on forecast precision, they should affect both good news forecasts and bad news forecasts. 
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Nonetheless, to ensure that our results are not driven by changes in compensation structures, we 

re-estimate Eq. (3) by including additional variables that capture the proportion of stock options 

in executive compensation (untabulated). Our inferences continue to hold. Grullon et al. [2012] 

find that Reg SHO reduces the levels of investment and equity financing in pilot firms. Similarly, 

if investment and financing levels have an impact on forecast precision, they should affect both 

good news and bad news forecasts. As expected, our conclusions remain unchanged when we re-

estimate Eq. (3) by including additional control variables, such as R&D and capital expenditures, 

debt issuance, and equity issuance. 

One may argue that there is a time trend in management forecast precision, and that this 

trend, for unknown reasons, differs between pilot and control firms. We argue that this is 

unlikely to be the case, because the SEC selected the pilot firms using a random sampling 

process. Nevertheless, we conduct a placebo test to further ensure the validity of our results. 

Specifically, we define the placebo event date as May 2, 2002 (i.e., three years before the real 

event date). Then, we collect data for the pilot and control firms for the 16-quarter period 

centered at the placebo event date. Table OA10 of the online appendix presents the placebo test 

results. We find no evidence that pilot firms reduce their bad news forecast precision relative to 

control firms around this placebo event date. 

In July 2007, the SEC eliminated the uptick rule for all firms. As a result, short-sale 

constraints for control firms should decrease to a similar level as those for the pilot firms after 

July 2007. We now examine whether control firms reduce their forecast precision around the 

ending of the SEC experiment. To do this, we replace the variable POST (i.e., the event date 

variable) in Eq. (3) by POST_END, which is an indicator variable that takes the value of one if 

the current quarter is located within the four-quarter period after July 2007, zero if the current 
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quarter is located within the four-quarter period before July 2007. The definitions for PILOT and 

other variables are the same as in Eq. (3).3132 

Table 7 reports the results. The coefficient of POST_END is negative and significant, 

suggesting that control firms react to increased short selling pressure around the ending of the 

experiment by reducing their bad news forecast precision. The magnitude of the reduction, 

however, is much smaller than that of the reduction in forecast precision of pilot firms during the 

experiment. In fact, even after July 2007, the forecast precision of pilot firms remains 

significantly lower than that of control firms.33 Therefore, it appears that control firms underreact 

to the removal of short sale constraints (around July 2007) relative to pilot firms (around May 

2005). One potential reason for this is that the post-experiment period coincides with the 

beginning of the financial crisis. It is possible that firms do not have the same incentives to 

maintain the level of stock prices during (or immediately before) a market crash (e.g., Jensen 

[2005]).34 Nonetheless, we caution against over-interpretation of our results, since the treatment 

firms and control firms in this post-experiment event are not randomly selected. The fact that the 

two groups of firms receive different treatments around implementation of Reg SHO (i.e., the 

first event) imposes systematic differences on them before the second event.35 

In an alternative difference-in-differences design, we first calculate the average forecast 

precision (and control variables) for each pilot or control firm over the eight quarters before and 

31 In this regression, we exclude time fixed effects to make it easier to interpret the coefficient on POST (which is 
now the variable of interest). 
32 Essentially, around the “experiment expiration” event, the original control firms are the treated firms (whose 
short-sale constraints are reduced) and the pilot firms are the new control firms (whose short-sale constraints remain 
unchanged). 
33 As expected, pilot firms do not change their bad news forecast precision significantly relative to control firms 
around the ending of the experiment. However, although there is no change in short-sale constraints for the pilot 
firms at this time point, we still observe some additional drifts in pilot firms’ reaction to Reg SHO. 
34 It is also possible that control firms exhibit a delayed reaction when adjusting their forecast precision. However, 
inferences are identical if we expand the post-experiment window to eight quarters or longer. 
35 This is why the “placebo test” should be conducted with pre-treatment data. 
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the eight quarters after Reg SHO. Next, we calculate the change in forecast precision (and 

control variables) around Reg SHO for each firm. We then estimate a regression of the change in 

bad news forecast precision on the pilot firm indicator (PILOT) and changes in control variables 

(with one observation for each firm). The results in Table OA11 of the online appendix show 

that the coefficient of PILOT is negative and significant, consistent with the results in our main 

tests. 

Our study focuses on point and range forecasts, because calculation and classification of 

forecast news is more straightforward for such forecasts. Prior literature typically argues that 

open-ended and qualitative forecasts are less precise than point and range forecasts (e.g., 

Baginski and Hassell [1997], Bamber and Cheon [1998], Rogers and Van Buskirk [2009]). Table 

OA12 in the online appendix examines whether pilot firms reduce the number of point and range 

bad news forecasts relative to control firms; it shows insignificant results. This result may be 

driven by the extremely small number of open-ended and qualitative forecasts in the sample.36 

5. Cross-Sectional Analysis 

In this section, we conduct a series of cross-sectional analyses to further identify the 

effect of short selling pressure and consequent price behavior on management forecast 

precision.37 

5.1 CEO/CFO EQUITY INCENTIVES 

In our main discussions, we argue that the effect of Reg SHO on bad news management 

36 Only 1.67% of the observations used in Table OA12 are open-ended or qualitative forecasts. Chuk et al. [2013] 
find that First Call’s coverage of qualitative forecasts is incomplete. Thus, the inferences drawn from tests involving 
First-Call qualitative forecasts are likely to be problematic. 
37 We also conduct similar cross-sectional analyses for the readability measures but find no significant moderating 
effects. 
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forecast precision exists because managers have incentives to maintain the current level of stock 

prices.38 To further identify the effect of Reg SHO, we examine whether the impact of Reg SHO 

on bad news forecast precision is more pronounced when managers’ wealth is more strongly tied 

to stock prices. Toward this end, we introduce interaction terms between measures of CEO/CFO 

equity incentives and our variables of interest in Eq. (3). Following prior research, we measure 

CEO/CFO equity incentives as the dollar change in the value of executive option holdings 

resulting from a 1% increase in the firm’s stock price, scaled by annual cash compensation (e.g., 

