
Preparing an Educational Module on File Pointer Exploitation in C

by

Derek Michael Ratliff

A Thesis Presented in Partial Fulfillment

of the Requirements for the Degree

Master of Science

Approved April 2023 by the

Graduate Supervisory Committee:

Yan Shoshitaishvili, Chair

Fish Wang

Tiffany Bao

ARIZONA STATE UNIVERSITY

May 2023

 i

ABSTRACT

As computing evolves and libraries are produced for developers to create efficient

software at a faster rate, the security of a modern program is an area of great concern

because complex software breeds vulnerabilities. Due to the criticality of computer

systems security, cybersecurity education must maintain pace with the rapidly evolving

technology industry.

An example of growth in cybersecurity education can be seen in Pwn.college – a

publicly available resource composed of modules that teach computer systems security.

In reaction to the demand for the expansion of cybersecurity education, the pwn.college

developers designed a new set of modules for a course at Arizona State University and

offered the same modules for public use. One of these modules, the “babyfile” module,

was intended to focus on the exploitation of FILE structures in the C programming

language. FILE structures allow for fast and efficient file operations. Unfortunately, FILE

structures have severe vulnerabilities which can be exploited to attain elevated privileges

for reading data, writing data, and executing instructions.

By researching the applications of FILE structure vulnerabilities, the babyfile

module was designed with twenty challenges that teach pwn.college users how to exploit

programs by misusing FILE structures. These challenges are sorted by increasing

difficulty and the intended solutions utilize all the vulnerabilities discussed in this paper.

In addition to introducing users to exploits against FILE structures, babyfile also

showcases a novel attack against the virtual function table, which is located at the end of

a FILE structure.

 ii

ACKNOWLEDGMENTS

I would like to thank my committee chair, Dr. Yan Shoshitaishvili, for trusting me

to develop challenges for pwn.college and providing outstanding technical assistance. By

getting the authorization to work on the FILE structure exploitation module, I was able to

work on a project that would have a measurable impact on students at Arizona State

University as well as anybody around the globe who is looking to learn cybersecurity

concepts. Having a project which contributed to public and free education gave me the

motivation to do my absolute best to provide a refined product.

I would also like to thank security researcher Kyle Zeng at Arizona State

University who helped make this module possible by discovering a functional attack

against virtual function tables in libc versions after 2.27.

 I would also like to thank the National Science Foundation (NSF) for awarding

my the CyberCorps: Scholarship For Service (SFS) award. This scholarship program

allowed me to focus on my academics which gave me the ability to develop my technical

skills as best as possible.

 iii

TABLE OF CONTENTS

 Page

LIST OF FIGURES ... iv

GLOSSARY. ... v

CHAPTER

1 INTRODUCTION .. 1

2 EXPLOIT FUNDAMENTALS ... 2

 Arbitrary Read ... 5

 Arbitrary Write .. 7

 Arbitrary Execute .. 9

 Memory Corruption ... 10

 Virtual Function Table .. 11

 Data Stream Redirection ... 16

 Built-in File Structures .. 17

3 THE CHALLENGES .. 19

 Difficulty Progression ... 22

4 FUTURE WORK .. 37

REFERENCES .. 38

 iv

LIST OF FIGURES

Figure Page

1. Attributes of a FILE structure .. 3

2. The Chaining Properties of FILE Structures ... 4

3. Proof of Concept Code for Arbitrary Read .. 6

4. Proof of Concept Code for Arbitrary Write ... 8

5. Example Exploitable C Program ... 14

6. Example Virtual Function Table Exploit Implementation 15

7. Exploit Execution Shell .. 15

 v

GLOSSARY

Address – A location within a process’ memory.

Attack vector – A method of exploiting a program, given some vulnerability.

Babyfile – A module hosted on pwn.college which showcases FILE structure exploits.

Byte – A byte consists of eight bits.

Canary – A value on the stack used to detect a buffer overflow attack.

Console – A text-based user interface.

Control flow – The order in which computer instructions are executed.

Data stream – A path for data to be transmitted through.

Dereference – Obtain a value stored in a memory segment, given a pointer.

Exploit – An unintended functionality of some computer system that leads to an

 insecure program state.

File descriptor- A number that represents a data stream in a program.

File IO – Input and output operations for files.

FILE structure – A structure defined within the C library which efficiently performs

 File IO Operations.

Global Offset Table (GOT) – A table of function pointers used by processes to

 interface with libc.

Leak – An address that has been revealed.

Libc – The library of standard functions available for C programs.

Mutual exclusion - A concurrent execution control that prevents race conditions.

Nibble – A nibble is four bits, which is half of one byte.

Null bytes – A byte containing all zeroes (0000 0000).

 vi

Payload – A malicious segment of data given to a program designed to cause unintended

behavior.

Pointer – A variable that holds the address of another variable.

Position Independent Executable (PIE) – a security mechanism that randomizes all

 but the last three nibbles of a program’s address space.

Pwn.college – A publicly-available platform that provides free educational cybersecurity

 resources.

Pwntools – A Python library that simplifies program exploitation by providing objects

 which generate exploit payloads given a set of parameters.

The Stack – A segment in a process’ memory that holds critical values such as

 parameters, return addresses, and any other saved values.

Stderr – The data stream for error logging, represented by a file descriptor of 2.

Stdin – The data stream for user input, represented by a file descriptor of 0.

Stdout – The data stream for console output, represented by a file descriptor of 1.