Core and Guay [1999, 2002]). CEO/CFO compensation data are obtained from the Compustat 

ExecuComp Database.39 

Table 8 presents the results. Panel A reports the results based on the traditional forecast 

news measure and panel B presents the results based on the RV news measure. In column (1) of 

panel A, the coefficient of the triple interaction term involving CEO equity incentives is negative 

but not significant at conventional levels. In column (2) of panel A, the coefficient of the triple 

interaction term involving CFO equity incentives is negative and significant at the 5% level. The 

moderating effect of CFO equity incentives is twice as large as that of CEO equity incentives, 

consistent with the argument that CFOs have more influence over corporate disclosure decisions 

(e.g., Jiang et al. [2010], Kim et al. [2011]). The results shown in panel B are generally 

consistent with those of panel A. Overall, the results support the conjecture that the effect of Reg 

SHO on bad news management forecast precision is more pronounced for pilot firms whose 

managers’ wealth is more strongly tied to stock prices. However, readers should take caution in 

interpreting our evidence as managerial opportunism. It is very likely that equity incentives align 

38 Theoretically, we are interested in the effect of price behavior in general, and price sensitivity to bad news in 
particular, rather than Reg SHO per se. Nevertheless, in this section, we use the term Reg SHO for expositional 
simplicity. 
39  To facilitate comparisons across models, we use scaled decile ranks of the conditioning variables in our 
regressions. Inferences are identical if we use raw values. 
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the interests of managers and investors, and that managers act strategically to maintain the level 

of stock prices for the welfare of investors (e.g., to retain customer or creditor confidence). 

5.2 EFFECT OF FIRM SIZE AND AGE 

Grullon et al. [2012] find that the impact of Reg SHO on short selling activity and price 

sensitivity to bad news is larger for smaller pilot firms. Moreover, Hadlock and Pierce [2010] 

find that smaller or younger firms have higher levels of financial constraints. 40 As a result, 

smaller or younger firms may have stronger incentives to maintain the level of stock prices to 

facilitate financing. Thus, we expect the effect of Reg SHO on management forecast precision to 

be stronger for smaller or younger pilot firms. To test this conjecture, similar to Section 5.1, we 

estimate the difference-in-differences regression of Eq. (3) after introducing interaction terms 

between our variable of interest and firm size or age; we present the results in columns (3) and (4) 

of Table 8. Overall, we find that the effect of Reg SHO on bad news forecast precision is more 

pronounced for smaller pilot firms but not for younger firms. 

5.3 FINANCIAL ANALYSTS AND INSTITUTIONAL INVESTORS 

Prior literature argues that financial analysts and institutional investors play an important 

role in monitoring firms’ financial reporting and disclosure decisions. Moreover, financial 

analysts and institutional investors are major users of management earnings forecasts, and they 

impose persistent pressure on management to produce more precise earnings forecasts during 

conferences calls (Ajinkya et al. [2005]). Therefore, we expect the effect of Reg SHO on 

management forecast precision to be weaker for pilot firms with greater analyst coverage or 

higher institutional ownership, because managers of these firms have less flexibility in disclosure 

40 Hadlock and Pierce [2010] show that firm size and age are much better predictors of financial constraint levels 
than traditional measures of financial constraints, such as the KZ index. 
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choices. 

To test the above conjecture, we introduce into Eq. (3) interaction terms between our 

variable of interest and analyst coverage or institutional ownership. Analyst coverage data are 

collected from I/B/E/S and institutional holdings data are from Thomson’s CDA/Spectrum 

database. Columns (5) and (6) of Table 8 report the results. Consistent with our prediction, the 

impact of Reg SHO on bad news management forecast precision is more pronounced for pilot 

firms with smaller analyst coverage, suggesting that managers of these firms have more freedom 

in strategically choosing earnings forecast precision. In contrast, we find that the moderating 

effect of institutional ownership is insignificant, albeit with an expected sign. 

5.4 EFFECT OF CHANGES IN ERC 

If managers reduce forecast precision upon observing that their firms’ stock prices 

become more sensitive to negative information, we should expect the effect of Reg SHO on 

forecast precision to be more pronounced for firms that experience a larger increase in price 

sensitivity to bad news after Reg SHO. To test this prediction, we should, ideally, estimate firm-

specific ERCs using bad news forecasts or negative news quarterly earnings announcements. 

However, it is difficult to obtain sufficient observations for such firm-specific regressions and 

this could induce severe survivorship biases. Only firms with a sufficient number of bad news 

forecasts or negative earnings surprises remain in the sample. Because of this limitation, we use 

a less ideal method of estimating firm-specific ERCs: using a sample of 20 quarterly earnings 

observations (including those with both positive and negative news) before and after 

implementation of Reg SHO.41 Then, we calculate the change in the level of ERC for each firm 

41 We require a minimum of ten observations for each firm to estimate ERCs. 
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and use the decile rank of the ERC change (CHGERC) as the conditioning variable. Column (7) 

of Table 8 reports the results. The coefficient of CHGERC×POST×PILOT is negative and 

significant in both panels A (traditional news measure) and B (RV news measure), consistent 

with our prediction. 

6. Conclusion 

This paper provides empirical evidence that the secondary stock market has a causal 

effect on managerial voluntary disclosure decisions. Using the natural experiment provided by 

Reg SHO, we find that the removal of short-sale constraints increases stock price sensitivity to 

negative forecast news. Managers respond to this exogenous shock to stock price behavior by 

reducing the precision of bad news earnings forecasts. Since more precise forecasts are generally 

associated with stronger market reactions, our results suggest that managers act strategically to 

reduce the influence of increased price sensitivity to bad news, thereby maintaining the current 

level of stock prices. Moreover, we find evidence that managers also reduce the readability of 

bad news annual reports when facing increased short selling pressure. Finally, we find that the 

effect of Reg SHO on bad news forecast precision is stronger for firms with higher CFO 

compensation sensitivity to stock prices, smaller firms, firms with lower analyst coverage, and 

firms that experience larger increases in stock price sensitivity after Reg SHO. 