Virtual function table – The table of function pointers designed to make FILE

 structure operations more efficient

 1

CHAPTER 1

INTRODUCTION

Computer exploitation education must continuously evolve to account for the

discovery of new exploits. In response to the continuous need for pwn.college to expand

due to constant advancements in software, the FILE structure exploitation module,

“babyfile” was created. Babyfile was made available on pwn.college on February 22,

2023. The module was exposed on this date, so that a computer systems security Special

Topics course taught at Arizona State University (ASU) could use it. Consequently, since

pwn.college is publicly available, anyone wanting to learn FILE structure exploitation

can, regardless of limiting factors such as geographic location or academic standing.

The main goal for this thesis project was to develop a public resource to serve as a

starting point for those seeking to learn about FILE structure exploits. Moreover, users

should become familiar with pwntools’ “FileStructure” object, which simplifies the

exploitation process for FILE structures.

 2

CHAPTER 2

EXPLOIT FUNDAMENTALS

The C programming language’s FILE structures, despite serving the simple task

of reading and writing to a file, have numerous complex operations behind the scenes.

Figure 1 lists attributes within a FILE structure, along with their lengths and offsets

within the structure. Some of the attributes to be cognizant of when exploiting a FILE

structure include: the pointers that allow for the buffering of data, the flags that define

what actions are permitted, the file descriptor that links the FILE structure itself to a

data stream, and the wide character stream pointer which handles data whose characters

are larger than one byte. The challenges developed from this project use four types of

FILE structure exploits. The featured exploits allow attackers to arbitrarily read data,

arbitrarily write data, directly hijack process control flow, or redirect data streams. For

all the exploits used in babyfile, most FILE structure attributes are irrelevant and can

be overwritten as null bytes for simplicity. However, this exercise is not as simple as

setting every attribute to null. For example, the “_lock” attribute is used to provide

mutual exclusion and thus must not be a null byte. But instead, the “_lock” attribute

must be set to an address that points to a null byte. If the “_lock” attribute is set to null,

then the exploited process will crash from dereferencing the null pointer. When

overwritten correctly, the lock can be claimed by the FILE structure which allows an

exploit to function as expected.

 3

Fig.1 Attributes of a FILE structure

When exploiting FILE structures, an attacker must choose an attack vector.

Two examples of attack vectors on FILE structures include reading or writing data

arbitrarily. The currently known exploits for reading or writing arbitrarily involve

manipulating the FILE structure’s data buffers that are used for read and write

operations. The aforementioned data buffers are formed by sets of character pointers that

represent positions in a data stream. The character pointers for each buffer are located

near the beginning of a FILE structure and are positioned adjacent to one another. Some

of the character pointers will be used to represent the beginning and end of an artificially

selected data stream when dealing with reading and writing arbitrarily (Yang, An-Jie).

 4

Additionally, an attacker could choose to hijack the process control flow. The

only known exploit which is used to directly hijack process control flow targets a FILE

structure’s virtual function table. The virtual function table is an array of function

pointers that are located at the very end of a FILE structure. These function pointers

are used to call various utility functions, which assist in managing the complexity of the

structure. This aids with the runtime efficiency of the FILE structure; unfortunately, it

also opens the structure up to a new attack vector.

 In a runtime environment and as illustrated in figure 2, FILE structures are

stored in a list for processes to easily access. When a process performs some abort

routine, the “_IO_flush_all_lockp()” function is called. This function iterates through all

present FILE structures and flushes their buffers to the respective files. Within this

function, the “_IO_OVERFLOW()” virtual function table entry for each FILE

structure is called. By calling this function, a process is vulnerable to a series of virtual

function table exploits which may be triggered by initiating an abort routing (Yang, An-

Jie).

Fig.2 The Chaining Properties of FILE Structures

 5

Arbitrary Read

An arbitrary read attack allows for any segment of a process’ memory space to be

leaked. First and foremost, to perform an arbitrary read exploit using FILE structures, a

call to “fwrite()” must be present. “fwrite()” is supposed to write some data stored in a

buffer to a file. However, this is not always the case. The FILE structure’s attributes can

be manipulated to trigger an arbitrary reading of data located anywhere within the

process’ memory space. To perform this exploit, the following conditions must be met:

1. The “_IO_NO_WRITES” flag (the fourth bit in “_flags”) must be set to zero. If

this is set to one, the FILE structure will be unable to write any data. Therefore,

“fwrite()” will be unable to print anything to stdout.

2. The “_IO_CURRENTLY_PUTTING” flag (the twelfth bit in “_flags”) must be

set to one. Ignoring this step will result in the FILE structure manipulating the

write buffer, which changes the targeted address range and prevents the exploit

from functioning at all.

3. The “_IO_write_base” pointer must be equal to the start address of the data to be

read.

4. The “_IO_write_ptr” pointer must be equal to the end address of the data to be

read.

5. The “_IO_read_end” pointer must be the same as “_IO_write_base”

6. The “_fileno” attribute should be equal to the file descriptor of stdout, one, so

that data is printed to the console.

 6

Once all these conditions are met, all that is needed to trigger the exploit is a call

to “fwrite().” Then, the data within the selected address range will be printed. Figure

three provides a proof of concept for this exploit’s functionality and shows that these

edits do cause an arbitrary read to take place (Yang, An-Jie).