This research examines an exogenous shock to equilibrium behavior of stock prices and 

probes how managers react to such a shock. We can then draw causal inferences by observing 

the process in which management forecast precision reaches a new equilibrium level. One may 

wonder when the new equilibrium would be reached and what the new equilibrium level would 

be, or whether the reduction in forecast precision is in fact effective (in maintaining the current 
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level of stock prices) or sustainable. We acknowledge that these are useful but very complex 

questions. Our study focuses on the simpler question of whether the shock to stock price 

behavior can cause changes in management forecast precision.42 

Our study represents one of the first efforts to investigate the causal effect of stock price 

behavior on managers’ disclosure choices. Our evidence is consistent with the assumption 

maintained in the accounting literature that maximizing stock prices is one of the most important 

factors determining managers’ strategic disclosure choices. Managers, in response to increased 

sensitivity of stock price to bad news, tend to obscure disclosure of negative information. In 

addition, our empirical results support the general idea of Bond et al. [2012] that secondary 

market prices have a causal effect on the decisions of corporate managers, and are not simply a 

sideshow. 

  

42 One possible way to evaluate the effectiveness of the strategy of reducing management forecast precision is to 
examine whether the stock market reaction to bad news management forecasts is indeed alleviated during the second 
half of the treatment period, in which managers appear to be more aggressive in obfuscating their bad news forecasts. 
However, the stock market reaction is jointly determined by managerial disclosure discretion and short selling 
intensity. Therefore, inferences about the effectiveness of managerial disclosure strategies based on stock market 
reactions are likely to be inconclusive. 
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APPENDIX 
Variable Definitions 

 
Variable Name  Definition 

Variables in market reaction regressions 

POST  1 if the current quarter is in [0, +7] with quarter 0 being the fiscal quarter in 
which Reg SHO experiment was implemented, zero otherwise.  

CAR[-2, +2]  Five-day value-weighted market adjusted cumulative abnormal returns around 
release of management forecast.  

CAR[-2, +2](RV)  

For non-bundled forecasts, five-day value-weighted market-adjusted 
cumulative abnormal returns around release of management forecast. For 
bundled forecasts, announcement period abnormal returns minus predicted 
earnings announcement period abnormal returns. Predicted earnings 
announcement period returns are estimated using Eq. (5) of Rogers and Van 
Buskirk (2013), after replacing analyst forecast revisions with announcement 
period abnormal returns. 

MFSURP  

Management forecast news, computed as the difference between management 
forecast (point or mid-point of the range forecast) and the outstanding median 
analyst forecast at the time of management forecast, scaled by beginning-of-
quarter share price.  

MFSURP(RV)  Management forecast news, calculated using the methodology proposed in 
Rogers and Van Buskirk (2013). 

BADNEWS  1 if the management forecast conveys bad news (defined as MFSURP < 0) 
and zero otherwise. 

BADNEWS(RV)  1 if management forecast conveys bad news (defined as MFSURP(RV) < 0) 
and zero otherwise. 

GOODNEWS  1 if management forecast conveys good news (defined as MFSURP > 0) and 
zero otherwise. 

GOODNEWS(RV)  1 if management forecast conveys good news (defined as MFSURP(RV) > 0) 
and zero otherwise. 

SIZE  Decile rank of the firm’s beginning-of-quarter market capitalization. 

MB  Decile rank of the firm’s beginning-of-quarter market-to-book ratio. 

Variables in forecast precision regressions 

PRECISION  

Management forecast precision, defined as forecast width times negative 100; 
forecast width is computed as the difference between high-end and low-end 
estimates scaled by beginning-of-quarter stock price and zero for point 
forecasts. 

LAGSIZE  Logarithm of the firm’s beginning-of-quarter market capitalization. 
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LAGBM  The firm’s beginning-of-quarter book-to-market ratio. 

DLOSS  1 if the firm reports a loss in the current quarter and zero otherwise. 

ANNRET  Cumulative daily returns over the 12 months prior to quarter t. 

RETVOL  Standard deviation of daily returns over the 12 months prior to quarter t. 

LITIGRISK  The firm’s ex ante litigation risk, estimated with Model (2) in Kim and 
Skinner (2012). 

ANALYCOV  Number of analysts following the firm in the current quarter. 

INSTOWN  Percentage of stocks held by institutional investors. 

MFHORIZON  Management forecast horizon, computed as number of calendar days between 
forecast release date and fiscal quarter-end. 

MFBIAS  
Management forecast bias/error, computed as the difference between actual 
EPS and the management forecast (point or mid-point of the range forecast), 
scaled by beginning-of-quarter stock price. 

ABSMFE  
Absolute value of management forecast error, computed as the absolute value 
of the difference between actual EPS and management forecast (point or mid-
point of the range forecast), scaled by beginning-of-quarter stock price. 

ABSMFSURP  Absolute value of MFSURP. 

ABSMFSURP(RV)  Absolute value of MFSURP(RV). 

Variables in 10-K readability regressions 

lnFOG  Logarithm of 1 plus FOG, where FOG is the Gunning Fog Index of 10-K 
filings, taken from Li [2008]. 

lnFILESIZE  Logarithm of FILESIZE, where FILESIZE is the document file size of 10-K 
filings, taken from Loughran and McDonald [2013]. 

EARN  Net income scaled by lagged total assets. 

SIZE  Logarithm of market value of equity at year-end. 

MTB  Market-to-book ratio at year-end. 

AGE  Number of years since a firm appears in CRSP monthly stock return files. 

SI  Special items scaled by book value of total assets. 

RETVOL  Standard deviation of stock returns in the preceding year. 

EARNVOL  Standard deviation of operating earnings in the preceding five years. 
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NBSEG  Logarithm of 1 plus number of business segments. 

NGSEG  Logarithm of 1 plus number of geographic segments. 

NITEMS  Number of non-missing items on Compustat for the firm-year. 

SEO  
Indicator variable that takes the value of 1 if a firm has a seasoned equity 
offering in the current year according to SDC Global New Issues database and 
zero otherwise. 