Fig.3 Proof of Concept Code for Arbitrary Read

 7

Arbitrary Write

An arbitrary write attack allows for user input to overwrite data at any address in

a process’ memory space. Similar to an arbitrary read exploit against a FILE structure,

an arbitrary write exploit requires the attacker to set attributes within the FILE structure

before calling a function. In the case of an arbitrary write exploit, “fread()” triggers the

intended exploit. For a call to “fread()” to cause an arbitrary write operation, the

following attributes must have the following values:

1. The “_flags” attribute must not have the “_IO_NO_READS” flag active. This can

be accomplished by setting the flag’s value to one, which prevents the FILE

structure from reading data. Since the only requirement for “_flags” is to have

some bit set to zero, then the rest of the flags can be set to zero as the other flags

do not matter for this exploit. This should allow for an easier exploit crafting

process.

2. The “_IO_buf_base” pointer must be equal to the start address of some memory

space to be overwritten.

3. The “_IO_buf_end” pointer must be equal to the end address of some memory

space to be overwritten.

4. The “_fileno” value should be equal to the file descriptor for stdin, zero.

Skipping this step will result in the FILE structure reading from some other data

stream rather than stdin.

 8

With all these attributes set appropriately, a call to “fread()” will now allow for

the arbitrary writing of data. This function is supposed to read data from a file into a

buffer; but, with these attribute manipulations, the FILE structure will instead cause the

process to hang and wait for user input. The user’s input will overwrite any data that was

originally stored in the selected address range. Figure four provides demonstrates that

these conditions do allow for an arbitrary write operation through the exploitation of a

FILE structure.

Fig.4 Proof of Concept Code for Arbitrary Write

 9

Arbitrary Execute

FILE structures can be exploited to attain arbitrary execution privileges. One

method is to corrupt memory by utilizing a FILE structure exploit to perform an

arbitrary write operation. This arbitrary write operation should target some value that is

critical for maintaining the process’ control flow such as an entry in the Global Offset

Table (GOT) or a saved return address.

Another method of gaining arbitrary execution privileges is by exploiting a FILE

structure’s virtual function table. As of libc version 2.28, there is a security check on

the values within a virtual function table in the form of the “_IO_validate_vtable()”

function. This function ensures that addresses are within ranges that have been deemed

secure or have been permitted through other configurations for compatibility purposes.

The security checks do not exist for “_IO_wide_data” structures, so any function could

be called by shifting the target to the virtual function table of the “_wide_data”

attribute.

 10

Memory Corruption

Memory corruption can be a reliable method of hijacking the control flow of a

program. Since FILE structures allow attackers to write anywhere in a program’s

memory space, critical addresses, such as a return address, can be overwritten.

However, this is only a viable method to exploit a program when there is a leak, or if

Position Independent Executable (PIE) is not enabled. In contrast, if there is no

address leak and PIE is enabled, then the saved return address should only be partially

overwritten. This is because the last three nibbles of an address remain unchanged by

PIE. An overwrite to the last three nibbles of an address requires overwriting the last

two bytes since data is sent from the user in a byte stream. This leaves a one-in-sixteen

chance of the exploit working because the four most significant bits of the last two bytes

of an address still change with PIE and are still overwritten. Since exploits can be run

multiple times, the probability of a successful attack is sufficiently high. Furthermore,

since this attack vector involves arbitrarily writing to an address space, there is no need

to worry about canaries as an attacker must only ensure that a canary is not targeted in

an attack.

Calling a function that is stored in the GOT causes the process to jump to the

associated address within the GOT. This functionality can be leveraged to hijack

control flow by corrupting memory and overwriting one of the function pointers stored

in the GOT. Then, the corrupted function can be called. The GOT is only targetable if a

process does not have PIE enabled or if an attacker learns the base address of a process

through an address leak.

 11

Virtual Function Table

Currently, exploiting a virtual function table is the only known method of

directly attaining arbitrary execution privileges with FILE structure exploits. In libc

versions before 2.28, there were no security checks performed on the values of function

pointers contained within the virtual function table. This meant that an arbitrary

address could have been set as the value for one of the function pointers; and when that

pointer was called, the program would jump to that address (Sidhant). When calling any

function in the virtual function table, the program would call it with the format

“FUNC(fp),” where fp is the FILE structure. This grants an attacker complete control

over the first parameter in addition to the instruction pointer. However, as of libc version

2.28, there are security checks in place which ensure that these values fall within a certain

range of addresses. For example, a common attack in the past was to change one of the

function pointers to call “system()” to open a shell (Seb-Sec). But this is no longer a

viable attack, since the ”system()” function address does not fall within the valid range

of addresses.

Despite best efforts, there remains at least one vulnerability within the virtual

function table and at least eight more are theorized to exist (Kylebot). Consider a FILE

structure’s attribute for a wide character stream, “_wide_data.” Kyle Zeng, a security

researcher at Arizona State University, discovered that the “_IO_wide_data” structures

do not perform a security check on their virtual function table. Should one of the

addresses within the virtual function table be overwritten, due to the lack of security

check, the program could call a corrupted function pointer just like in the previous

generation of this attack. The corrupted function pointer will be called if and only if all

 12

other attributes are set to their appropriate values. Appropriate values can be determined

by finding conditions that must pass to reach the chosen function call.

To perform a successful attack on a virtual function table in more modern

versions of libc, an “_IO_wide_data” structure’s virtual function table must be targeted

instead of a FILE structure’s virtual function table. An attack can be performed on the

“_IO_wide_data” structure’s virtual function table by crafting a fake FILE structure

along with a fake “_wide_data” attribute for that FILE structure. These two structures

can either be located separately or aligned to overlap and occupy the same location in

memory. Additionally, a libc leak must be obtained to trigger an exploit chain that can

perform this exploit. An exploit chain may exist for each of the eighty-one functions in

the libc virtual function table section; however only the exploit chain targeting

“_IO_wfile_overflow()” has been confirmed to work (Kylebot).

Before an attacker can attack a virtual function table, they must have an address

that points to instructions that they want the program to execute. Applying the exploit

chain for “_IO_wfile_overflow()” involves satisfying the following set of criteria for a

fake “_wide_data” attribute in a FILE structure:

1. The “_IO_wide_data” structure must be left-padded with 0xE0 bytes. Most of the

values of these bytes do not matter and can thus be set to zero. The

“_IO_write_base” and “_IO_buf_base” attributes of the “_IO_wide_data”

structure must both be set to zero.

2. A fake virtual function table pointer must follow the padding. This fake pointer

must have the address of some point in memory which has an attacker’s

 13

malicious address 0x68 bytes ahead of it. The values of these bytes do not matter

– only the alignment of the specified values is pertinent to the exploit.

In addition to crafting a “_wide_data” attribute, a fake FILE structure that refers

to the crafted “_IO_wide_data” structure must also be forged. This FILE structure must

satisfy the following criteria:

1. The “_flags” attribute must have the “_IO_CURRENTLY_PUTTING” and

“_IO_UNBUFFERED” flags must both be set to zero.

2. The “_wide_data” attribute must be a pointer to the previously described fake

“_IO_wide_data” structure.

3. The virtual function table pointer must be altered to be equal to libc_base +

0x215F20, where libc_base is the base address of libc for an exploited process.

This offset causes the virtual function table to be located within

“_IO_wfile_jumps_maybe_mmap” so that the process may invoke

“_IO_wfile_overflow()” once the exploit is triggered.

If any of the aforementioned criteria are not met, triggering the exploit will do

nothing except risk crashing the process when it attempts the next operation on that FILE

structure. Once this exploit is set up correctly, the FILE structure needs to be operated

on in some way with a call that writes or reads data. This call will trigger the exploit

chain, which causes the process to invoke “_IO_wfile_overflow()” which invokes

“_IO_wdoallocbuf(),” which invokes “_IO_WDOALLOCATE(fp).” Continuing the

 14

chain, the “_IO_WDOALLOCATE()” function is a macro that traces back to the

“__doallocate” function pointer of an “_IO_wide_data” structure’s virtual function

table. Thus, given that “__doallocate” is set to the address of an arbitrary function, the

invocation will instead call an attacker’s chosen function. Moreover, this exploit allows

for the first parameter of the called function to be controlled by editing the “_flags”

attribute of the forged FILE structure. Since some of the FILE structure’s “_flags”

attribute is restricted to a set of certain values, not every parameter is possible to use with

this chain. For example, performing this exploit properly while setting the “_flags”

attribute equal to the number 1337 will cause the attack to fail rather than calling an

arbitrary function with a parameter of 1337.

An example exploitable program can be seen in figure five which simulates an

arbitrary write attack on the process’ instance of stdout. After the payload is read in, the

process calls “puts(),” which triggers the exploit to execute.

Fig.5 Example Exploitable C Program

Any of the described FILE structure exploits can be performed against the

program but the most dangerous is a virtual function table attack. One application of a

virtual function table attack is to call “system(‘/bin/sh’)” which permits an attacker to

 15

maintain persistence on an exploited system. An example implementation of this attack

can be seen in figure six whose results of execution can be seen in figure seven.

 Fig.6 Example Virtual Function Table Exploit Implementation

 Fig.7 Exploit Execution Shell

 16

Data Stream Redirection

Most of the previously described exploits required additional information such as

addresses in order to properly leak sensitive data or hijack control flow. Some processes

may be designed to communicate sensitive data through file IO operations. If a sensitive

FILE structure can be written to, then the file descriptor could be changed to

something public such as stdout or another publicly accessible file. This is a simpler

attack than the other mentioned exploits because only the “_fileno” attribute needs to be

manipulated. Moreover, it can be used to leak private data streams without the need for

leaking addresses.

 Since this attack does not require an address leak, an attacker only needs the

ability to overwrite a FILE structure’s attribute data to perform a data stream redirection

exploit. By not requiring leaks, a well-placed buffer overflow could allow an attacker to

perform a data stream redirection attack on a FILE structure to leak sensitive data from

a system. This leak could either provide enough information for the attacker to elevate

their privilege level or provide them with the information they initially set out to attain.

 17

Built-in File Structures

The FILE structures provided by application developers are not the only FILE

structures within a C program; a FILE structure will always exist for stdin, stdout, and

stderr. Since they are guaranteed to be present in any C executable, a vulnerable

structure will always exist.

Built-in FILE structures tend to require the use of other exploits to leverage, as

data generally cannot be written directly into structures within libc. The exploit method

for stdin, stdout, and stderr is the same as any other FILE structure, except that the

exploit is triggered by sending a data stream to the respective FILE structure. Exploits

targeting the FILE structure of stdout are triggered through a function such as “printf()”

or “puts()”.