MA  Indicator variable that takes the value of 1 if a firm appears as an acquirer in 
the current year in SDC Platinum M&A database and zero otherwise. 
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TABLE 1 
Descriptive Statistics for Management Forecast Sample 

Panel A: Event window [-8, -1] 

 
Pilot Firms 

(1) 
Control Firms 

(2) 
Difference in 

Mean 
Difference in 

Median 
 
Variable N Mean Median N Mean Median (1)-(2) (1)-(2) 
CAR[-2, +2] 1,622 0.001 0.004 3,287 0.005 0.005 -0.004  -0.001  
MFSURP 1,622 -0.027 -0.020 3,287 -0.069 -0.013 0.042 ** -0.007  
BADNEWS 1,622 0.537 1.000 3,287 0.521 1.000 0.016  0.000  
GOODNEWS 1,622 0.326 0.000 3,287 0.343 0.000 -0.017  0.000  
CAR[-2, +2](RV) 1,622 -0.004 -0.001 3,287 -0.001 -0.001 -0.003  0.000  
MFSURP(RV) 1,536 0.014 0.000 3,108 -0.033 0.000 0.047 ** 0.000  
BADNEWS(RV) 1,622 0.512 1.000 3,287 0.499 0.000 0.013  1.000  
GOODNEWS(RV) 1,622 0.458 0.000 3,287 0.461 0.000 -0.003  0.000  
PRECISION 1,622 -0.186 -0.115 3,287 -0.182 -0.116 -0.004  0.001  
LAGSIZE 1,622 7.587 7.358 3,287 7.443 7.267 0.144 *** 0.091 *** 
LAGBM 1,622 0.411 0.387 3,287 0.411 0.362 0.000  0.025  
DLOSS 1,622 0.030 0.000 3,287 0.037 0.000 -0.007  0.000  
ANNRET 1,622 0.213 0.049 3,287 0.194 0.056 0.019  -0.007  
RETVOL 1,622 0.026 0.024 3,287 0.026 0.024 0.000  0.000  
LITIGRISK 1,622 0.077 0.063 3,287 0.074 0.059 0.003  0.004 *** 
ANALYCOV 1,622 10.957 9.000 3,287 10.445 9.000 0.512 ** 0.000  
INSTOWN 1,622 0.755 0.781 3,287 0.745 0.784 0.010 * -0.003  
MFHORIZON 1,622 55.359 63.000 3,287 55.279 63.000 0.080  0.000  
ABSMFE 1,622 0.289 0.110 3,287 0.293 0.117 -0.004  -0.007  
ABSMFSURP 1,622 0.239 0.079 3,287 0.254 0.080 -0.015  -0.001  
ABSMFSURP(RV) 1,536 0.229 0.080 3,108 0.241 0.084 -0.012  -0.004  
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Panel B: Event window [0, +7] 

 
Pilot Firms 

(1) 
Control Firms 

(2) 
Difference in 

Mean 
Difference in 

Median 
 
Variable N Mean Median N Mean Median (1)-(2) (1)-(2) 
CAR[-2, +2] 1,508 -0.002 0.000 2,888 0.000 0.001 -0.002  -0.001  
MFSURP 1,508 -0.072 -0.035 2,888 -0.096 -0.029 0.024  -0.006  
BADNEWS 1,508 0.601 1.000 2,888 0.584 1.000 0.017  0.000  
GOODNEWS 1,508 0.293 0.000 2,888 0.303 0.000 -0.010  0.000  
CAR[-2, +2](RV) 1,508 -0.009 -0.007 2,888 -0.006 -0.006 -0.003  -0.001  
MFSURP(RV) 1,444 -0.022 -0.004 2,754 -0.046 0.000 0.024  -0.004  
BADNEWS(RV) 1,508 0.536 1.000 2,888 0.518 1.000 0.018  0.000  
GOODNEWS(RV) 1,508 0.435 0.000 2,888 0.453 0.000 -0.018  0.000  
PRECISION 1,508 -0.164 -0.118 2,888 -0.151 -0.108 -0.013  -0.010 ** 
LAGSIZE 1,508 7.720 7.447 2,888 7.652 7.422 0.068  0.025  
LAGBM 1,508 0.407 0.375 2,888 0.396 0.344 0.011  0.031 *** 
DLOSS 1,508 0.027 0.000 2,888 0.040 0.000 -0.013 ** 0.000 ** 
ANNRET 1,508 0.022 -0.033 2,888 0.039 -0.016 -0.017  -0.017  
RETVOL 1,508 0.021 0.020 2,888 0.021 0.020 0.000 * 0.000  
LITIGRISK 1,508 0.047 0.039 2,888 0.048 0.039 -0.001  0.000  
ANALYCOV 1,508 11.254 10.000 2,888 11.412 10.000 -0.158  0.000  
INSTOWN 1,508 0.812 0.841 2,888 0.803 0.833 0.009 * 0.008 ** 
MFHORIZON 1,508 56.177 63.000 2,888 56.539 64.000 -0.362  -1.000  
ABSMFE 1,508 0.238 0.112 2,888 0.305 0.115 -0.067 *** -0.003  
ABSMFSURP 1,508 0.227 0.090 2,888 0.283 0.088 -0.056 *** 0.002  
ABSMFSURP(RV) 1,444 0.210 0.080 2,754 0.267 0.084 -0.057 *** -0.004 * 
This table presents descriptive statistics on the management forecast sample, which includes 9,305 quarterly point and range management forecasts (including 5,177 
bad news forecasts, 2,973 good news forecasts, and 1,155 neutral forecasts) that are released in firm-quarters in the event window [-8, +7] with required data, where 
event quarter 0 is the fiscal quarter in which the Reg SHO experiment is implemented. Values of management forecast news and forecast error variables are 
multiplied by 100 for exposition. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the 
variable definitions. 
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TABLE 2 
Changes in Market Reactions to Management Forecasts around Reg SHO Experiment 

Panel A: Bad news management forecasts 
Dependent Variable: CAR[-2, +2] 