Since stdout is used for writing data, it can be used to perform an arbitrary read

exploit. An attacker can make use of this by applying any sort of arbitrary write exploit

on stdout to cause an arbitrary read operation. This means that in all C executables using

libc v2.35 or earlier: if there is a vulnerability that allows for arbitrary writing, then there

is a vulnerability for arbitrary reading.

Similar to how stdout can be used to perform an arbitrary read, stdin can be used

to perform an arbitrary write. This specific variant of the exploit is likely rarely used, if

ever, since having the ability to write directly to stdin’s FILE structure implies an

attacker already has arbitrary write capabilities.

Similar exploits can be crafted to target stderr however these can only be

triggered through error logging. This prevents stderr from being an optimal target for an

 18

attack since data sent through stderr is significantly less common than data sent through

frequently utilized data streams such as stdin or stdout.

 19

CHAPTER 3

THE CHALLENGES

The intended audience for pwn.college is people who are starting to learn

computer exploitation. To cater to the target audience of beginners, the challenges were

designed with two different schemas – “tutorial” and “notesapp.” The “tutorial” schema

takes most of the inherent complexity out of each problem, restricting the user’s level of

interaction to sending the primary exploit payload. This restriction on interaction is

designed to reduce confusion on the steps needed to perform the intended exploits and

ensure that users understand concepts before moving on to later, more difficult,

challenges. In addition to reducing interaction, these “tutorial” challenges attempt to

remove any setup associated with the intended exploit. For example, if the challenge is to

exploit the stdout FILE structure, then the user will be prompted to write directly to

that particular FILE structure.

In contrast, the “notesapp” schema does not remove any setup nor reduce

interaction because it aims to teach users how to set up FILE structure exploits on their

own. Users are provided a set of commands to interact with the program along with a

“write_fp” command which will prompt the user for input, writing that input data directly

to a FILE structure. This command was implemented at the request of the pwn.college

team to remove focus from other exploits which may be leveraged to overwrite a FILE

structure’s memory and instead focus entirely on the FILE structure exploit. The

“notesapp” challenges feature programs which allow the user to write notes which can be

written to or read from a file.

 20

To aid in the learning process, both challenge schemas cover the same exploits so

that users can understand the basics of each exploit before advancing to a scenario where

they are exploiting a note-taking application. There are ten challenges using the

“tutorial” schema and ten challenges with the “notesapp” schema.

Most challenges have a provided leak, showing where some stack value is, where

the location of “puts()” is within libc, or where the location of “main()” is within the

process. Provided address leaks are intended to remove any confusion from the process

of leaking data, directing users to focus on the FILE structure exploits. Some

challenges provide less information than is needed, challenging the user to search for

more addresses to successfully exploit the program.

The presented challenges have one of five situations based on what the intended

exploit is:

1. Some levels have a flag hidden within the process’ memory which cannot be

printed in any way other than by performing an exploit to arbitrarily read that

data.

2. For levels that intend for data to be arbitrarily written, there is a value called

“authenticated” which is set to zero and cannot be changed without an

exploit. When this authentication variable is not zero, the process will allow

for the flag to be printed.

3. Memory corruption levels primarily target a saved return address on the

stack. These levels can be distinguished by a stack value being leaked for

the user to read and compute the location of a saved return address.

 21

4. One level which applies memory corruption does not leak a stack address

and instead pushes the user to overwrite a function pointer within the GOT.

This direction is provided by disabling PIE so that the GOT addresses are

known, providing an easier attack vector than targeting the virtual function

table. Other levels do not leak stack addresses nor allow any addresses

within the GOT to be overwritten and therefore require an exploit against the

virtual function table.

5. The final exploit scenario involves the data stream redirection technique. In

these levels, the flag is communicated through some private channel and the

user may edit a FILE structure’s file descriptor attribute to leak that private

data.

 22

Difficulty Progression

The babyfile module was designed to cover a variety of exploits using FILE

structures. Along with covering a diverse set of exploits, the challenges themselves were

mostly sorted from easiest to hardest. The one exception to this sorting is level 8. Level 8

is slightly more difficult to grasp than level 9. This was done to keep early levels

targeting built-in FILE structures closer together. A list of the ordered challenges with

their solutions is as follows:

Level 1:

An arbitrary read exploit was considered the best start since it requires

less manipulation of a FILE structure. It is supported by pwntools, and it

provides a good foundational understanding of a FILE structure’s attributes

upon which to build. Level one has the flag loaded into a buffer which is

unreadable except by performing some type of arbitrary read exploit.

Solution:

The solution is to create a fake FILE structure that is primed to trigger an

arbitrary read exploit on the address where the flag is stored. Once this payload

is sent, the process will attempt to call “fwrite()” which will trigger the arbitrary

read exploit to execute and the flag to be printed to stdout.

Level 2:

An arbitrary write exploit came next since it has a very similar setup on

the attacker’s end, and it is also supported by pwntools. The only major

 23

difference is which buffers are manipulated. This level has an authentication value

and a security check for that value. If the security check is passed by having the

authentication value not equal to zero, then the flag is read and printed to stdout.

The authentication value cannot be changed without an exploit to overwrite the

original zero value.

Solution:

Users are meant to create a fake FILE structure with attributes set so that

when “fread()” is called by the process, an arbitrary write exploit will occur and

the user can write any value into the authentication value’s address space. Once

the user sends some nonzero bytes of data, the authentication value will be

corrupted and the process will be able to freely pass the security check, printing

the flag.