 
Traditional 

News Measure 
Rogers and Van Buskirk  

News Measure 
Sample Pilot Firms Control Firms Pilot Firms Control Firms 
 (1) (2) (3) (4) 
MFSURP -2.019** 4.204*** -1.714 4.008*** 
  (-2.15) (5.56) (-1.61) (4.89) 
POST -0.012 -0.016* -0.004 -0.010 
 (-1.04) (-1.96) (-0.35) (-1.08) 
POST ×  MFSURP 8.684*** 0.721 10.352*** 3.301** 
 (5.35) (0.68) (4.91) (2.56) 
Control Variables:     
SIZE 0.028** -0.009 0.013 -0.007 
 (2.28) (-1.04) (1.07) (-0.81) 
MFSURP ×  SIZE 5.839* -5.188*** 2.225 -4.300** 
 (1.89) (-3.21) (0.68) (-2.32) 
MB -0.037*** -0.029*** -0.005 -0.023*** 
 (-3.17) (-3.65) (-0.48) (-2.82) 
MFSURP ×  MB 6.866** 0.885 8.905*** 0.089 
 (2.31) (0.58) (2.80) (0.05) 
POST ×  SIZE 0.002 -0.000 0.014 -0.006 
 (0.09) (-0.04) (0.77) (-0.45) 
POST ×  MFSURP ×  SIZE -9.018** -2.483 -6.746 -6.912*** 
 (-2.08) (-1.22) (-1.48) (-2.84) 
POST ×  MB 0.019 0.022** -0.011 0.017 
 (1.20) (2.04) (-0.66) (1.53) 
POST ×  MFSURP ×  MB -8.101** 2.189 -14.016*** 3.817* 
 (-2.09) (1.18) (-3.39) (1.85) 
Intercept -0.009 0.009* -0.026*** -0.002 
 (-1.20) (1.67) (-3.30) (-0.36) 
Observations 1,777 3,400 1,492 2,860 
Adjusted R2 0.068 0.032 0.047 0.034 
Comparing coefficients on Chi-squared 4.68 Chi-squared 5.09 
POST ×  MFSURP p-value 0.03 p-value 0.02 
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Panel B: Good news management forecasts 
Dependent Variable: CAR[-2, +2] 

 
Traditional 

News Measure 
Rogers and Van Buskirk  

News Measure 
Sample Pilot Firms Control Firms Pilot Firms Control Firms 
 (1) (2) (3) (4) 
MFSURP -0.163 1.157 0.283 1.286 
  (-0.20) (1.26) (0.36) (1.34) 
POST -0.003 0.032*** -0.007 0.011 
 (-0.22) (2.79) (-0.56) (1.09) 
POST ×  MFSURP 1.480 -1.592 0.203 0.270 
 (0.79) (-0.92) (0.11) (0.16) 
Control Variables:     
SIZE -0.043*** -0.047*** -0.037*** -0.039*** 
 (-3.24) (-4.76) (-3.16) (-4.44) 
MFSURP ×  SIZE -1.259 -2.596 -2.399 -7.647*** 
 (-0.64) (-1.40) (-1.28) (-3.57) 
MB 0.012 0.005 -0.015 -0.014* 
 (0.98) (0.51) (-1.42) (-1.73) 
MFSURP ×  MB 1.183 0.668 2.904* 7.561*** 
 (0.71) (0.38) (1.77) (3.84) 
POST ×  SIZE 0.023 -0.009 0.007 -0.003 
 (1.07) (-0.54) (0.36) (-0.25) 
POST ×  MFSURP ×  SIZE -1.506 -1.294 1.590 3.017 
 (-0.50) (-0.45) (0.54) (0.96) 
POST ×  MB -0.016 -0.031** 0.007 -0.014 
 (-0.81) (-2.04) (0.44) (-1.12) 
POST ×  MFSURP ×  MB -1.599 2.713 -3.499 -5.061* 
 (-0.62) (0.97) (-1.38) (-1.71) 
Intercept 0.056*** 0.062*** 0.051*** 0.052*** 
 (6.28) (8.90) (6.51) (8.61) 
Observations 971 2,002 1,401 2,852 
Adjusted R2 0.014 0.043 0.019 0.045 
Comparing coefficients on Chi-squared 1.48 Chi-squared 0.00 
POST ×  MFSURP p-value 0.22 p-value 0.98 
This table presents results on changes in market reactions to management forecasts around the Reg SHO experiment. 
The sample includes 8,150 (8,605) quarterly point and range good news and bad news management forecasts 
released in firm-quarters in the event window [-8, +7] with required data under the traditional (Rogers and Van 
Buskirk) methodology, where event quarter 0 is the fiscal quarter in which the Reg SHO experiment was 
implemented. In the columns under “Rogers and Van Buskirk News Measure,” the dependent variable, CAR [-2, 
+2], is adjusted market reaction following the method of Rogers and Van Buskirk (2013). t-statistics reported in 
parentheses are based on heteroscedasticity-robust standard errors clustered by firm. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the variable 
definitions. 
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TABLE 3 
Changes in Likelihoods of Issuing Management around Reg SHO Experiment 

  
Traditional 

News Measure 
Rogers and Van Buskirk  

News Measure 

Dependent Variable: 