Level 3:

Once a user completes the first challenges on performing arbitrary read

and arbitrary write exploits, they should be able to understand the significance of

the “_fileno” attribute. With this understanding comes a smooth transition into the

data stream redirection exploit. Users write directly to the “_fileno” attribute of

the FILE structure being used. This write offset should help resolve any

confusion since it places a greater focus on that segment of the FILE structure.

Solution:

This challenge has users swap the file descriptor of a FILE structure

which is interacting with the flag file to a file descriptor of a publicly readable

 24

file. Once this is accomplished, the secret flag will be written to that public file

for anybody to read. Although a nonconventional exploit, this level should help

bolster the understanding of file descriptors and how they are used to represent

different open data streams.

Level 4:

Once users have a good foundation from the preceding levels, they should

be prepared to see a challenge in hijacking control flow. In this specific case,

there is a “win()” function which is never called within the process’ instructions.

A stack address is leaked so that users may know where the saved return

address is. This piece of information hints towards a memory corruption attack to

gain arbitrary execution privileges.

Solution:

The solution for level four is to perform an arbitrary write exploit over the

saved return address. With this exploit, users can write the start address of the

“win()” function instead of the next instruction in the main function. Once this

return address is overwritten, the process will continue as normal until the end of

the challenge function is reached, where the process will return to “win()” rather

than “main()”. By executing this “win()” function, the flag is printed out.

Level 5:

Level five gives users a situation in which they will demonstrate how

built-in FILE structures can be exploited. The flag is stored in memory just like

 25

in level one but the user directly writes to the stdout FILE structure rather than

some standard FILE structure.

Solution:

To solve this challenge, users should abuse the built-in stdout FILE

structure to perform an arbitrary read exploit on the saved flag to print it to the

terminal. Unlike normal FILE structure exploits, an attack on stdout will be

triggered with a printing function such as “puts()” or “printf()” rather than

“fwrite()”. Once the user inputs a malicious FILE structure’s content into

stdout, then once any data is printed, the flag will be read from memory and

printed to the terminal as well.

Level 6:

Following the previous exploit against stdout comes another attack

against the built-in FILE structure: stdin. This level has users perform the same

exploit as level two – an arbitrary write exploit over an authentication value. The

main difference here is that the exploit is now triggered with input functions such

as “scanf()” instead of “fread()”.

Solution:

The solution is to send a fake FILE structure which sets up an arbitrary

write exploit over the authentication value. Once the process calls “scanf()”, the

exploit will trigger and the user will be able to overwrite the authentication value,

allowing the process to proceed to call “win()” and print the flag.

 26

Level 7:

Virtual function table exploitation is at the very end of the “tutorial”

levels since it is the most complicated of the discussed exploits. This exploit is

performed by either inserting a fake “_wide_data” structure within the exploited

FILE structure, or with no overlap at all. Having no overlap is conceptually

easier to understand, so the first level provides an independent buffer to forge a

fraudulent “_wide_data” structure within and then prompts the user to overwrite

the FILE structure data.

Solution:

The solution here is to form a fake “_wide_data” structure with a virtual

function table made to call the “win()” function. Once this is sent, the user

should create a fake FILE structure which has that fake “_wide_data” structure

as an attribute. Once the user sends this fake FILE structure which utilizes the

fake “_wide_data” structure, the exploit should trigger once the process calls

“fwrite()”, thus calling “win()” and printing the flag.

Level 8:

Next, users are forced into a situation where they must overlap these

structures against stdout. In this case, exploiting stdout does add another layer of

complexity. The difference between the exploit on stdout and the exploit on any

non-built-in FILE structures is that exploiting stdout will prevent any printing

from occurring. The “win()” function for this challenge sets the permissions of the

flag file to be publicly readable, effectively leaking the flag without printing it to

 27

the terminal. Due to stdout being the data stream for console output, the process

will no longer be able to print data to the console, as stdout will be corrupted.

Solution:

The solution for level eight is similar to that of level seven, but with the

fake “_wide_data” struct sharing the same memory as the fake FILE structure.

To do this, users must find some creative method to align the multiple pointers so

that the virtual function table exploit may properly function while utilizing

minimal memory space.

Level 9:

Similar to level eight, users will perform an attack on the virtual function

table of a standard FILE structure while being forced to overlap the FILE

structure and “_IO_wide_data” structure. This level removes any complexity

from stdout being corrupted and allows data to be printed after the exploit.

Solution:

This level is solved using the same strategy as level eight, but instead the

user must target a standard FILE structure rather than a built-in FILE structure

such as stdout. This means that the output stream will not be corrupted, and the

users can read the flag as expected once they perform their exploits.

Level 10:

The final level using the “tutorial” schema adapts level nine by adding a

password to the “win()” function. If this password is correct, the program will

 28

print the flag – if not, then no sensitive data should be leaked. As a result of a

security check within the “win()” function, users should not be able to ignore the

password parameter. The security check ensures that the start of the “win()”

function was called rather than somewhere in the middle of the function through

the implementation of a canary whose value is verified after reading the flag into

memory, but before writing the flag to stdout. Should the canary be corrupted in

some way, the process will terminate without printing the flag.