Probability of 
Issuing 

Forecasts 

Probability of 
Issuing 

Good News 
Forecasts 

Probability of 
Issuing 

Bad News 
Forecasts 

Probability of 
Issuing 

Good News 
Forecasts 

Probability of 
Issuing 

Bad News 
Forecasts 

 (1) (2) (3) (4) (5) 
PILOT -- -- -- -- -- 
      
POST -0.281* -0.460** 0.084 -0.183 -0.116 
 (-1.78) (-2.54) (0.57) (-1.16) (-0.78) 
POST × PILOT 0.121 0.082 0.122 -0.020 0.126 
 (1.32) (0.78) (1.41) (-0.21) (1.43) 
Control Variables:      
LAGSIZE 0.702*** 0.129 0.453*** 0.267** 0.459*** 
 (6.76) (1.01) (4.37) (2.37) (4.41) 
LAGBM 0.284 -0.429 0.244 -0.092 0.241 
 (1.41) (-1.48) (1.20) (-0.37) (1.21) 
DLOSS -1.083*** -1.603*** -0.313*** -1.325*** -0.381*** 
 (-10.34) (-8.40) (-2.94) (-8.51) (-3.54) 
ANNRET -0.122** 0.150** -0.264*** 0.054 -0.181*** 
 (-2.23) (2.34) (-4.48) (0.93) (-3.16) 
RETVOL -22.926*** -12.678** -23.254*** -16.859*** -6.315 
 (-5.01) (-2.33) (-5.05) (-3.48) (-1.41) 
LITIGRISK 2.277*** -5.342*** 6.972*** -2.251*** 4.287*** 
 (3.66) (-7.04) (11.22) (-3.55) (7.11) 
ANALYCOV 0.075*** 0.023* 0.066*** 0.030*** 0.081*** 
 (6.30) (1.71) (5.87) (2.61) (7.10) 
INSTOWN 0.885*** 1.148*** -0.652** 0.933*** -0.040 
 (2.76) (2.94) (-2.08) (2.64) (-0.12) 
Firm fixed effects Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes 
Observations 34,096 34,096 34,096 34,096 34,096 
Adjusted R2 0.042 0.037 0.036 0.031 0.024 
This table presents results on changes in likelihoods of issuing management forecasts around the Reg SHO 
experiment. The sample includes 34,096 firm-quarters in the event window [-8, +7] with required data. Event 
quarter 0 is the fiscal quarter in which the Reg SHO experiment was implemented. T-statistics reported in 
parentheses are based on heteroscedasticity-robust standard errors clustered by firm. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the variable 
definitions. 
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TABLE 4 
Changes in Management Forecast Precision around Reg SHO Experiment 

Dependent Variable: PRECISION 

 
Traditional 

News Measure 
Rogers and Van Buskirk 

News Measure 

 
Bad News 
Forecasts 

Good News 
Forecasts 

Bad News 
Forecasts 

Good News 
Forecasts 

 (1) (2) (3) (4) 
PILOT -- -- -- -- 
     
POST 0.010 0.003 0.017 -0.001 
 (0.86) (0.10) (1.26) (-0.07) 
POST × PILOT -0.034** 0.016 -0.031** 0.007 
 (-2.37) (0.64) (-2.06) (0.42) 
Control Variables:     
LAGSIZE 0.190*** 0.159*** 0.196*** 0.159*** 
 (6.60) (5.61) (7.29) (6.29) 
LAGBM -0.100 -0.266** -0.072 -0.211** 
 (-1.63) (-2.51) (-1.24) (-2.47) 
DLOSS 0.015 -0.084 0.021 -0.037 
 (0.63) (-1.15) (0.74) (-0.56) 
ANNRET 0.002 -0.003 0.005 -0.002 
 (0.34) (-0.31) (0.83) (-0.16) 
RETVOL 0.769 2.396 1.385 1.448 
 (0.94) (1.44) (1.62) (1.24) 
LITIGRISK 0.046 -0.113 -0.034 -0.068 
 (0.62) (-1.24) (-0.46) (-1.03) 
ANALYCOV 0.001 0.001 0.001 -0.001 
 (0.54) (0.52) (0.75) (-0.43) 
INSTOWN -0.057 -0.029 -0.049 -0.013 
 (-0.97) (-0.37) (-0.86) (-0.18) 
MFHORIZON -0.069*** -0.023 -0.065*** -0.013 
 (-5.54) (-0.97) (-5.03) (-0.73) 
ABSMFE -2.014** -2.234 -2.185** -3.973 
 (-2.02) (-0.71) (-2.03) (-1.60) 
ABSMFSURP -5.514*** -3.467 -5.849*** 0.404 
 (-3.80) (-1.59) (-3.52) (0.69) 
Intercept -1.466*** -1.268*** -1.546*** -1.287*** 
 (-6.02) (-5.45) (-6.81) (-5.91) 
Firm fixed effects Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes 
Observations 5,177 2,973 4,352 4,253 
Adjusted R2 0.237 0.243 0.237 0.219 
This table presents results on changes in management forecast precision around the Reg SHO experiment. The 
sample includes 8,150 (8,605) quarterly point and range good news and bad news management forecasts released in 
firm-quarters in the event window [-8, +7] with required data under the traditional (Rogers and Van Buskirk) 
methodology, where event quarter 0 is the fiscal quarter in which the Reg SHO experiment was implemented. The 
coefficients on MFHORIZON are multiplied by 100 for exposition. T-statistics reported in parentheses are based on 
heteroscedasticity-robust standard errors clustered by firm. *, **, and *** indicate statistical significance at the 10%, 
5%, and 1% levels (two-sided), respectively. The appendix contains the variable definitions. 

48 
 



TABLE 5 
Changes in Annual Report Readability around Reg SHO 

Dependent Variable: lnFOG lnFILESIZE 
 Bad News Report  Good News Report Bad News Report Good News Report 
 (1) (2) (3) (4) 
PILOT -- -- -- -- 
     
POST 0.009 0.002 0.162 0.019 
 (0.25) (0.08) (0.56) (0.21) 
POST × PILOT 0.032** -0.002 0.133* 0.029 
 (2.18) (-0.16) (1.81) (0.76) 
Control Variables:     
EARN 0.024 -0.024 -0.210 -0.630* 
 (0.49) (-0.31) (-0.73) (-1.78) 
SIZE -0.014 0.002 0.007 0.001 
 (-1.60) (0.11) (0.12) (0.02) 
MTB -0.006 0.001 -0.032 0.028 
 (-1.24) (0.22) (-1.34) (1.42) 
AGE 0.003 -0.011 -0.164 -0.239** 
 (0.11) (-0.39) (-1.14) (-2.39) 
SI -0.043 -0.036 -0.852** -0.247 
 (-0.87) (-0.65) (-2.25) (-0.80) 
RETVOL 0.046 0.036 0.189 0.300 
 (0.97) (0.55) (0.75) (1.24) 
EARNVOL 0.053 -0.119** -0.529** 0.246 
 (0.76) (-2.38) (-2.03) (1.20) 
NBSEG -0.000 -0.008 -0.029 0.035 
 (-0.02) (-0.33) (-0.40) (0.81) 
NGSEG 0.019* -0.005 0.016 -0.023 
 (1.74) (-0.54) (0.24) (-0.47) 
NITEMS -0.171 -0.027 0.532 0.634** 
 (-1.16) (-0.40) (1.22) (2.26) 
SEO -0.002 0.004 -0.006 0.018 
 (-0.29) (0.46) (-0.12) (0.47) 
MA 0.004 -0.001 0.005 0.027 
 (0.24) (-0.16) (0.15) (1.28) 
Intercept 4.043*** 3.224*** -1.710 -2.552 
 (5.00) (8.03) (-0.73) (-1.59) 
Firm fixed effects Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes 
Observations 2,700 4,771 2,382 4,330 
Adjusted R2 0.003 0.001 0.167 0.205 
This table presents results on changes in annual report readability around the Reg SHO experiment. The sample 
includes 7,471 (6,712) annual reports released in firm-years in the event window [-2, +1] with required data for the 
lnFOG (lnFILESIZE) test, where event year 0 is the fiscal year in which the Reg SHO experiment was implemented. 
Bad (good) earnings news is defined as ROA below (above) the industry median. T-statistics reported in parentheses 
are based on heteroscedasticity-robust standard errors clustered by firm. *, **, and *** indicate statistical 
significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the variable definitions.  
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TABLE 6 
Changes in Other Management Forecast Characteristics around Reg SHO Experiment 

Dependent Variable: MFSURP MFBIAS ABSMFE 

 
Traditional 

News Measure 

Rogers and Van 
Buskirk 

News Measure   
 (1) (2) (3) (4) 
PILOT -- -- -- -- 
     
POST -0.022 -0.024 -0.058 -0.082 
 (-0.81) (-0.67) (-1.06) (-1.39) 
POST × PILOT 0.000 -0.047 0.011 -0.029 
 (0.03) (-1.00) (0.33) (-1.00) 
Control Variables:     
LAGSIZE 0.050 0.012 0.202** -0.208*** 
 (1.50) (0.20) (2.06) (-4.68) 
LAGBM -0.277*** -0.227 0.311 0.366* 
 (-2.78) (-1.30) (1.41) (1.80) 
DLOSS -0.392*** -0.360*** 1.010*** 0.793*** 
 (-4.50) (-3.87) (4.49) (5.25) 
ANNRET -0.001 -0.006 -0.014 0.004 
 (-0.09) (-0.46) (-0.80) (0.25) 
RETVOL 0.938 -0.046 -3.704 1.526 
 (0.56) (-0.02) (-1.59) (0.62) 
LITIGRISK -1.071*** -0.944*** 1.708*** 0.134 
 (-6.08) (-4.47) (5.52) (0.66) 
ANALYCOV -0.002 -0.001 0.003 -0.002 
 (-0.61) (-0.21) (0.75) (-0.54) 
INSTOWN  -0.016 0.003 -0.422** -0.211 
 (-0.13) (0.01) (-2.02) (-1.29) 
MFHORIZON 0.025 0.115** 0.033 0.172*** 
 (0.91) (2.55) (1.13) (5.97) 
Intercept -0.278 0.060 -1.407* 1.579*** 
 (-0.90) (0.09) (-1.67) (3.65) 
Firm fixed effects Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes 
Observations 9,305 8,842 9,305 9,305 
Adjusted R2 0.061 0.012 0.091 0.101 
This table presents results on changes in other management forecast characteristics around the Reg SHO experiment. 
The sample includes 9,305 quarterly point and range management forecasts released in firm-quarters in the event 
window [-8, +7] with required data. Event quarter 0 is the fiscal quarter in which the Reg SHO experiment was 
implemented. All dependent variables and the coefficients on MFHORIZON are multiplied by 100 for exposition. T-
statistics reported in parentheses are based on heteroscedasticity-robust standard errors clustered by firm. *, **, and 
*** indicate statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains 
the variable definitions. 
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TABLE 7 
Changes in Management Forecast Precision around the End of Reg SHO Experiment 

Dependent Variable: PRECISION 

 
Traditional 

News Measure 
Rogers and Van Buskirk 

News Measure 

 
Bad News 
Forecasts 

Good News 
Forecasts 

Bad News 
Forecasts 

Good News 
Forecasts 

 (1) (2) (3) (4) 
PILOT -- -- -- -- 
     
POST_END -0.019** -0.009 -0.025** 0.004 
 (-1.97) (-0.80) (-2.55) (0.55) 
POST_END × PILOT -0.006 0.011 0.008 -0.013 
 (-0.44) (0.79) (0.55) (-1.38) 
Control Variables:     
LAGSIZE 0.128*** 0.135*** 0.112*** 0.130*** 
 (3.84) (3.41) (3.83) (5.21) 
LAGBM -0.196*** -0.136* -0.146* -0.158** 
 (-2.69) (-1.69) (-1.84) (-2.55) 
DLOSS 0.015 0.063 -0.020 0.155* 
 (0.43) (0.89) (-0.69) (1.94) 
ANNRET -0.020 -0.022 -0.009 -0.022* 
 (-1.15) (-1.11) (-0.58) (-1.78) 
RETVOL -1.333 -0.447 -2.304 -0.146 
 (-0.86) (-0.34) (-1.62) (-0.14) 
LITIGRISK 0.117 0.152 0.207 -0.077 
 (0.58) (0.77) (1.02) (-0.50) 
ANALYCOV 0.002 0.003 0.001 0.000 
 (0.68) (1.22) (0.33) (0.13) 
INSTOWN 0.061 -0.057 0.036 -0.075 
 (0.69) (-0.44) (0.32) (-0.96) 
MFHORIZON -0.031* -0.079*** -0.042** -0.056*** 
 (-1.79) (-3.29) (-2.28) (-2.97) 
ABSMFE -2.192 -2.053 -2.950 -0.568 
 (-1.49) (-1.29) (-1.59) (-0.50) 
ABSMFSURP -4.909** -8.677*** -3.654 -9.186*** 
 (-2.33) (-2.79) (-1.63) (-3.67) 
Intercept -1.049*** -1.086*** -0.902*** -1.007*** 
 (-3.52) (-3.69) (-3.29) (-5.16) 
Firm fixed effects Yes Yes Yes Yes 
Quarter fixed effects No No No No 
Observations 2,353 1,123 1,897 1,740 
Adjusted R2 0.240 0.229 0.248 0.242 
This table presents results on changes in management forecast precision around the end of the Reg SHO experiment 
(July 6, 2007). The sample includes 3,476 (3637) quarterly point and range good news and bad news management 
forecasts released in firm-quarters in the event window [-4, +3] with required data under the traditional (Rogers and 
Van Buskirk) methodology, where event quarter 0 is the fiscal quarter in which the Reg SHO experiment was 
terminated. The coefficients on MFHORIZON are multiplied by 100 for exposition. T-statistics reported in 
parentheses are based on heteroscedasticity robust standard errors clustered by firm. *, **, and *** indicate 
statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the variable 
definitions. 
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TABLE 8 
Cross-Sectional Variations in Changes in Bad News Management Forecast Precision around Reg SHO 