Solution:

The solution to this level relies on the user understanding that virtual

function table functions use the FILE structure they belong to as the first

parameter when calling any function pointers in the table. This means that the

first parameter of a function call can be arbitrarily chosen by setting the value of

the “_flags” attribute specifically. Some flags are crucial for the exploit to work

but in this case, the string “password” allows for all of those significant flags to be

set to their appropriate values. If the rest of the exploit is performed as described

by the solution to level nine with “_flags” set to the string “password”, then the

“win()” function should be called and the password check should be successfully

resolved, leading to the flag being printed.

Level 11:

After the first half of the module, the “notesapp” schema levels come into

play – these levels offer a greater challenge to users by not offering any exploit

setup assistance other than address leaks and the “write_fp” command. Some of

 29

these levels require only one FILE structure exploit to be performed, but many

of them require more information to be leaked with an arbitrary read exploit

before the flag can be extracted.

 Level eleven allows for a variety of commands to be used to create, write,

save, and load different notes. These commands are as follows:

 1. “new_note” – allocate memory for a note buffer,

 2. “del_note” – free an existing memory space used by a note,

 3. “write_note” – write data to an existing note,

 4. “read_note” – print the contents of a note,

 5. “open_file” – create a FILE structure for “/challenge/babyfile.txt,”

 6. “close_file” – close the FILE structure made with “open_file,”

 7. “write_file” – call “fwrite()” to write a note to the babyfile.txt file,

 8. “write_fp” – write directly into the new FILE structure,

 9. “quit” – close the application.

Solution:

Similar to the “tutorial” section, level eleven has users set up and perform

an arbitrary read exploit on a flag stored in memory. This level is solved by

sending the command “open_file” and then the command “write_fp” to write

directly to the newly created FILE structure. From here, an arbitrary read

exploit on the memory containing the flag is inputted, and “write_file” is called to

trigger the exploit.

Level 12:

 30

Just as with the “tutorial”, the second level using the “notesapp” schema

has a security check with an authentication value. To account for this intended

exploit, the “authenticate” and “read_file” commands are allowed to be used.

“authenticate” is the command to perform the security check and call “win()”, if

allowed, and “read_file” attempts to read data to a note from babyfile.txt. Once a

user can bypass this security check, then the process can read and print the flag.

Solution:

The solution for level twelve is to create a new note, open the

“babyfile.txt” file, and craft an arbitrary write exploit that targets the

authentication value to the new FILE structure. Once the “read_file” command

is called, the exploit is triggered. The user can now enter the new authentication

value and call “authenticate” to read the flag.

Level 13:

To start applying the arbitrary read and arbitrary write exploits in a

general setting, users are given a program with PIE enabled, a stack address

leak, and a “win()” function. The “authenticate” command was removed since it

would provide an easier attack vector, but all other commands are provided.

Solution:

Moving away from the previous simpler “notesapp” challenges, level

thirteen requires both an arbitrary read and an arbitrary write exploit. First, users

must exploit a FILE structure to arbitrarily read the saved return address on the

stack and thus learn the binary’s base address. Using this base address, the

 31

address of the “win()” function can be computed and called by writing the

address in place of the saved return address. By returning to the “win()” function

instead of the “main()” function, the flag is printed to the terminal.

Level 14:

Adapting level thirteen, level fourteen does not provide the ability to

perform an arbitrary read exploit since it does not provide the “write_file”

command. Aside from this, the challenge is the same as the previous level.

Solution:

For the solution, instead of reading the full address and manipulating it to

be the address of the “win()” function, they must overwrite the final two bytes of

the saved return address, giving a probability of one-in-sixteen for the process to

return to the “win()” function instead of “main()”. Since this probability is

sufficiently high, the exploit can be repeated several times until a successful

attack is accomplished.

Level 15:

Level fifteen provides a situation where the user must gain arbitrary

execution capabilities without overwriting a saved return address since a stack

address is no longer leaked. All commands from level fourteen are allowed in

level fifteen.

Solution:

 32

The solution for this level begins with overwriting a GOT entry with the

address of the “win()” function. Now the level can be completed by calling the

corrupted GOT entry and the flag will be printed. When choosing an entry to

overwrite, the user must not overwrite an entry for a function called inside the win

function, such as “printf()”. Doing such will cause an infinite loop of calling the

“win()” function. It is best to overwrite the address of some function that is rarely

called such as “fclose()”. This “fclose()” function is only called when the

command “close_file” is sent to the process. When the exploit is set up and the

user sends the “close_file” command, the process will attempt to call “fclose().”

Instead of calling “fclose(),” the process will call the “win()” function, which

prints the flag.

Level 16:

Level sixteen has the flag hidden in the process’ memory space but does

not allow for arbitrary read exploits to be trivially performed since the

“write_file” command is not allowed. Furthermore, there is no “win()” function

provided so the solution to level fifteen does not work here. In order to open a

different attack vector, an address from libc is leaked.

Solution:

The solution is to use the libc address leak to derive the address of the

stdout FILE structure. An arbitrary write exploit can be performed which

targets that stdout FILE structure which can then receive an arbitrary read

 33

exploit payload to read the contents of the flag buffer. After this is accomplished,

the process calling “printf()” or “puts()” will print the hidden flag.

Level 17:

To round off data stream redirection exploits, level seventeen has a new

command “open_flag” which only serves the purpose of opening the private file

which contains the flag. Users have their standard permissions and other usual

commands available.

Solution:

To read the flag, users must write to their FILE structure to swap the file

descriptor of the flag file, read the flag into memory with the command

“read_file”, swap the file descriptor back to that of the publicly readable

“babyfile.txt” file, and then write the flag to the file by sending the command

“write_file”.