Dependent Variable: PRECISION (Bad News Management Forecasts) 
Cross-sectional Variable:  CEOOPT CFOOPT SIZE FIRMAGE NANALYST INSTOWN CHGERC 
 (1) (2) (3) (4) (5) (6) (7) 
Panel A: Traditional News Measure 
POST 0.002 0.006 0.025 0.022 0.057* 0.028 -0.018 
 (0.11) (0.31) (1.26) (1.00) (1.94) (1.02) (-0.88) 
POST × PILOT -0.008 0.023 -0.094*** -0.051* -0.107*** -0.046 -0.003 

 (-0.33) (0.87) (-3.28) (-1.80) (-2.82) (-1.33) (-0.13) 
CSVAR × POST 0.008 -0.002 -0.028 -0.023 -0.095* -0.034 0.056 
 (0.29) (-0.06) (-1.06) (-0.69) (-1.88) (-0.78) (1.55) 
CSVAR × POST × PILOT -0.047 -0.096** 0.115*** 0.036 0.145** 0.024 -0.079* 
 (-1.21) (-2.16) (2.83) (0.89) (2.50) (0.50) (-1.74) 
Observations 4,021 3,739 5,177 5,177 5,177 5,177 3,860 
Adjusted R2 0.260 0.261 0.240 0.237 0.243 0.237 0.245 
Panel B: Rogers and Van Buskirk News Measure 
POST 0.018 0.029 0.024 0.029 0.057* 0.033 -0.017 
 (0.76) (1.07) (1.20) (1.16) (1.95) (1.13) (-0.74) 
POST × PILOT -0.009 0.023 -0.071** -0.055* -0.100** -0.048 0.005 
 (-0.37) (0.72) (-2.41) (-1.81) (-2.53) (-1.37) (0.22) 
CSVAR × POST -0.004 -0.024 -0.014 -0.022 -0.082 -0.030 0.081** 
 (-0.14) (-0.71) (-0.52) (-0.63) (-1.58) (-0.66) (2.01) 
CSVAR × POST × PILOT -0.033 -0.088* 0.077* 0.049 0.136** 0.034 -0.097** 
 (-0.79) (-1.70) (1.86) (1.12) (2.27) (0.68) (-1.99) 
Observations 3,368 3,150 4,352 4,352 4,352 4,352 3,257 
Adjusted R2 0.257 0.271 0.238 0.237 0.242 0.237 0.253 
Control variables Yes Yes Yes Yes Yes Yes Yes 
Firm fixed effects Yes Yes Yes Yes Yes Yes Yes 
Quarter fixed effects Yes Yes Yes Yes Yes Yes Yes 
This table presents results from analysis of changes in bad news management forecast precision around the Reg SHO experiment conditioning on seven cross-
sectional variables (CSVAR): CEO option incentives, CFO option incentives, firm size, firm age, analyst coverage, institutional ownership, and increases in ERC. All 
cross-sectional variables are measured as average levels over the pre-event window [-8, -1] for each firm. The initial sample for these tests includes 5,177 (4,352) 
quarterly point and range bad news management forecasts released in firm-quarters in the event window [-8, +7] with required data under the traditional (Rogers and 
Van Buskirk) methodology, where event quarter 0 is the fiscal quarter in which the Reg SHO experiment was implemented. The final sample size could be reduced in 
an individual regression due to missing observations in the cross-sectional variable of interest. CEOOPT (CFOOPT) is the scaled decile rank of the incentive ratio for 
CEO’s (CFO’s) options holdings, which is measured as ONEPCT_OPT/(ONEPCT_OPT+SALARY+BONUS). The variable ONEPCT_OPT (or options sensitivity) is 
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the dollar change in the value of executive options holdings resulting from a 1% increase in the firm’s stock price. SIZE is the scaled decile rank of the logarithm of 
the beginning-of-quarter market capitalization. FIRMAGE is the scaled decile rank of the number of years since the firm’s CRSP listing date. NANALYS is the scaled 
decile rank of the number of analysts following the firm in the current quarter. INSTOWN is the scaled decile rank of the percentage of stocks held by institutional 
investors. CHGERC is the scaled decile rank of the change in ERC around the Reg SHO experiment. For each firm, ERC before (after) the Reg SHO is estimated 
over 20 quarters before (after) implementation of the experiment, with a minimum of 10 observations. The scaled decile rank is determined by first ranking 
observations each year into 10 groups from zero to 9, then scaling the ranking by 9 so that the rank variable falls within the zero-to-1 interval. All the control 
variables as in Table 4 are included but not reported for conciseness. T-statistics reported in parentheses are based on heteroscedasticity-robust standard errors 
clustered by firm. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels (two-sided), respectively. The appendix contains the variable 
definitions. 
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