Level 18:

The “notesapp” levels are finished off with three exploits against virtual

function tables. These final challenges are very similar to one another with only

slight modifications to increase difficulty. The remaining levels all have a “win()”

function which is intended to be called by performing an attack on a virtual

function table. Level eighteen provides the ability to write notes using the

 34

“write_note” command which allows for a fake “_wide_data” structure and the

manipulated FILE structure data to not overlap.

Solution:

The solution for this level utilizing a virtual function table exploit starts

with leaking the heap address of the FILE structure by using an arbitrary read

exploit. After this, the user can perform another arbitrary read exploit, this time

targeting 216 bytes ahead of the FILE structure’s base address. This second

arbitrary read exploit will leak a libc address whose position is known. By

subtracting 0x216600 from this libc address leak, the base address of libc is

obtained. Now that the address of libc is known, the virtual function table

exploit can be performed. This series of leaks remains the same for the following

levels. For level eighteen, the user can send the “write_note” command followed

by the fake “_wide_data” structure. Finally, the user can set up the full exploit by

overwriting the FILE structure’s memory so that it will use that “_wide_data”

structure and the exploit can be triggered. To trigger the exploit, the “write_file”

command must be sent which will then cause the win function to be called and the

flag to be printed.

Level 19:

The next level prevents the “_wide_data” structure from being located

anywhere other than within the same FILE structure. This is accomplished by

removing functionality for the “write_note” command. By removing the

 35

“write_note” command’s functionality, users are forced to overlap the two data

structures within the same memory segment.

Solution:

The solution for level nineteen involves performing the previous series of

leaks from level eighteen. The key difference in this solution is that the user must

overlap the fake “_wide_data” structure with the manipulated FILE structure as

practiced in level nine.

Level 20:

Level 20 slightly improves the security of level 19 by adding a password

parameter to the “win()” function which users have the goal of calling.

Solution:

To set this password parameter, the user must only set the “_flags”

parameter to the string “password” with a null-terminating byte and complete the

rest of the virtual function table exploit as before. Aside from this difference,

the level has the same structure and series of address leaks as the previous two

levels.

 On February 22, 2023, the babyfile module was made available on pwn.college

for public use. All challenges had a walkthrough which provided helpful tips to guide

users toward the intended solution without divulging too much information to effectively

give the solution away.

 36

 Each level had an equal or lesser number of solves than the previous level with

the first starting at thirty-one and the last having fourteen solves as of March 6, 2023.

This suggests that the levels were properly sorted to increase the perceived difficulty as

the module progressed.

Unfortunately, level 20 did have an unintended solution due to a coding error.

This challenge was intended to have a password for the “win()” function however an

incorrect parameter was set to true which made level 20 identical to level 19. This was

not fixed immediately since some users were students completing the babyfile module

for a grade and some students had already completed the challenge.

 37

CHAPTER 4

FUTURE WORK

Although the module was successful in teaching FILE structure exploits with

progressive difficulty, there are more developments to be made.

First, the challenges need some sort of method to randomize challenges to be

more unique per instance so that a teaching challenge (with walkthrough) and a testing

challenge (without walkthrough) can be formed from each level. By following the

standard pwn.college challenge pattern and separating these level categories, the babyfile

module will provide a greater challenge by disallowing pwn.college users from

completely relying on walkthroughs to solve each challenge.

Second, as the module remains public, users will find unintended solutions. These

solutions should either be patched or used as inspiration to design a new challenge if the

exploit applies a FILE structure exploit. Along with discovering unintended solutions,

users may also discover bugs in the challenges. These bugs should be recorded and

patched at appropriate times so that pwn.college maintains a robust curriculum and any

students completing pwn.college for a grade do not get disadvantaged.

 38

REFERENCES

Basque, Zion, et al. “CTF-Wiki-En/Fake-Vtable-Exploit.md at Master · Mahaloz/CTF-

Wiki-EN.” GitHub, 30 June 2020, <https://github.com/mahaloz/ctf-wiki-

en/blob/master/docs/pwn/linux/io_file/fake-vtable-exploit.md>.

Kylebot. “[Angry-FSROP] Bypassing Vtable Check in Glibc File Structures.” Kylebot's

Blog, 31 Oct. 2022, <https://blog.kylebot.net/2022/10/22/angry-FSROP/>.

“Pwnlib.filepointer - File* Structure Exploitation¶.” Pwnlib.filepointer - FILE* Structure

Exploitation - Pwntools 4.9.0beta0 Documentation,

<https://docs.pwntools.com/en/beta/filepointer.html>.

Seb-Sec. “File Exploitation.” ./Seb-Sec, 29 Apr. 2020, <https://seb-

sec.github.io/2020/04/29/file_exploitation.html>.

Sidhant. “FSE#1: File Structure Exploitation 101.” Techlifecompilation, 23 Apr. 2018,

<https://techlifecompilation.wordpress.com/2018/04/23/fse1-file-structure-

exploitation-101/>.

Yang, An-Jie (2018, September 17). Play with FILE Structure Yet Another Binary

Exploitation Technique. Retrieved August 30, 2022, from

https://gsec.hitb.org/materials/sg2018/WHITEPAPERS/FILE%20Structures%20-

%20Another%20Binary%20Exploitation%20Technique%20-%20An-

Jie%20Yang.pdf.

